三维角联锁机织复合材料弹道侵彻破坏细观结构尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维角联锁机织复合材料与传统层压复合材料相比,具有较高的层间分层阻抗、断裂韧性和抗冲击损伤容限,更适合应用于高速加载下抗冲击结构件设计。复合材料在冲击加载下结构效应明显,有效表征细观结构尺度力学性质和动态响应可以对复合材料抗冲击设计提供理论指导。
     本文目的是研究三维角联锁机织复合材料在细观结构尺度上表征方法和弹道侵彻性质有限元分析,并结合纤维材料力学性质的应变率效应和本构方程,分析在高速冲击加载下复合材料弹道侵彻破坏性能和对弹体的能量吸收机理。
     本课题研究思路与方法为:
     (1)基于复合材料细观结构理论和三维角联锁机织物基本结构参数,建立真实细观的复合材料多尺度几何模型,对其进行离散化处理得到复合材料有限元弹道侵彻模型。
     (2)采取两种纱线材料模型方案进行弹道侵彻模拟计算:随动硬化弹塑模型:采用纤维材料力学性质的随动硬化弹塑性模型,计算复合材料弹道侵彻破坏;粘弹性材料模型:根据高应变率纱线本构方程,使用Fortran语言编写纱线用户自定义材料子程序,结合显式算法,代入有限元模型计算复合材料弹道侵彻破坏。
     (3)开展复合材料弹道侵彻实验,提取弹道侵彻测试值,验证两种纱线材料模型计算方案应用在模拟复合材料对弹体动能吸收和复合材料弹道侵彻破坏形态上的有效性和精确性。
     (4)通过理论模型预测三维角联锁机织复合材料弹道侵彻性能,揭示其弹道侵彻破坏模式和破坏机理。
     (5)对比三维角联锁机织复合材料多尺度结构模型与单胞模型的弹道侵彻模拟结果,从两种模型破坏形态、应力分布和运算时间等方面论证理论模型各自的特点,分析不同理论模型中复合材料弹道侵彻特征。
     本文主要研究结论为:
     研究表明三维角联锁机织复合材料具有良好的弹道侵彻性能,较高冲击损伤容限,织物增强体在材料吸收子弹侵彻能量中起主导作用。随着冲击速度变化,对位芳族聚酰亚胺纤维的应变率效应会引起纱线力学性质发生变化,对复合材料弹道侵彻性能具有显著影响。因此,准确理解高应变率下纤维力学本构,结合有限元细观模型,对三维角联锁机织复合材料弹道侵彻过程进行数值模拟计算,能够为动态高速加载下材料抗冲击、高损伤容限的复合材料精细化结构设计提供理论依据。
     在三维角联锁机织复合材料弹道侵彻实验中,子弹入射速度控制在200m/s-600m/s范围内。实验结果包括子弹剩余速度,靶板弹道极限速度,入射面、出射面和厚度方向剖面破坏形态。实验结果表明三维角联锁机织复合材料在弹道侵彻加载下,入射速度与剩余速度拟合曲线为非线性,具有应变率敏感性;弹道侵彻破坏形态包括树脂脆裂、纤维抽拔和断裂、纱线弯曲变形、树脂和纤维之间相互挤压和碎片飞溅等;材料破坏模式包括入射面内压缩破坏、厚度方向上剪切破坏,及出射面拉伸破坏。
     三维角联锁机织复合材料弹道侵彻细观模型是基于增强体织物基本结构参数,在纤维体积含量与实际材料相等条件下,将三维角联锁机织复合材料细观结构和材料属性相结合,计算复合材料弹道侵彻破坏过程和破坏模式。对比弹道侵彻细观模型运算结果与实验结果,两者具有较好的一致性,该模型可以深入揭示三维角联锁机织复合材料弹道侵彻机理,从靶板侵彻过程、应力分布、破坏模式和能量吸收等方面对材料进行动态力学分析。
     根据对位芳族聚酰亚胺纤维分子内部结构和力学特征,将刚性大分子主链和主链间氢键分别以弹簧元件和粘壶元件进行等效代替,用三元件本构模型有效表征纱线在高应变率下动态响应。结合横观各向同性材料特征,用材料应变率效应动态本构关系计算纱线剪切模量。将应变率效应的本构方程编写入用户自定义材料子程序,并在有限元计算主程序中进行调用,实现对主程序中纱线应力、应变和历史变量的更新。计算结果表明具有应变率敏感材料本构可以提高弹道侵彻计算精度,提高理论预测值与实验值拟合程度。
     从剩余速度、破坏形态和靶板变形等方面,把两种方案计算结果与实验测试结果进行对比验证,结果表明该有限元细观模型能够对三维角联锁机织复合材料的弹道侵彻过程进行精确模拟。通过有限元模拟弹道侵彻过程,再现在冲击加载下纤维束受力变形过程,树脂基体开裂以及两者相互作用状态。提取细观模型分析结果,得到实验中未测到中间数据,如:子弹速度和加速度历程曲线,靶板挠度曲线、节点应力波传递曲线等。这些数据可以进一步揭示三维角联锁机织复合材料的弹道侵彻破坏机理,分析基体与增强体侵彻中吸能差异。
     比较两种方案的计算结果,粘弹性材料模型方案计算结果与实验值有较好的拟合度,表明在弹道侵彻数值模拟计算中,带有应变率效应的本构方程能够提高运算过程精确性,保证计算结果有效性。对比能量吸收过程,发现纤维束是复合材料中主要吸收能量介质,粘弹性材料模型方案中纤维束吸收更多动能,转化内能比重更大。说明由于应变率效应,纤维束力学性能发生变化,进而对能量吸收和转化产生更多影响。另外,对比经纬纱线吸收内能,发现纬纱在弹道侵彻过程中吸收较多内能,是材料弹道防护中能量吸收重要影响因素。
     比较三维角联锁机织复合材料多尺度结构模型与单胞模型的弹道侵彻模拟结果:发现多尺度结构模型中细观部分能够真实反映材料破坏形态、纱线和树脂损伤状态以及弹道侵彻过程中材料各组分与弹体相互作用方式,而单胞模型破坏形态较为简单,主要体现在模型单元删除后弹孔形态和靶板变形状态。多尺度结构模型能够区分纱线和树脂内不同应力分布状态,模拟出弹道侵彻过程中复合材料靶板在应力传播云图,为进一步分析靶板内应力状态和能量吸收机理提供理论依据。综合对比实验值、多尺度结构模型和单胞模型的入射速度-剩余速度曲线,发现多尺度结构模型的理论结果与实验值更为一致。结合两种理论模型预测结果,分析不同模型中复合材料靶板破坏模式的共同点和不同点,深入讨论三维角联锁织机复合材料的弹道侵彻响应行为破坏机理。比较两种模型的计算时间,理解有限元计算中计算效率和模拟精度关系,讨论三维角联锁机织复合材料理论模型在理论研究和工程应用中所适用的最优方案。
Three-dimensional angle-interlock woven composite (3DAWC) owns higher interlaminar shear strength, fracture toughness and impact damage tolerance than the laminated composite, and has great potential applications to the impact protection. The mechanical performances of composite material are significantly affected by reinforcement structure under impact loading. And the micro-structure performance and dynamic response with accurate characterization can provide theoretical guidance for the impact-resistance design of composite material.
