棉花种质的耐盐性及其耐盐基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国盐碱地面积大、分布广、危害重、影响大的特点,利用60份种质(系)研究了耐盐性骨干品种的血缘组成和耐盐性的主要相关因子,利用不同耐盐性的材料探讨了盐胁迫对棉花生理代谢的影响,并进一步研究了耐盐基因的表达。获得了以下的结果:
     1.明确了棉花耐盐骨干品种的基础种质及其亲源关系。耐盐骨干品种主要来自于岱字棉、乌干达棉、金字棉、苏联棉系四个基础种质,耐盐材料中88.33%含有岱字棉血统,81.67%含有乌干达棉血统,78.33%含有金字棉血统,65%含有苏联棉血统。当前,我国陆地棉种质耐盐性较低的主要原因应归结于基础种质耐盐性差和耐盐种质的血缘过于狭窄。
     2.研究了棉花耐盐性与主要遗传性状的相关关系。棉花耐盐性与铃重呈极显著正相关;耐盐性与种仁蛋白质含量呈显著负相关,与种仁脂肪含量达极显著正相关;耐盐性与纤维长度呈极显著正相关,与麦克隆值呈极显著的负相关,所以NaCl有利于棉花纤维细胞的增长而不是增粗。棉花的耐盐性与抗旱性达极显著正相关,说明了耐盐性的渗调机理与抗旱性的作用机理相似。
     3.探讨了盐胁迫对棉花有丝分裂过程中的染色体行为的影响。盐胁迫对棉花的细胞分裂指数有着正负两个方面的效应,低浓度下的促进作用和高浓度下的抑制作用,而且促进作用和抑制作用均与耐盐性有关。盐胁迫造成染色体的畸变如C-有丝分裂、染色体桥、染色体粘连、染色体消解等特异现象,而且随着浓度与培养时间的延长,染色体变异越重;棉花耐盐性差则染色体变异重,这是NaCl胁迫后首次发现的离子毒害的证据。
     4.研究了盐胁迫对POD、SOD以及诱导蛋白的影响。棉花的耐盐性与叶片膜透性负相关。棉花叶片SOD、POD活性都随着NaCl浓度的增加而提高,但是耐盐品种SOD活性的上升速度明显快于不耐盐品种,耐盐材料POD活性的上升速度明显慢于不耐盐材料,这种变化与材料的耐盐性高低相反。盐胁迫后,蛋白质含量均降低,但有新增的蛋白质谱带,不耐盐材料新增加80kD、36kD、26kD、24kD四条谱带,耐盐材料新增加80kD、36kD两条谱带。24kD和36kD蛋白与耐盐性表达有关,26kD蛋白与耐盐性有关的调渗蛋白类似。80kD蛋白属首次发现。
     5.研究了盐胁迫下棉花耐盐相关基因的差异表达。在盐胁迫下,不耐盐的材料有1644个基因差异表达,耐盐材料有817个基因差异表达。棉花耐盐性基因依表达量可分为5类:A类基因32个,只在耐盐材料差异性表达的上调基因;B类基因548个,只在不耐盐材料差异性表达的上调基因;C类基因176个,只在耐盐材料差异表达的下调基因;D类基因487个,只在不耐盐材料差异表达的下调基因;E类基因609个,不耐盐材料和耐盐材料均差异性表达的下调基因。棉花耐盐基因依表达蛋白的已知功能可分为4类:(1)渗透调节蛋白表达基因96个;(2)毒性降解酶基因48个;(3)转录因子基因136个;(4)信号传导基因98个。
Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied, according to the large scale of saline area in China and its negative significant effects on the cotton production. The pedigree and correlation coefficients between agronomic traits and the salinity tolerance were analyzed from 60 salinity tolerant cotton genetypes. The tolerance and its biochemical effects on the main genetic characters, the resistance genes and their differential expression were studied by the salinity-tolerant and salinity-sensitive cotton genetypes. The following were the results:
     1. The basic germplasm and its pedigree were explicitly clarified. The genealogy of 60 cotton salinity-tolerant genetypes was clustered into four basic germplasms such as Deltapine, King,Uganda and Russia, whose descents were contributed to the most of the salinity-tolerant cotton varieties. According to the genealogy proportions, there were 88.33% of Deltapine, 81.67% of Uganda,78.33%of King, and 65% of Russia in all of the 60 salinity-tolerant cotton varieties. All the main cotton varieties, nowadays, at the much lower level of salinity-resistance, are due to the two reasons. The one is the much lower level of salinity-resistance of the basic germplasm, and another is that the basic germplasms are extremely too centralized to broaden the background of the salinity-resisted cotton varieties.
     2. The correlations of the salinity resistance with the main genetic characters were analyzed. The salinity resistance positively correlated with the boll weight outside of the main cotton agronomic characters under the stress of NaCl. As to the relationships between the salinity resistance and the seed quality, the salinity resistance negatively correlated significantly with the protein proportions and positively correlated significantly with fat of the cotton seed embryo. There were remarkable relationships between the salinity resistance and the fiber quality. The salinity resistance positively correlated significantly with the fiber length and negatively correlated significantly with the fiber micronaire, which indicated that salt stress could enhance the elongation and inhibited the thickness of the fiber. The results also indicated that there were positive correlation between the salinity resistance and the draught resistance, which showed that the mechanism of salinity resistance was similar to that of the draught resistance.
     3. The effects of salinity stress on the cell division and chromosome behavior were first observed on cotton. It could be obviously observed that there were negative, at the lower(0.1%-0.2%) NaCl, or positive, at the higher concentration (0.3%-0.5%) of NaCl, effects on the mitosis index of the cotton seedling, The effects of NaCl changed with the resistance level of the varieties. The abnormal chromosome behavior such as C-mitosis, Chromosome bridge, Chromosome stickiness, Chromosome melting had been observed and first studied in detail on cotton. All the abnormal behaviors fluctuated with the salinity resistance of cotton and the concentration of NaCl.
