沥青路面凝冰损坏影响因素及细观机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南方云南、贵州、四川等省地处高海拔潮湿山区,由于气候条件和地理位置等原因,冬季或早春时节经常出现凝冻灾害。凝冻天气会导致路面产生凝冰,不但会严重影响道路交通安全和运输效率,还会直接或间接造成路面本身的严重损坏。由于凝冻天气条件的特殊性,其对沥青路面造成的损坏有别于我国北方等季冻区冬季温度和湿度持续较低的气候特点对路面造成的损坏,目前针对沥青路面凝冰损坏的相关研究也较少。鉴于此,本文针对南方高原潮湿山区凝冻天气对沥青路面造成的损坏,开展其损坏特点、影响因素、细观机理以及评价方法等方面的研究,从而为这些地区沥青路面凝冰前防护、凝冰后修复以及抗凝冰损坏路面材料的设计等工作提供依据。
     首先,通过现场调查、检测,结合芯样试验分析了凝冰对沥青路面使用性能和混合料组成结构的影响,结果表明:凝冰破坏作用主要影响路面表面状况,使其集料剥落、形成麻面等病害,路面构造深度增大。通过对凝冰损坏不同程度路面的检测和芯样试验,分析沥青路面抗凝冰损坏能力存在差异的材料特性,结果表明:混合料空隙率、矿料间隙率、沥青饱和度、集料表面沥青膜厚度,集料强度、与沥青的低温粘结性等性质都会影响沥青路面抗凝冰损坏能力。
     然后,根据现场调研结果,开展了沥青混合料凝冰损坏影响因素研究。单面冻融试验和低温飞散试验表明:空隙率对混合料受凝冰作用,以及受凝冰和交通荷载共同作用的损坏程度有重要影响,提出了AC-16混合料抗凝冰损坏需控制的临界空隙率为6%。鉴于空隙对混合料凝冰损坏的重要影响,采用工业CT试验、图像处理技术、有限元等方法揭示了空隙率及空隙分布状态对沥青混合料凝冰损坏、交通荷载加剧混合料损坏的影响机理。此外,分析了其它影响沥青路面受凝冰和交通荷载共同作用损坏的内在因素,结果表明:SMA-13混合料抗凝冰损坏效果优于AC-13和AC-16,两种AC混合料相差不大;与基质沥青相比,改性沥青对混合料凝冰后的抗集料剥落能力有显著提高,且冻融次数越多优势越明显;在空隙率一致的情况下,玄武岩混合料抗凝冰和交通荷载冲击、磨耗能力优于石灰岩混合料。
     鉴于沥青路面行车道交通荷载会加剧路面凝冰损坏,采用限元模拟分析了交通荷载加剧混合料凝冰损坏的机理。结果表明:空隙内动水冲刷作用对不同位置沥青砂浆和沥青膜的受力和变形有加剧或减弱的作用,整体上会加剧混合料损坏;空隙中水结冰产生的冻胀力作用会明显造成或加剧沥青混合料损坏。
     再后,鉴于凝冰后沥青路面麻面、松散等病害与沥青胶浆-集料间的粘结特性有密切关系,开发了“沥青胶浆-未处理集料粘结特性的拉拔试验”方法,揭示了凝冰对混合料胶浆-集料粘结结构的损坏机理。结果表明:①水的浸入使得沥青胶浆-集料粘结的破坏形式由粘聚破坏变为粘附破坏,且破坏荷载大大降低,在冰膨胀力最大的-4℃时对路面损坏最显著。②若胶浆与集料界面无水浸入,则冻融作用对其无明显破坏作用;若界面有水浸入,冻融初期即对界面粘结力产生严重的破坏作用,界面很快脱粘。
     并从沥青胶浆-集料粘结特性角度揭示了原材料对混合料凝冰损坏的影响机理:SBS改性沥青优于基质沥青,界面有水时优势更明显;粉胶比应控制在0.7~1.3范围内;温度约-4℃以上时,石灰岩与沥青胶浆粘结性能受界面冰冻胀作用的影响稍小于玄武岩,但温度约-4℃以下时,两种集料相差不大。
     最后,针对沥青路面仅受凝冻作用时损坏具有隐蔽性,开发了用于检测沥青路面表面层集料剥落程度的“沥青路面冻融损坏现场快速检测设备”,并验证了采用该设备测得的单位面积剥落量评价沥青路面凝冰损坏程度具有良好的敏感性。结合现场调查结果,针对贵州地区沥青路面上面层AC-16混合料,提出了“快速检测设备”测得的临界单位面积质量损失为0.4g/cm~2,可为当地沥青路面凝冰损坏修复工作提供依据。
In Yunnan, Guizhou, Sichuan, and other high altitude humid mountain areas,freezing disaster appears very commonly in winter or early spring due to localclimatic and geographical conditions. Condensate ice would appear on pavementbecause of freezing disaster, which not only affect the traffic safety and transportefficiency adversely, but also damage the asphalt pavement performance seriouslydirectly or indirectly. The damage forms and characteristics of pavement caused bycondenstare ice are significantly different from the cold regions of northern China,where continuous low temperature and humidity in winter. At present, theresearches about pavement damage caused by condensate ice is also less. Therefore,the researches were carried out focusing on the asphalt pavement damages causedby condensate ice in high altitude humid mountain areas, which included thedamage characteristics, influencing factors, microscopic mechanism and evaluationmethod. The conclusions could provide a basis for pavement curing after freezingdisaster, and pavement materials design resisting condensate ice damage in theseareas.