     The purposes of this research are to study the ballistic impact behaviors and structural characterization of3DAWC at microstructural scale, to analyze its dynamic responses by considering the strain rate effect and the visco-elastic mechanical constitutive relation of Twaron(?) filament bundle, and to reveal energy absorption mechanism of3DAWC during ballistic penetration.
     The research procedures and approaches are as follows:
     (1) Establishing a geometrical model of3DAWC: Basing on the microstructural theory of composite material and fundamental structure parameters of three-dimensional angle-interlock woven fabric (3DAWF), the geometrical model of3DAWC is created in computer-aided design software. And this model can be discretized into the finite element model (FEM) of3DAWC under a hemispherical-cylindrical steel projectile.
     (2) Utilizing two research schemes of yarn material for numerical calculation of FEM: Elastic plastic model with kinematic hardening (EPM):Calculate the FEM of3DAWC under a hemispherical-cylindrical steel projectile with standard material model in the commercial-available finite element software package LS-DYNA. User-defined material model:Characterize strain rate sensitivity of Twaron(?) filament bundle by the dynamic mechanical constitutive relation, and compile the user defined material subroutine (UMAT) of Twaron(?) filament bundle, which is invoked into calculation process of FEM in LS-DYNA.
     (3) Verifying the efficiency and accuracy of two simulation schemes according to the ballistic experimental data.
     (4) Predicting and revealing the ballistic performances, damage modes and penetration mechanism of3DAWC from theoretical model.
     (5) Comparing the theoretical predictions between micro structure model and unit-cell model of3DAWC under a hemispherical-cylindrical steel projectile, to demonstrate its ballistic penetration features in the view of calculation time, damage morphology and stress distribution and demonstrate its ballistic damage characteristics.
     The main conclusions are as follows:
     3DAWC has excellent ballistic performances and higher impact damage tolerance, in which the fabric reinforcement dominates the energy absorption of3DAWC during ballistic penetration. Along with the loading velocity variation, the strain rate sensitivity of Twaron(?) filament bundle significantly influences dynamic properties and ballistic performances of composite material. Therefore, a fully understand about mechanic constitutive relationship of Twaron(?) filament bundle will provide accurately theoretical demonstration to structural composite design. It can also assist structural design to increase the damage tolerance of3DAWC under the dynamic loading with high impact velocity.