     4. Metabolism changes of total protein, soluble sugar, and physiological characters of SOD(superoxide dismutase) ,POD(perioxidase) activity under the NaCl stress were studied. There were negatively correlation between the salinity resistance and the leaf membrance injury. POD and SOD activities changed higher as the NaCl changed to higher concentrations, but SOD activity of the salinity-resisted cotton fluctuated quickly than the salinity-sensitive cotton, and it was on the reverse of the POD. The protein proportions reduced significantly as the NaCl concentrations got to higher with the novel proteins such as 80kD, 36kD, 26kD, 24kD of the salinity-sensitive cotton. The results showed that there were 80kD and 36kD proteins of the salinity-resisted cotton under the stress of NaCl. The results also showed that 24kD, 36kD were correlated with the salt resistance of plants and 26kD was similar to the osmotin. 80kD was the first found protein as to the mechanism of the cotton salinity resistance.
     5. The salinity-resisted genes and their differential expression were studied under the stress of NaCl on cotton. There found, under the NaCl stress, 1644 genes differentially expressed from the salinity-sensitive cotton and only 817genes differentially expressed from the salinity-resisted cotton. The differential expressed genes could be divided into five groups according to the expressed levels by the cluster analysis. A goup:32 up-conditioned genes, differentially expressed only in the salinity-resisted cotton; B group, 548 up-conditioned genes, differentially expressed only in the salinity-sensitive cotton; C group, 176 down-conditioned genes, differentially expressed only in the salinity-resisted cotton; D group, 487 up-conditioned genes, differentially expressed only in the salinity-sensitive cotton; E group, 609 down-conditioned genes, differentially expressed both in the salinity-sensitive and salinity-sensitive cotton. The salinity-resisted differentially genes could also divided into 4 groups according to the known functions of the expressed protein: 96 osmotin genes, 48 toxicity-reduced genes, 136 transcription factors, and 98 signal transmitted genes.
引文
1.陈翠霞,于元杰.棉花耐盐变异体的遗传分析[J].西北植物学报.2000,20(2):234~237.
    2.陈德明,俞仁培.作物相对耐盐性的研究[J].土壤学报.1996,33(2):121~127.
    3.陈贵,胡文玉,谢甫绨,等.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯.1991,27(1):44~46.
    4.陈桂珠.重金属对黄瓜籽苗发育影响的研究[J].植物学通报.1990,7(1):34~39.
    5.陈国安.钠对棉花生长及钾钠吸收的影响[J].土壤.1992,24(4):201~204.
    6.陈青君,王永健,张海英,等.黄瓜低温弱光耐受性研究进展[J].中国蔬菜,2005,(5):31~34.
    7.陈韶华,厉有名,虞朝辉.寡核苷酸芯片技术用于检测过氧化物酶体活化物激活受体基因多态性[J].中国生物化学与分子生物学报.2007,23(3):227~240.
    8.陈亚华,沈振国,刘有良,等.NaCl胁迫对棉花幼苗的离子平衡[J].棉花学报.2001,13(4):225~229.
    9.戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报.2002,18(1):58~62.
    10.邓德旺,李俊明.低酚棉与普通陆地棉超氧物歧化酶及酯酶的比较研究[J].华北农学报.1991,6(4):43~47.
    11.董合忠,李维江,王留明,等.陆地棉不同品种苗期对NaCl胁迫的生理反应[J].莱阳农学院学报.1997,14(2):85~89.
    12.董合忠,郭庆正,李维江.棉花抗逆栽培[M].山东科技出版社.1997:43~80.
    13.杜雄明,刘国强,陈光.论我国棉花育种的基础种质[J].植物遗传资源学报.2004,5(1)69~74.
    14.冯纯大,张金发,刘金兰.我国抗枯萎病棉花品种(系)的系谱分析[J].棉花学报.1996,8(2):65~70.
    15.冯大纯,张金发,刘金兰,等.我国几个陆地棉品种枯萎病抗性的遗传分析[J].作物学报.1996,22(5):550~554.
    16.郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报.2000,42(3):279~283.
    17.何培民,张大兵,梁婉琪,等.细菌乙酰胆碱氧化酶基因(codA)在烟草的表达与抗盐能力的分析[J].生物化学与生物物理学报.2001,33(5):519~524.
    18.贺道耀,余叔文.水稻高脯氨酸愈伤组织变异体的选择及其耐盐性[J].植物生理学报.1995,21(1):65~72.
    19.贺志理,王洪春.盐胁迫下苜蓿中盐蛋白的诱导产生[J].植物生理学报.1991,17(1):71~79.
    20.侯旭光,赵可夫.非盐生植物棉花和盐生植物滨藜的盐害机理[J].山东大学学报(自然科学版).1999,(34):230~235.
    21.黄卓烈,李明启.氯化钠对高等植物光呼吸作用的影响[J].植物生理通讯.1993,29(3):214~218.
    22.黄滋康.中国棉花品种及其系谱[M].北京:中国农业出版社.1996:260~272.
    23.贾玉珍,朱禧月,唐予迪,等.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报.1987,21(1):30~41.
    24.荆志伟,王忠,王永炎,等.基因芯片数据分析方法研究进展[J].生物技术通讯.2007,18(1):144~148.
    25.李长润,刘友良.小麦的耐盐性及耐盐机理初探[J].江苏农业学报.1993,9(1):8~12.