     Firstly, field invertigation, detection and core samples tests of typical pavementwere carried out to analyze the effect of condensate ice on pavement performanceand mixture composition structure. The results showed that the main effect ofcondensate ice are on the pavement surface conditions, which lead to aggregatestripping off, forming surface pockmark, loosening diseases, and increasing thesurface textuer depth.The materials features of different ability pavemets in resistingcondensate ice damage were analysed, which had gone through the same freezingdisaster, but showed differernt externt of damage. The results indicate that the voidratio, voids in mineral aggregate, asphalt saturation degree and the firm thicknessaround aggregate would influence the ability of mixture resisting condensate icedamage. And the aggregate strength, adhesion with asphalt at low temperatureinfluence mixture damage aslo.
     Secondly, the main factors of mixture damage caused by condensate ice wereresearched in this paper, and the void was considered to be the most importantfactor. Single-side freeze-thaw test and ravelling test at low temperature of mixtures indicate that the initial void ratio will impact seriously on pavement condensate icedamage. The critical void ratio6%of AC-16mixture resisting condensate icedamage is proposed. Since void could impact mixture performance seriously, themechanism of void ratio and void distribution impacting on mixture damage causedby condensate ice, or condensate ice and vehicle load together were revealed basiedon CT tests, image processing technology finite element method. Addition, otherfators of mixture subjecting from condensate ice and vehicle load were researchedalso. SMA-13mixture is superior to the AC-13and AC-16mixtures, and the twoAC mixtures are similar. Compared with common asphalt, modified asphalt couldimprove significantly aggregate anti-stripping capacity after freeze-thaw, and morenumbers of freeze-thaw, the advantages more obvious. Basalt is better thanlimestone in mixture resisting frost swelling, vehicle striking and polishing in thecase of mixtues with the same void ratio.
     As the vehicle load could seriously aggravate the asphalt pavement condensateice damage, the mechanism was simulated using finite element method. The stressof different location mortar and asphalt film may be exacerbated or diminished bydynamic water pressure, but would exacerbate mixture damage overall. And waterfrost swelling in void would cause or aggravate the mixture destruction obviously.
     Thirdly, since the surface pockmark and loosening diseases of pavement areclosely associated with the bonding properties between asphalt and aggregate.“pull-off test about asphalt paste-untreated aggregate bonding properties” wasdeveloped to reveal the meso mechanism of asphalt pavement damage caused bycondensate ice according actual pavement condition. Some results can be obtained.①The destruction stype of asphalt paste-aggregate bonding structure becomesadhesion failure from cohesion failure because of water immersion, and the failureload reduces greatly. And the pavement damage most seriously at-4℃.②Thepaste-aggregate bonding structure would be impacted slightly by freeze-thaw ifthere is no water in the interface; while the bonding interface would debond quicklyin early freeze-thaw if water had immersed to interface.
     The effects of raw material on mixture condensate ice damage were verified inthe meso view of asphalt paste-aggregate bonding structure. SBS modified asphaltis better than common asphalt, and the advantage is more obvious if water esists ininterface. Filler-asphalt ratio should be controlled between0.7and1.3. Basaltaggregate is better than limestone in bonding with asphalt paste at above about-4℃ if suffered from water frost swelling in interface, but the bonding properties of thetwo kinds of aggregates are similar under about-4℃.
     At last, as the damage of asphalt pavemen caused by condensate ice only isundercover, the “fast testing equipment of asphalt pavement freeze-thaw damage”was developed to detect the degree of aggregate stripping off according to thedamage form and characteristics. And verify the mass per unit area of stripped offaggregate is sensitive in evaluating the condensate ice damage degree of asphaltpavement. Combined with the field results,0.4g/cm~2is proposed as the criticalmass loss per unit area detected by “fast testing equipment” focusing on AC-16mixture of Guizhou region asphalt pavement top layer, which could procid basis forrapair work of local pavement damage after condensate ice.
引文
[1]李显良,潘影,邓世有等.2011年1月安顺市凝冻天气特点及成因浅析[J].贵州气象,2011,35(5):36-39.
    [2]王新明,王丽,黄兴华.南方多个省份遭受低温凝冻灾害袭击[EB/OL].(2011-01-04)[2011-01-04]. http://news.sina.com.cn/c/2011-01-04/184021757937.shtml.
    [3] Lottoman R P. Predicting Moisture-Induced Damage to Asphaltic Concrete [R].NCHRP Report,1978,192.
    [4] Lottoman R P. Predicting Moisture-Induced Damage to Asphaltic ConcreteField Evaluation[R]. NCHRP Report,1982,246.
    [5] Tom V, Mathew, K V Krishna Rao. Introduction to Transportation Engineering[M].2006:26.1-26.7.
    [6] Terrel R L, Al-Swailmi S. Sensitivity of Asphalt-Aggregate Mixes: TestSelection. Report SHRP-A-403R [R]. Strategic Highway Researeh Program,National Research Council, Washington, D.C.1994.
    [7] Ivek Tandon, Nalini Vemuri, Soheil Nazarian, Maghsond Tahmoressi. AComprehensive Evaluation of Environmental Conditioning System [J]. Assoc,Asphalt Paving Technology,1997.
    [8] Saleh Al. Swailmi, Ronald L. Terrel. Evaluation of Water Damage ofAsphalt Concrete Mixtures Using the Environmental Conditioning System[J].Asphalt Paving Technol,1998.
    [9] Martin McCann, Peter Sebaaly. A Quantitative Evaluation of StrippingPotential in Hot MixAsphalt Using Ultrasonic Energy for MoistureAccelerated Conditionig [J]. TRB,2001.
    [10] Martin Mc Cann, Richard Anderson-Sprecher. Comparson of MoistureDamage in Hot Mix Asphalt Using Ultrasonic Accelerated MoistureConditioning and Tensile Strength Test Results [J]. Airfield and HighwayPavement,2006.
    [11] Masad E, Tashman L, Somedavan N, et al. Micromechanics Based Analysisof Stiffness Anisotropy in Asphalt Mixtures [J]. Journal of Materials in CivilEngineering,2002,14(5):374-383.
    [12] Tashman L, Masad E. A Microstructure-based Viscoplastic Model for AsphaltConcrete [J]. International Journal of Plasticity,2005,(21):1659-1685.
    [13] Hicks R. G., Leahy R. B.. Road Map for Mitigating National MoistureSensitivity Concerns in Hot-Mix Pavemnt[C]. Washington, D. C:Transportation Research Board,2003:330-341.
    [14] Cross P. E., Stephen A. Evaluation of the Rutting Potential of KDOT Mixtureusing the Asphalt Pavement Analyzer [R]. Kansas: University of Kansas,2004:12-37.
    [15]潘宝峰.动水压力作用下路面材料损伤的评价方法研究[D].大连理工大学博士学位论文,2010:47-65.
    [16]郑建龙,张洪刚,钱国平等.水温冻融循环条件下沥青混合料性能衰变的规律[J].长沙理工大学学报(自然科学版),2007,7(1):7-11.
    [17]曹晓岩,陈永兴,鲍满堂.沥青混合料抗冻性能的研究[J].黑龙江工程学院学报,2004,18(2):36-38.
    [18]王忠国,赵尘.沥青稳定基层混合料抗冻性能正交试验研究[J].内蒙古农业大学学报,2004,25(3):63-66.