    26.李长润,刘友良.盐胁迫小麦幼苗离子吸收运输的选择性与叶片耐盐量[J].南京农业大学学报.1993,16(1):16~20.
    27.李德全,邹琦,程炳嵩.植物渗透调节的测定方法介绍[J].植物生理学通讯.1991,27(4):296~298.
    28.李付广,李秀兰,李凤莲.离体快速鉴定棉花耐盐性初报[J].中国棉花.1992,19(6):16~17.
    29.李付广,李凤莲,李秀兰.盐胁迫对陆地棉愈伤组织的影响[J].棉花学报.1994,6(1):37~40.
    30.李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响[J].河北农业大学学报.1994,17(3):14~15.
    31.李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社.2000:164~169.
    32.李懋学,张敩方.植物染色体研究技术[M].东北林业大学出版社.1991:31~40.
    33.李维江,徐惠纯,辛承松.一种方便快捷测定棉花抗盐性的新方法[J].中国棉花.1995,(9):35.
    34.李银心,常凤启,杜立群,等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性[J].植物学报.2000,42(5):480~484.
    35.李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展[J].山东科学.2002,15(2):8~14.
    36.李子银,陈受宜.植物的功能基因组学研究进展遗传[J].2000,22:57~60.
    37.李子银,张松劲,陈受宜.水稻盐胁迫应答基因的克隆、表达及染色体定位[J].中国科学(C辑).1999,29(6):561~570.
    38.梁峥,马德钦,汤岚,等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报.1997,13(3):236~240.
    39.林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展.2000,20(2):20~25.
    40.刘岩,彭学贤,谢友菊.植物抗渗透胁迫基因工程研究进展[J].生物工程进展.1997,17(2):3l~36.
    41.刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报.2000,8(3):235~238.
    42.刘国强,刘金定,鲁黎明.棉花品种资源耐盐性鉴定研究[J].作物品种资源.1993,(2):21~22.
    43.刘金定,叶武威,刘国强.棉花抗逆性及其抗病虫鉴定技术[M].北京:中国农业科技出版社.1996:1~20.
    44.刘金定,朱召勇.棉花品种在不同盐浓度胁迫下的生理表现[J].中国棉花.1995,22(9):16~17.
    45.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报.2000,45(14):1465~1474.
    46.刘强,张勇,陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因[J].科学通报.2000,45(6):561~566.
    47.刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理通讯.1987,(4):1~7.
    48.卢德赵,祝水金,钱前,等.BADH基因转化水稻方法比较[J].中国水稻科学.2003,17(4):323~327.
    49.卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志.2000,17(4):9~11.
    50.卢少云,郭振飞.植物叶片超氧化物歧化酶活性及其从象草叶片的提取[J].华南农业大学学报.1997,18(1):92~96.
    51.吕有军,叶武威,祝水金.陆地棉种子萌发过程中盐处理对NaCl胁迫的缓解作用[J].棉花学报.2005,17(4):255~256.
    52.罗宾主编(陈恺元,张名恢,周行,等译).棉花生理学[M].上海:上海科技出版社.1983:18~20.
    53.罗广华,王爱国、邵从本,等.超氧物歧化酶(SOD)在大豆下胚轴线粒体内的定位[J].植物学报.1987,29(2):171~177.
    54.罗广华,王爱国,邵从本,等.超氧物歧化酶在植物细胞内的分布[J].植物生理学报.1985,11(2):163~170.
    55.罗广华,邵从本,王爱国,等.大豆和花生种子超氧物歧化酶的同工酶研究[J].植物生理学报.1984,10(2):175~179.
    56.罗克明,郭余龙,肖月华,等.棉花Lea蛋白D2113基因启动子的克隆及序列分析[J].遗传学报.2002,29(2):161~165.
    57.骆爱玲,刘家尧,马德钦,王学臣,梁峥.转甜菜碱醛基因烟草叶片中抗氧化酶活性增高[J].科学通报.2000,45(18):1953~1956.
    58.马长乐,王萍萍,曹子谊,等.盐地碱蓬APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学报.2002,28(4):261~266.
    59.毛才良,刘友良.盐胁迫大麦苗体内Na~+、K~+分配和叶片耐盐量[J].南京农业大学学报.1999,13(3):32~36.
    60.牟永花,张德威.NaCl胁迫下番茄苗的生长和营养元素积累[J].植物生理学通讯.1998,34(1):14~16.
    61.潘家驹.棉花育种学[M].北京:中国农业出版社.1998:128~204.
    62.庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社.1985:39~70.
    63.邱栋梁,林鹏.植物耐盐分子机理研究进展[J].热带亚热带植物学报.2002,10(3):281~292.
    64.任仲海,马秀灵,赵彦修,张慧.Na~+/H~+逆向转运蛋白和植物耐盐性[J].生物工程学报.2002,18(1):16~19.
    65.邵桂花,常汝镇,陈一舞,等.大豆耐盐性遗传的研究[J].作物学报.1994,20(6):721~726.
    66.申玉香,郭文善,周影,等.盐分胁迫对小麦籽粒蛋白质及其组分含量变化动态的影响[J].麦类作物学报.2006,26(6):100~103.
    67.沈法富,尹承佾,于元杰,等.棉花植株和花粉耐盐性的鉴定[J].作物学报.1997,23(5):620~625.
    68.沈法富,于元杰,毕建杰,等.棉花耐盐性的双列杂交分析[J].作物学报.2001,27(1):50~54.
    69.沈法富,于元杰,刘凤珍,等.棉花耐盐性的双列杂交分析[J].云南大学学报(自然科学版).1999,21:166.