    [19]王抒音,谭忆秋等.用冻融循环劈裂比评价沥青混合料抗水损害能力[J].哈尔并建筑大学学报.2002,35(5):123-126.
    [20]易军艳.沥青混合料的渗水特性及抗冻性能研究[D].哈尔滨工业大学硕士学位论文,2008:47-65.
    [21]马新,郑传峰.沥青混合料水稳定性评价方法的试验研究[J].公路工程,2008,8(4):182-186.
    [22]吴钊.冻融对沥青混合料性能的影响研究[D].武汉理工大学硕士学位论文,2011:30-60.
    [23]沙庆林.空隙率对沥青混凝土的重大影响[J].国外公路,2001,21(1):34-38.
    [24] SIMAP Team. Simulation Imaging and Mechanics of Asphalt Pavements [Z].U.S. FHWA,1998,6:1-3.
    [25] SHRP Team. Strategic Highway Research Program.Technical Brief of C-SHRP [Z]. U.S. FHWA,1995,2:20-25.
    [26] SIMAP Team. Progress to date. U. S. FHWA [Z].2001,1:1-3.
    [27] Masad E, Muhunthan B, Shashidhar N, eta1. Quantifying LaboratoryCompaction Effects on the Internal Structure of Asphalt Concrete [C]. TRB.Transportation Research Record1681. Washington D C: TRB,1999:179-185.
    [28] Masad E., Jandhyala V. K., Dasgupta. Characterization of Air VoidDistribution in Asphalt Mixes using X-ray Computed Tomography [J].Journal of Materials in Civil Engineering,2002,14(2):122-129.
    [29] Al-Omari A,Tashman L,Masad E, Cooley A, Harman T. ProposedMethodology for Predicting HMA Permeability [J]. Journal of TheAssociation of Asphalt Paving Technologists,2002,71(2):30-58.
    [30] Wonga R.C.K., Chau K.T.. Estimation of Air Void and Aggregate SpatialDistributions in Concrete under Uniaxial Compression using ComputerTomography Scanning [J]. Cement and Concrete Research,2005,35:1566-1576.
    [31] Tashman L, Masad E. A Microstructure-based Viscoplastic Model for AsphaltConcrete [J]. International Journal of Plasticity,2005,21:1659-1685.
    [32] Arambula E, Masad E, Martin AE.Influence of Air Void Distribution on TheMoisture Susceptibility of Asphalt Mixes [J]. Journal of Materials in CivilEngineeting,2007,19(8):655-664.
    [33] Hall KD, Ng HG. Development of Void Pathway Test for Investigating VoidInterconnectivity in Compacted Hot-Mix Asphalt Concrete [J]. Asphaltmixtures2001:40-47.
    [34]汪海年,郝培文,吕光印.沥青混合料内部空隙分布特征[J].交通运输工程学报,2009,9(1):6-11.
    [35]王振军,沙爱民,肖晶晶等.基于CT技术的复合沥青混凝土内部空隙特征分析[J].上海交通大学学报,2011,45(5):667-671.
    [36]李立寒,曹林涛,郭亚兵.初始空隙率对沥青混合料性能影响的试验研究[J].同济大学学报(自然科学版),2006,34(6):757-760.
    [37]曹健.空隙率和渗透性对季冻区沥青路面路用性能的影响研究[J].吉林大学硕士学位论文,2006,5.
    [38]包秀宁,王哲人.冻融劈裂试验因素分析[J].广西交通科技.2003,28(1):20-22.
    [39]何兴华,王慧勇.基于冻融劈裂试验的沥青混合料水稳定性分析[J].现代交通技术,2006,(4):5-8.
    [40]潘宝锋,王哲人等.沥青混合料抗冻融循环性能的试验研究[J].中国公路学报,2003,(3):1-4.
    [41]王哲人,冯德成等.寒冷地区高速公路沥青路面的水损害[J].公路交通技术,1999,(4):23-29.
    [42]郑健龙.沥青路面温度收缩开裂的热粘弹特性研究[D].长安大学博士学位论文.2001:55-70.
    [43]张洪刚.水-温冻融条件下沥青路面病害特征及发展机理[D].长沙理工大学硕士学位论文,2010:44-62.
    [44]李东庆,孟庆洲,房建宏等.沥青混合料抗冻融循环性能的试验研究[J].公路,2007,(12):640-642.
    [45]张倩,李创军.沥青混合料冻融劈裂微观结构损伤特性分析[J].公路交通科技,2010,29(9):9-12.
    [46]王乐,梁乃兴,刘柳.湿热地区沥青混合料水稳定性评价方法研究[J].重庆交通大学学报(自然科学版),2008,27(4):580-583.
    [47]周卫峰.沥青与集料界面粘附性研究[D].长安大学硕士学位论文,2002:32-52
    [48] Moisture Sensitivity of Asphalt Pavement (A NATIONAL SEMNIAR)[R],Trnasportation Reesacrh Board of the Natinoal Academies,2003,2:4-6.
    [49] Cheng D. Surfaee Free Energy of Asphalt-aggregate System and PerformaneAnalysis of Asphalt Conerete Based on Surface Free Energy [D]. The Masterdissertation of Texas A&M University,2002,2-5:25-30.
    [50] Bhasin A. Development of Method to Quanify Bitumen-aggregate Adhesionand Loss of Adhesion Due to Water[D]. The Doctoral dissertation of TexasA&M University,2006:4-11.
    [51] Little D. N., Bhasin A. NCHR project-37: Using Surface EnergyMeasurements to Select Materials for Asphalt Pavement [R]. Washington DC:National Cooperative Highway Researeh Program,2006,7-20:69-71.
    [52] Liantong Mo. Damage Development in the Adhesive Zone and Mortar ofPorous Asphalt Concrete [D]. The Doctoral Dissertation of TechnischeUniversiteit Delft,2009:27-34.
    [53]肖月.沥青混合料中砂浆-集料粘结性及力学性能研究[D].武汉理工大学硕士学位论文,2008:11-34.
    [54] Youtcheff J., Aurilio V. Moisture Sensitivity of Asphalt Binders: Evaluationand Modeling of the Pneumatic Adhesion Test Results [J]. CanadianTechnical Asphalt Association,1997,42:180-200.
    [55] Kanitpong K., Bahia H. U. Relating Adhesion and Cohesion of Asphalts toEffect of Moisture on Laboratory Performance of Asphalt Mixtures [J].Transporation Reaearch Record,2005,1901:33-43.
    [56] Copeland A. R., Youtcheff J., Shenoy A. Moisture Sensitivity of ModifiedAsphalt Binders: Factors Influencing Bond Strength [J]. TransportationReaearch Record,2007,1998:18-28.
    [57]魏建明.沥青-集料的表面自由能及水分在沥青中的扩散研究[D].中国石油大学博士学位论文,2008:38-41.
    [58] Niki KRINGOS. Modeling of Combined Physical-Mechanical MoistureInduced Damage in Asphaltic Mixes [D]. The doctoral dissertation ofTechnische Universiteit Delft,2007:149-153.
    [59]延西利,梁春雨.沥青与石料间的剪切粘附性研究[J].中国公路学报,2011,14(4):25-32.
    [60]肖庆一,郝培文,徐鸥明等.沥青与矿料粘附性的测定方法[J].长安大学学报(自然科学版),2007,27(1):19-22.
    [61]徐鹏.基于水稳定性的复合改性沥青混合料路用性能研究[D].长安大学硕士学位论文,2009:5-15.
    [62]徐克威.浸水车辙试验用于沥青混合料水稳性研究[J].西安公路交通大学学报,2000,1(1):28-60.
    [63]陈繁华,张登峰,刘刚等.提高沥青混合料水稳定性的试验研究[J].武汉理工大学学报,2007,29(9):9-12.
    [64]韩瑞民,弥海晨,马志刚等.沥青抗剥落剂应用现状分析[J].内蒙古公路与运输,2004,(4),1-5.
    [65]杨彦辉.沥青混合料水稳定性室内模拟试验的研究[D].华南理工大学硕士学位论文,2008:23-24.
    [66]王海军,戈龙华,夏晓慧等.沥青粘结料表面自由能试验研究[J].山东大学学报(工学版),2008,38(51):113-118.
    [67]彭余华,王林中,于玲.沥青与集料粘附性试验新方法[J].沈阳建筑学院学报(自然科学版),2009,25(2):282-285.
    [68] Jingmin X, Sano A. Computationally Efficient Subspace-based Method forDirection-of-arrival Estimation without Eigendecomposition [J]. IEEETransaction. Signal processing,2004,52(4):876-893.