    70.沈法富,尹承佾.盐胁迫对棉花幼苗超氧化物岐化酶(SOD)活性的影响[J].棉花学报.1993,5(1):39~44.
    71.沈法富.棉花耐盐碱生理指标研究[J].中国棉花.1991,(4):9~10.
    72.沈义国,陈受宜.植物盐胁迫应答的分子机制[J].遗传.2001,23(4):365~369.
    73.沈义国,杜保兴,张劲松,等.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J].生物工程学报.2001,17(1):1~6.
    74.沈义国,阎冬青.榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性[J].植物学报.2002,44(8):956~962.
    75.舒卫国,陈受宜.植物在渗透胁迫下的基因表达及信号传递[J].生物工程进展.2000,20(3):3~7.
    76.宋业纯.高密度Oligo基因芯片筛选小鼠嗅球发育相关基因的研究[J].第三军医大学学报2005,27(9):841~843.
    77.孙逢吉.棉作学[M].南京:国立编译馆出版.正中印书局印行1948:77.
    78.孙小芳,刘友良.NaCl胁迫下棉花体内Na~+、K~+分布与耐盐性[J].西北植物学报.2000,20(6):60~72.
    79.孙小芳,郑青松,刘友良.盐胁迫下不同基因型棉花萌发生长和离子吸收特性[J].棉花学报.2001,13(3):134~137.
    80.孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报.1998.10(3):118~124.
    81.孙仲序,杨红花,崔得才,等.转基因杨树的抗盐性分析[J].生物工程学报.2000,18(4):481~485.
    82.田海燕,张桂寅,王省芬,等.棉花抗枯、黄萎病品种系谱组成对其产量性状的影响[J],植物遗传资源学报.2007,8(1):46~50.
    83.托娅,苏秀兰,路桂荣,等.基因芯片在抗肿瘤血管生成中草药相关基因筛选中的研究[J].第二军医大学学报.2002,233:273~275.
    84.汪良驹.盐胁迫下无花果细胞质膜和液泡膜H-ATPase活性对脯氨酸积累的影响[J].植物生理学报.2000,26(3):232~236.
    85.王东,杨金水,棉花类耐盐锌指蛋白基因的克隆[J].复旦学报(自然科学版).2002,41(1):44~46.
    86.王威,刘东华.Cu~(2+)对大蒜生长的影响及大蒜根、叶及蒜瓣对Cu~(2+)的累积[J].西北植物学报.2001,21(2):306~312.
    87.王伟,崔红,陈亮,等.盐胁迫对不同生境铺地黍叶片蛋白质合成的影响[J].厦门大学学报(自然科学版).2000,39(3):417~420.
    88.王爱国.大豆种子超氧物歧化酶的研究[J].植物生理学报.1983,9(1):77~84.
    89.王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体Na~+与Ca~(2+)浓度的变化[J].作物学报.1997,23(1):27~33.
    90.王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报1997,14(增刊):25~30.
    91.王宝山.生物自由基与植物膜伤害[J].植物生理学通讯.1988(2):12~16.
    92.王惠霞,马加海,徐礼鲜.基因芯片技术及其在药物研究和开发中的应用[J].实用医药杂志.2005,22(3):260~261.
    93.王慧中.转mtlD/gutD双价基因水稻的耐盐性[J].科学通报.2000,45(7):724~729.
    94.王建华等.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯.1989,(1):1~7.
    95.王省芬,马峙英,张桂寅,等.我国棉花抗枯、黄萎病骨干品种(系)基于AFLP的遗传多样性[J].棉花学报.2005,17(1):23~28.
    96.王新伟.不同盐浓度对马铃薯试管苗的胁迫效应[J].马铃薯杂志.1998,12(4):203~207.
    97.王哲之.棉花体外耐盐反应及筛选初报[J].中国棉花.1991,18(1):16~18.
    98.王振英,郑坚瑜.用mRNA差别显示方法分析黑麦盐胁迫下应答基因cDNA片段的表达特性[J].作物学报.2001,27(6):851~856.
    99.王志忠,王兆晓,崔瑞敏.河北省棉花品种来源系谱分析[J].中国棉花.2000,27(2):16~18.
    100.王子宁,张劲松,郭北海,等.小麦Na~+/H~+反转运蛋白基因的克隆和特性[J].植物学报.2002,44(10):1203~1208.
    101.魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学.2004,37(11):1754~1759.
    102.肖岗,张耕耘,刘凤华,等.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报.1995,40(8):741~745.
    103.辛承松,董合忠,唐薇,等.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报.2005,17(5):309~313.
    104.徐仿周,吴继洲.基因芯片技术在中药中的应用研究进展[J].国外医学药学分册.2005,32(5):300~303.
    105.徐景升,张木清.基因芯片技术及在农业上的应用[J].福建农林大学学报.2002,3(31):62~66.
    106.徐云岭,余叔文.苜蓿愈伤组织中的盐胁迫蛋白[J].植物生理学报.1991,17(4):395~402.
    107.杨洪强,梁小娥.蛋白激酶与植物逆境信号转导[J].植物生理学通讯.2001,37(3):185~191.
    108.杨明峰,韩宁,陈敏,等.植物盐胁迫响应基因表达的器官组织特异性[J].植物生理学通讯.2002,38(4),394~398.
    109.杨晓英,杨劲松,李冬顺.盐胁迫条件下不同栽培措施对棉花生长的调控作用研究[J].土壤.2005,37(1):65~68.
    110.杨秀玲,郁继华,李雅佳,等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响[J].甘肃农业大学学报.2004,39(1):6~17.
    111.叶武威,刘金定.棉花种质资源耐盐性鉴定技术与应用[J].中国棉花.1998,25(9):37~38.