    [69] JohnL., MarioT. Road surface inspection using laser scanners adapted for thehigh precision3D measurements of large flat surfaces[C]. Proeeedings of the1997lst interational conference on recent advances in3D digital imagingand modeling,1997:303-310.
    [70] Filin S., Abo A., Kemeike N, etal. Interpretation and Generalization of3DLandseapes from LIDAR Data [J]. Cartography and Geographic InformationScience,2007,34(3):231-243.
    [71]马荣贵,马建,宋宏勋等.路面车辙激光检测技术研究[J].筑路机械与施工机械化,2007,(4):30-32.
    [72]王建峰.激光路面三维检测专用车技术与理论研究[D].长安大学博士学位论文,2010:27-36.
    [73]刘培香,朱丹钰.哈工大独立研发多功能道路检测车自动检测公路质量
    [EB/OL].(2008-12-17)[2011-01-04]. http://news.qq.com/a/20081217/001958.htm.
    [74]陈少幸,张肖宁.应用PQI评价沥青路面离析的研究[J].公路交通科技,2006,23(5):11-15.
    [75]杨世明,陶文铨.传热学[M].北京:高等教育出版社,2006:85-88.
    [76]贾璐.沥青路面高温温度场数值分析和实验研究[D].湖南大学硕士学位论文,2010:66.
    [77] Burak Sengoza, Emine Agarb. Effect of Asphalt Film Thickness on theMoisture Sensitivity Characteristics of Hot-mix asphalt [J]. Building andEnvironment,2007,42(10):3621-3628.
    [78] ASTM C666/C666M–03, Standard Test Method for Resistance of Concreteto Rapid Freezing and Thawing [S].2008.
    [79] Saeed Ghaffarpour Jahromi. Estimation of Resistance to Moisture Destructionin Asphalt Mixtures [J]. Construction and Building Materials,2009,23:2324-2331.
    [80]李中华,巴恒静,邓宏卫.混凝土抗冻性试验方法及评价参数的研究[J].混凝土,2006,(6):9-11.
    [81] Setzer M J. CDF Test-Test Method for Freeze-thaw Resistance of Concrete-Tests with Sodium Chloride solution(CDF), RILEM Commendation TC117-FDC: Freeze-thaw and de-icing resistance of concrete [J]. Materials andStructures,1996,(29).
    [82] Taejun Cho. Prediction of cyclic freeze-thaw damage in concrete structuresbased on response surface method[J]. Construction and Building Materials,2007,21:2031-2040..
    [83]孙振平,蒋正武,金慧中等. RILEM混凝土抗冻融性推荐测试方法CIF及评述[J].混凝土,2006,197(3):15-21.
    [84]商涛平,童寿兴.混凝土超声检测中含水率对声速影响的研究[J].无损检测,2003,25(4):189-191.
    [85]徐小巍,金伟良,赵羽习等.不同环境下普通混凝土抗冻试验研究及机理分析[J].混凝土,2010,244(2):21-25.
    [86] Jean-Francois Chaix, Vincent Garnier, Gilles Corneloup. Concrete DamageEvolution Analysis by Backscattered Ultrasonic Waves[J]. Construction andBuilding Materials, NDT&E International,2003,(36):461–469.
    [87]岳学军,黄晓明,李志栋等.冻融循环飞散试验在沥青混合料抗冻性能评价中的应用[J].公路交通科技,2006:96-98.
    [88]刘西拉,唐光谱.环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报,2007,26(12):2412-2419.
    [89] SETZER M J. Mechanisms of frost action[C]//Proceedings of theInternational Workshop on Durability of Reinforced Concrete under CombinedMechanical and Climatic Loads. Qingdao:Aedificatio Publishers,2005:263-274.
    [90] Wang, Yongping. Digital Simulative Test of Asphalt Mixtures Using FiniteElement Method and X-Ray Tomography Images [D]. The DoctoralDissertation of Technische Universiteit Virginia Polytechnic Institute,2007:36-50.
    [91] Garboczi E.J.. Three-dimensional Mathematical Analysis of Particle ShapeUsing X-ray Tomography and spherical harmonics: Application to aggregatesused in concrete[J]. Cement and Concrete Research,2002,32:1621-1638.