    112.叶武威,刘金定,樊宝相.氯化钠和食用盐对棉花种子萌发的影响[J].中国棉花.1994,21(3):14~15.
    113.叶武威,刘金定,樊宝相.盐分(NaCl)对陆地棉(G.hirsutum L.)纤维性状的影响[J].中国棉花.1996,24(3):17~18.
    114.喻树迅,魏晓文.我国棉花的演进与种质资源[J].棉花学报.2001,14(1):48~51.
    115.张存信,我国短季棉品种的演变及发展前景[J].种子科技.2002,(6):217~218.
    116.张福锁.环境胁迫与植物营养[M].北京:农业大学出版社.1993:49~66.
    117.张桂寅,马峙英,赵化冰,等.中国棉花抗枯、黄萎病品种抗性和产量性状改良进展[J].中国农学通报.2005,21(3):264~267.
    118.张建秋.双向电泳技术分析白刺盐胁迫蛋白的表达[J].吉林农业大学学报.2004,26(5):511~512.
    119.张金发,王学连.棉花不同叶形的过氧化物酶活性[J].植物生理学通讯.1989,(3):31~32.
    120.张劲松,谢灿,刘峰.植物中存在新的两组分信号系统基因[J].科学通报.1999,44(6):628~632.
    121.张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报.1999,16(4):429~432.
    122.张晓洁,张军,申贵芳,等.山东棉花主要品种的系谱分析[J].作物品种资源.1999,3:25~26.
    123.张永平.作物抗性生理学[M].北京:科学出版社.1995:219~302.
    124.张于光,李迪强.基因芯片及其在环境微生物研究中的应用[J].微生物学报.2004,6(44):23~25.
    125.张子学,王正鹏,凌中鑫,等.不同棉花品种NaCl胁迫的生理表现及其耐盐性筛选指标分析[J].中国棉花.2004,31(8):8~10.
    126.赵可夫.植物抗盐生理[M].北京:中国科学技术出版社.1993,9~10.
    127.赵可夫.NaCl抑制棉花幼苗生长的机理—离子效应[J].植物生理学报.1989,15(2):173~178.
    128.赵学良,张彦才.NaCl胁迫对棉花苗期营养元素吸收与含量的影响[J].河北农业大学学报.1992,15(2):41~44.
    129.郑泽荣.棉花生理[M].北京:科学出版社.1981:180~190.
    130.中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社.1987:10~12.
    131.中国农科院棉花研究所.中国棉花栽培学[M].上海:上海科技出版社出版.1983:487~490.
    132.钟国辉,王建林.外源甜菜碱对氯化钠胁迫下白菜叶片的保护效应[J].植物生理学通讯.1997,33(5):333~335.
    133.周荣仁.利用组织培养研究植物耐盐机理与筛选耐盐突变体的进展[J].植物生理学通讯.1989,(5):11~19.
    134.周盛汉.中国棉花品种系谱图[M].成都:四川科技出版社.1981:1~16.
    135.周桃华.NaCl胁迫对棉子萌发及幼苗生长的影响[J].中国棉花.1995,22(4):11~12.
    136.周晓馥,王兴智.植物耐盐相关基因SOS基因家族研究进展[J].遗传.2002,24(2):190~192.
    137.邹琦.植物生理学实验指导[M].北京:中国农业出版社.2001:132~135.
    138.Allen S K. Heretability of NaCl tolerance in germinating alfaJfa seeds[J]. Agron. J. 1985,77: 90~96.
    139.Amer S M. Cytological effects of pesticides ⅩⅤ: Effects of the insecticide "Methamidophos" on root mitosis of Vicia faba[J]. Cytologia. 1985.50:5~10.
    140.Apse M P. Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by over-expression of a vacuolar Na~+/H~+ antiport in Arabidopsis[J]. Science.1999,285:1256~1258.
    141. Ashraf M,Ahmad S.Exploitation of inter-specific genetic variation for improvement of salt (NaCl) tolerance in upland cotton (Gossypium hirsutum L.) [J].Hereditas.1999,131:253~256.
    142. Ashraf M.Salt tolerance of cotton:Some new advances[M].Critical Reviews in Plant Sciences.2002,1~16.
    143. Beaucham P C.Isozymes of superoxide dismutase from wheat germ [J].Biochim B iophy Acta.1973,317:50~64.
    144. Bianchi V.Genetic effects of chromium compounds[J].Mutant.Res.1983,117:279~300.
    145. Blomstedt G K.Differential gene expression in desiccation tolerant and desiccation sensitive tissue of theresurrection grass,sporobolus stapfianus[J].Plant Physiol.1998,25:937~946.
    146. Bordas M,Montesinos C,Dabauza M,et al.Transfer of the yeast salt tolerance gene HAL1 to Cucumis melon L.cultivars and in-vitro evaluation of salt tolerance[J].Transgenic Res.l997,6(l):41~50.
    147. Borrell A.Arabidopsis thaliana atrab28:a nuclear targeted protein related to germination and toxic cation tolerance[J].Plant Mol Biol.2002,50(2) :249~259.
    148. Cheeseman J M.Mechanisms of salinity tolerance in plants[J].Plant Physiology.1988,87:547~550.
    149. Clarkson D T.The effect of aluminium and some other trivalent metal actions on cell division in the root apies of Allium cepa.Ann.Bot.1965. 29(114) :309.
    150. Close T J,Meyer N C,Radik J.Nucleotide sequence of a gene encoding a 58. 52 kilodalton barley dehydrin that lacks a serine tract[J].Plant Physiol.1995,107(1) :289~290.
    151. Cramer G R.Influx of Na~+,K~+,Ca~(2+) into roots of salt-stressed cotton seedling[J].Plant Physiol.1987,83:510~516.
    152. Cui Z,Carter T E,Burton J W,et al.Genetic base of 651 Chinese cultivars released during 1923 to 1995[J].Crop Sci.2000,40:1470~1481.
    153. Cui Z.Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage[J].Crop Sci.2000,40:1780~1793.
    154. Dracup M.Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms[J].Aust.J.Plant Physiol.1991,8:1~15.
    155. Drobyshev A,Mologina N,Shik V,et al.Sequence analysis by hybridization with oligo nucleotide microchip:Identification of β2 thalassemia mutations[J].Gene.1997,188(1) :45~52.
    156. Espartero J,Pintor Toro J A,Pardo J M.Differential accumulation of sade nosylmethionine synthetase transcripts in response to salt stress[J].Plant Mol Biol.l994,25:217~227.
    157. Espinosa Ruiz A,Belles J M,Serrano R,CulianezMacia F A.Arabidopsis thaliana AtHAL3:a flavo protein related to salt and osmotic tolerance and plant growth[J].Plant J.1996,20(5) :529~539.
    158. Eva Kurth.Effects of NaCl and CaCl_2 on Cell Enlargement and cell Production in Cotton roots[J].PlantPhysiol.2000,82:1102~1106.
    159. Fiskesjǒ G.Aluminium toxicity in root tips of Pices abies L,Karst,Fugus sylvatica L.and Quercus rodur L.[J].Hereditas.1989. 111:149.
    160. Forment J,Naranjo M A,Roldan M,et al.Expression of Arabidopsis SR like splicingproteins confers salttolerance to yeast and transgenic plants[J].Plant J.2002,30(5) :511~519.
    161. Fridov I.Superoxide dismutase[J].Ann Rev Biochem.1975,44:147~155.
    162. Fukushima E,Arata Y,Endo T,et al.Improved salt tolerance of transgenic tobacco expressing apoplastic yeast derived invertase[J].Plant Cell Physiol.2001,42(2) :245~249.
    163. Fusuo Zhang.Environmental Stress and Plant Breeding[M].Beijing:Agriculture Press.1993:330~335.
    164. Garcia A B,Engler J,Iyer S,et al.Effects of osmoprotectants upon NaCl stress in rice.[J].Plant Physiol.1997,115(1) :159~169.
    165. Garg A K,Kim J K,Owens T G,et al.Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stress[J].PNAS.2002,99(25) :15898~15903.
    166. Gaxiola R.A,Rao R,Sherman A,et al.The Arabidopsis thaliana proton transporters AtNhx1 and Avp1 can function in cation detoxifyication in yease[J].Proc Natl Acad Sci.1999,96:1480~1485.
    167. Gisbert C,Rus A M,Bolarin M C,et al.The yeast HAL1 gene improves salt tolerance of transgenic tomato[J].Plant Physiol.2000,123(1) :393~402.
    168. Glenn E P,Watson M C,Leary J W,et al.Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte,Atriplex canescens[J].Plant,Cell and Environment.1992,15:711~718.
    169. Gokhman.New insights into the extreme salt tolerance of the unicellular green alga unaliella.In Micro Biogeochem Hypersaline Environ[M].Boca Raton,FL:CRC Press.1998,203~213.
    170. Gong J M,Chen S Y.The effectsof ions balance and its related signal transduction in cell salt tolerance[J].Prog Biotech,1999,19(6) :2~7.
    171. Gosset D R.Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive of cotton.[J].Crop Sci.1994,34:706~714.
    172. Gouia H.Effects of NaCl on flows of N and mineral ions and on NO_3 reduction rate within whole plants of salt-sensitive and salt-tolerant cotton.[J].Plant Physiol.1994,105:1409~1418.
    173. Grant R,Cramer.Influx of Na~+,K~+ and Ca~(2+) into roots of salt-stressed cotton seedlings[J].Plant Physiol.1987,83:510~516.
    174. Greenway H.Mechanisms of salt tolerance in nonhalopytes[J].Ann.Rev.Plant Physiol.1980,31:149~190.
    175. Guo B H,Zhang Y M,Li H J,et al.Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH)[J].Acta Bot Sin.2000,42(3) :279~283.
    176. Guxiola R A,Li J,Undurraga S,et al.Drought and salt tolerant plants result from overexpression of the AVP1 H~+ pump[J].PNAS.2001,98(20) :11444~11449.
    177. Hartmut P,Barbara B,and Wilhelm S.Inativation of (Na~++K~+)-ATPase by chromium complexes of nucleotide triphosphates[J].Eur.J.Biochem.1980,109:523.
    178. Hassidium M.Na~+/H~+ and K~+/H~+ antiport in root membrane vesicle isolated from the halophyte atriplex and the glycophyte cotton[J].Plant Physiol.1990,94:1795~1801.
    179. Hayaashi H,Alia,Mustardy L,Murata N.Transformation of Arabidopsis thaliana with the coda genefor cholineoxidase;accumulation of glycine betaine and enhanced tolerance to salt and cold stress[J].The Plant Journal,1997,12:133~142.
    180. He P M,Zhang D B,Liang W Q,et al.Expression of choline oxidase gene (codA) enheances salt tolerance of the tobacco[J].Acta Biochim Biophys.2001,33(5) :519~524.
    181. Hibino T.Molecular cloning and functional characterization of two kinds of betaine aldehyde dehydrogenase in betaine accumulation mangrove Avicennia marina (Forsk.) Vierb[J].Plant MolBio.2001,45:353~363.
    182. Hirayama O.Characterization of membrane lipids of high plants different in salt tolerance[J].Agric.Biol.Chem.l987,51(12) :3215~3321.