    [92] Chie Kawaragi, Tetsuro Yoneda, Tsutomu Sato. Microstructure of SaturatedBentonites Characterized by X-ray CT Observations[J]. Engineering Geology,2009,106:51-57.
    [93] Braz D., Lopes R.T. L.M.G. da Motta. Computed tomography: evaluation ofstability tests and indirect tensile strength of field asphaltic mixtures[J].NDT&E International,2000,33:517–522.
    [94] Silver Spring. Image-Pro Plus Version6.0Reference Guide (for Windows)[M].Media Cybernetics, Inc.,2005.
    [95] Jiangmiao Y, CHEN Peilin, LI Xiaojun, etal. Study of Microstructural FiniteElement Modeling of Asphalt Mixture [J]. Document TransformationTechnolgyies cc,2006,7:344–349.
    [96] Braz D., Lopes R.T.. L.M.G. da Motta. Analysis of the Percentage Voids ofTest and Field Specimens using Computerized Tomography[J]. NuclearInstruments and Methods in Physics Research,1999,422:942–948.
    [97] Emad Kassema, Eyad Masad, Robert Lytton, etal. Measurements of theMoisture Diffusion Coefficient of Asphalt Mixtures and its Relationship toMixture Composition [J]. International Journal of Pavement Engineering,2009,10(6):389-399.
    [98]汤书军.混凝土材料细观力学模型与破坏分析[D].河海大学硕士学位论文,2006:10-12.
    [99]王超凡.基于数字图像的沥青混合料级配检测技术研究[D].长安大学硕士学位论文,2007:56-79.
    [100] Al-Qadi I. Pulse Loading Response: Measured vs.3D Finite ElementAnalyses, presentation for the Expert Task Group on Fundamental Propertiesand Advanced Modeling of Bituminous Materials of the Federal HighwayAdministration [Z]. Arizona,2007,2.
    [101]陈佩林,周进川,张肖宁等.沥青胶结料的测力延度试验研究[J].华南理工大学学报(自然科学版),2006,34(4):38-42.
    [102] Belytschko T, Black T. Elastic Crack Growth in Finite Elements withMinimal Remeshing[J]. International Journal for Numerical Method inEngineering,1999,(45):601-620.
    [103] Moos N, Dolbow J, Belytschko T. A Finite Element Method for Crack Growthwithout Remeshing[J]. International Journal for Numerical Method inEngineering,1999,(46):131-150.
    [104]董玉文,任青文.基于XFEM的混凝土开裂数值模拟研究[J].重庆交通大学学报(自然科学版),2009,28(1):36-41.
    [105]茹忠亮,朱传锐,张友良等.断裂问题的扩展有限元法研究[J].岩土力学,2011,32(7):2171-2176.
    [106] Raju IS. Calculation of Strain Energy Release Rates with Higher Order andSingular Finite Elements [J]. Engineering Fracture Mechanics1987,28:251-274.
    [107] Petersson P E. Fracture Energy of Concrete [J]. Cement and concrete research,1980,(10):78-79.
    [108]郭向勇,方坤河,冷发光.混凝土断裂能的理论分析[J].哈尔滨工业大学学报,2005,37(9):1219-1222.
    [109]邵腊庚,周晓青,李宇峙等.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J].土木工程学报,2005,38(4):125-128.
    [110]李智慧,谭忆秋,周兴业.沥青胶浆高低温性能评价体系的研究[J].石油沥青,2005,19(5):15-18.
    [111]杨全冰. NaCl溶液结冰压的影响因素研究[J].建筑材料学报,2005,8(5):495-498.
    [112]董泽蛟,谭忆秋,曹丽萍.水-荷载耦合作用下沥青路面孔隙水压力研究[J].哈尔滨工业大学学报,2007,39(10):1614-1617.
    [113]李立寒,曹林涛,罗芳艳等.沥青混合料劈裂抗拉强度影响因素的研究[J].建筑材料学报,2004,7(1):41-45.
    [114]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001:440-451.
    [115]谭忆秋,岳军声,蓝天云等.沥青路面冻融损坏现场快速无损检测设备[P].中国专利: ZL200910305079.8,2009-07-31.
    [116]谭忆秋,赵立东,蓝天云等.沥青路面凝冰损伤程度检测设备的研究[J].吉林大学学报,2012,42(1):57-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700