    183. Holmstrom K O,Somersalo S,Mandal A,et al.Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J].J Exp Bot.2000,51(343) :177~185.
    184. Hoshida H,Tanaka Y,Hibino T,et al.Enhanced tolerance to salt stress in transgenic ricethat overexpresses chloroplast glutamine synthetase[J].Plant Mol Biol,2000,43(1) :103~111.
    185. Thomas J R.Osmotic and specific salt effects on growth of cotton[J].Agronomy Journal.1980,72:407~412.
    186. Jiankang Zhu.Plant salt tolerance[J].Plant Science.2001,6(2) :66~71.
    187. Kaminaka H,Morita S,Tokumoto M,et al.Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses[J].Free Radic Res,Suppl.1999,219~225.
    188. Kasumov N A,Abbasova Z I,Gunduz G.Effects of salt stress of the respiratory components of some plants[J].Turkish Journal of Botany.1998,22(6) :159~152.
    189. Khatun S,Flowers T J.Effects of salinity on seed set in rice[J].Plant,Cell and Environment.1995,18:61~87.
    190. Ledbetter C A.Heritabilityof salt tolerance during germination and emergence in short staple cotton[D].Abstracts-International,Sciences and Engineering.1987,47(11) :113.
    191. Leidie O R,Nogales,Lips S H.Effects of salinity on cotton plants grown under nitrate or ammoninium nutrition at different calcium levels[J].Field Crops Research.1991,35~34.
    192. Lilius G,Holmberg N.Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase[J].Bio Technol.1996,14:177~180.
    193. Liu Donghua,Jiang wusheng,Li Maoxue.Effects of lead on root growth,cell division and nucleolus of Alliwn cepa[J].Environ.Pollut.1994,86:1.
    194. Liu Donghua,Jiang wusheng,Li Maoxue.Effects of Mg~(2+) and Co~(2+) on cell division and nucleolar cycle during mitosis in root tip cells of Allium cepa [J].Israel J.Plant Sci.1994,42:235.
    195. Liu Donghua,Jiang wusheng,Li Maoxue.Effects of Cr~(3+)on root growth and cell division of Allium cepa[J].Chin.J.Bot.1993,5(1) :34.
    196. Liu J,Huang S,Peng X,et al.Studies on high salt tolerance of transgenic tobacco[J].Chin Biotechnol.1995,11(4) :275~280.
    197. Longenecker D E.The influence of high sodium in soil upon fruiting and shedding,boll characteristics,fibre properties and yields of two cotton species[J].Soil Sci.1974,118:387~396
    198. Longenecker D E.The influence of soil salinity upon fruiting and shedding,boll characteristics,fibre properties and yields of two cotton species[J].Soil Sci.1973,115:294~302.
    199. Misra M P.Effect of Calcium Salts on Allium cepa Chromosomes[J].Cytologia.1982,47:47~51.
    200. Ma C L,Wang P P,Cao Z Y,et al.cDNA cloning and gene expression of APX in Suaeda salsa in responses to salt stress[J].J Plant Physiol Mol Biol.2002,28(4) :261~266.
    201. Mansour M F,Salama K A.Cellular basis of salinity tolerance in plants[J].Environmental andexperimental botanty.2004,52:113~122.
    202. Martinez V.Phosphorus translocation in salt-stressed cotton[J].Physiol.Plant.1991,83:627~632
    203. Maslenkova L T,Zanev Y,Popova L P.Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids[J].Plant Physiology.1993,142:629~634.
    204. Michelet B,Boutry M.The plasma membrane H~+-ATPase.A highly regulated enzyme with multiple physiological functions[J].Plant Physiology.1995,108:1~6.
    205. Mizoguchi T,Ichimura K,Irie K.Identification of possible MAPK kinase cascade in Arabjdopsis theliana based on parewise yeast two hybrid analysis and functional complementation test of yeast mutants[J].FEBS LETT.1998,43(7) :56~60.
    206. Pardo J M,Reddy M P,Yang S,et al.Stress signaling through Ca/calmodulin dependent protein phosphatase calcineurin mediates salt adaptation in plants[J].Proc Natl Acad Sci.1998,95:9681~9686.
    207. Park J M,Park C J,Lee S B,et al.Overexpression of the tobacco Tsil gene encoding an EREBP/AP type transcription factor enhances resistance against pathogen attack andosmotic stress in tobacco[J].Plant Cell.2001,13(5) :1035~1046.
    208. Piao H L,Lim J H,Kim S J,et al.Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis [J].Plant J.2001,27(4) :305~314.
    209. Rainisch A.Cell wall proteins of expanding and fully expanded leaves of cotton after stress[J].Proc Beltwide cotton Prod Res Conf.1990:634.
    210. Rathinasabapathi B,Burnet M,Russell B L,et al.Choline monooxygenase,an unusual iron sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning[J].Proc Natl Acad Sci,1997,94:3454~3458.
    211. Razzouk S.Effects of salinity on cotton yield and quality[J].Field Crop Res.1991,26:305~314.
    212. Rodriguez H G,Roberts J M,Jordan W R,et al.Growth,water relations,and accumulation of organic and inorganic solutes in roots of maize seedlings during salt strss[J].Plant Physiology.1997,113:881~893.
    213. Roxas V P,Lodhi S A,Garrett D K,Mahan J R,Allen R D.Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant Cell Physiol.2000,41(11) :1229~1234.
    214. Roy M,Wu R.Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice[J].Plant Sci,2001,160(5) :869~875.
    215. Russell B L,Rathinasabapathi B,Hanson A D.Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth[J].Plant Physiol.1998,116:859~865
    216. Saijo Y,Kinoshita N,Ishiyama K,et al.A Ca~(2+) dependent protein kinase that endows rice plants with cold and salt stress tolerance functions in vascular bundles[J].Plant Cell Physiol.2001,42(11) :1228~1233.
    217. Sakamoto A,Alia,Murata N.Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold[J].Plant Mol Biol.1998,38(6) :1011~1019.
    218. Sharma S K.Saline Environment and Plant Growth.[M].Agro Botanical Publishers (India).1986:90~92.
    219. Sheveleva E,Chmara W,Bohnert H J,et al.Increased salt and drought tolerance by D-Ononitol production in transgenic Nicotianq tabacum L.[J].Plant Physiol.1997,115(3) :1211~1219.
    220. Shi H,Lee B H,Wu S J,et al.Overexpression of a plasma membrane Na/H antiporter gene improves salt tolerance in Arabidopsis thaliana[J].Nat Biotechnol.2003,21(1) :81~85.
    221. Shi W M,Muramoto Y,Ueda A,et al.Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana[J].Gene.2001,273(1) :23~27.
    222. Steponkus P L,Uemura M,Joseph R A,et al.Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J].Proc Nat Acad Sci.1998,95:14570~14575.
    223. Strizhov N,Abraham E,Oekresz L.et al.Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis[J].Plant Journal.1997,33(5) :557~569.
    224. Sun Z X,Yang H H,Cui D C,et al.Analysis of salt resistance on the poplar transferred with salt tolerancegene[J].Chin J.Biotechnol.2002,18(4) :481~485.
    225. Thomas J C,Sepahi M,Arendall B,et al.Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana[J].Plant Cell Environ.1995,18:801~806.
    226. Urao T,Katagiri T.Two genes that encode Ca~(2+) dependent protein kinase are induced by drought and high salt stress in Arabidopsis theliana[J].Mol Genet.1994,244:331~340.
    227. Van Camp W,Capiau K,Van Montagu M,et al.Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J].Plant Physiol.1996,112(4) :1703~1714.
    228. Very A A.Guard cell cation channels are involved in Na~+ induced stomatal closure in a halophyte[J].Plant J.1998,14:509~521.
    229. Volkmar K M,Hu Y,Steppuhn H.Physiological responses of plants to salinity:a review[J].Can.J.Plant Science.1998,78:19~27.
    230. W C Hofmann.Response of Cotton,Alfalfa,and Cantaloupe to foliar-deposited salt in an arid environment[J].Eniron.Qual.1987,16(3) :267~272.
    231. Wan C Y,Wilkins T A.A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.) [J].Anal Biochem.1994,223(1) :7~12.
    232. Wang S F,Wang J L,Zhao Y X,et al.Transformation of choline dehydrogenase gene and identification of salt-tolerancein transgenic tomato[J].Acta Phytophysiol Sin,2001,27(3) :248~252.
    233. Welin B V,Olson A,Nylander M,et al.Characterization and differential expression of DHN/LEA/RAB-like genes during cold acclimation and drought stressin Arabidopsis thaliam[J].Plant Mol Biol.1994,26(1) :131~144.
    234. Weretilnky E A,Hanson A D.Molecular cloning of a plant betaine-aldehyde dehydrogenase,and enzyme implicated in adaptation to Salinity and drought[J].Proc Natl Acad Sci.1990,87:2745~2749.
    235. Winicov I.Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J].Planta.2000,210(3) :416~422.
    236. Wu S J,Ding L,Zhu J K.SOS1,a genetic locus essential for salt tolerance and potaasium acpuisition[J].Plant Cell,1996,8:287~293.
    237. Xinguang Zhu,Qide Zhang.Advance in the research on the effects of NaCl on photosynthesis[J].Chinese Bulletin of Botany.1999,16(4) :332~338.
    238. Xiong L,Zhu J K.Molecular and genetic aspects of plant responses to osmotic stress[J].Plant Cell Environ.2002,25:131~139.
    239. Xu D,Duan X,Wang B.et al.Expression of a late embryogenesis abundant protein gene,HVA1,from barley confers tolerance to water deficit and salt stress in transgenic rice[J].Plant Physiology.1996,110:249~257.
    240. Yamaguchi,Shinozaki K.Improving plant drought,salt and freezing tolerance bygene transfer of a single stress inducible transcription factor[J].Novartis Found Symp.2001,236:176~186.
    241. Yang S X,Zhao Y X,Zhang Q,et al.HAL1 mediate salt adaptation in Arabidopsis thaliana[J].Cell Res,2001,11(2) :142~148.
    242. Ye Wuwei,Liu Jingding.Effects of Na~+ on root growth and cell division of G.hirsutum L,Progress in seed research[M],Cornell University Press.1997. 343~348
    243. Yokoi S,Bressan R A,Hasegawa P M.Salt stress tolerance of plant[M].JIRCAS Working Rep.2002:25~33.
    244. Yokoi S.Differential expression function of Arabidopsis thaliana NHX Na~+/H~+ antiporters in the salt stress response[J].Plant J.2002,30(5) :529~539.
    245. Zhang H X,Blumwald E.Transgenic salt tolerant tomato plants accumulate salt infoliage but not in fruit[J].Nat Biotech.2001,19:765~768.
    246. Zhang Q.Cloning of HAL1 gene and characterization for salt tolerance tomato[J].Chin J Biotechnol.2001,17(6) :658~662.
    247. Zhu B.Over-expression of a pyrroline carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice[J].Plant Sci.1998,139:41~48.
    248. Zhu J.Genetic analysis of salt tolerance in Arabidopsis thaliana:evidence of a critical role for potassium nutriation[J].Plant Cell.1998,10:1181~1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700