     The velocity of projectile was controlled within the range between200m/s and600m/s in the ballistic experiment. The experimental results include the initial impact velocity and residual velocity of projectile, ballistic limit velocity, and damage morphologies of incident surface, rear surface and cross section in the through thickness direction of3DAWC. The fit curve of impact velocity vs. residual velocity has a nonlinear incensement which indicates that the3DAWC under ballistic penetration is strain rate sensitivity. The damage morphologies of3DAWC include matrix cracking, filaments pull-out and fracture, yarn bending, interactive deformation between matrix and filaments, impact debris and so on. Its main damage modes are compression failure in incident surface, shear failure in the through thickness direction and tensile failure in the rear surface of composite target.
     The micro structure model of3DAWC is in accordance with actual basic configurations and the fiber volume fraction of3DAWF obtaining from the yarn spatial distribution in the matrix of the composite. It is an accurate characterization to utilize this model to evaluate dynamic mechanics of3DAWC, because of building up the link between micro structure and basic material properties. The simulation results of penetrated3DAWC under a hemispherical-cylindrical steel projectile show good agreements with experimental. And the ballistic damage mechanism of3DAWC can be achieved by the FEM from views of ballistic penetration progress, damage modes and energy absorption.
     Basing on the PPTA molecular structure and mechanic characterization, the dynamic responses of Twaron(?) filament is represented by the standard linear solid model which contains Hookean springs and Newtonian dashpot. The shear modulus in transversely isotropic material model of Twaron(?) filament bundle is treated as strain rate sensitivity, and this constitutive relation is compiled into UMAT to calculate and update stress increments, strain increments and history variables in main program. The simulation results demonstrate that the constitutive relations with strain rate sensitivity can improve the accuracy of ballistic calculation and also can increase fitting degree between theoretical prediction and experimental results.
     The comparison between theoretical predications and experimental results shows that the micro structure model can accurately reflect ballistic behaviors of3DAWC. From the simulated ballistic penetration progress, the deform morphology of filament bundle, fracture of resin matrix, interaction between two components caused by high velocity impact are reappeared. Otherwise, some precise results in ballistic tests, such as velocity vs. time history curves, acceleration vs. time history curves, deform deflection curves of composite target, are rarely achieved for ballistic equipment restrictions. Yet those can be obtained from simulation results for further revealing the ballistic damage mechanism and the energy absorption difference between reinforcement and resin matrix of3DAWC.
     Comparing the two theoretical schemes results, UMAT results show better agreements with experimental than EPM indicating that the constitutive relationship in UMAT can efficiently improve accuracy of ballistic process simulation. The comparison also shows that the main energy absorption media in3DAWC is filament bundle. The filament bundles in UMAT scheme absorb more internal energy than that in EPM scheme, as well as absorbing more proportion of kinematic energy of projectile. All those illustrate that the dynamic mechanic properties of filament bundle are affected by strain rate effect when suffering from ballistic impact, which further affect the energy absorption and transformation in3DAWC. Otherwise, wefts absorb more energy than warps during ballistic penetration, demonstrating that the design of wefts in3DAWC is an important factor.
     Comparing results of the micro structure model and the unit-cell model, the damage morphologies of composite panel, filament yarn and resin matrix, and the interactions between projectile and different components of3DAWC were clearly recognized by the micro structure model. While only perforated hole and deformation of composite panel were manifested in the damage morphologies of the unit-cell model. Moreover, the micro structure model can show stress distributions in the filament yarn and resin matrix, providing further theoretical evidences to analyze the stress propagation and energy absorption mechanism. And the unit-cell model can show a schematically stress distribution. Also, it is helpful to discuss the calculation time of the two model for understanding the relationship between calculation efficiency and simulation accuracy. From those discussion, the best simulation model can be chosen for engineering evaluation or scientific research basing on different features of two theoretical model.
引文
[1]周储伟,喻溅鉴,周光明.三维机织复合材料的一种梁单元细观力学模型.复合材料学报,2004,21(6):155-160.
    [2]周储伟,张音旋.三维机织复合材料多尺度黏弹性分析.复合材料学报,2007,24(5):125-129.
    [3]燕瑛,楼畅,成传贤,章怡宁,杨旭.机织复合材料力学性能的细观分析与实验研究.复合材料学报,2001,18(2):109-113.
    [4]易洪雷,丁辛.三维机织复合材料力学性能研究进展.力学进展,2001,31(2):161-171.
    [5]卢子兴,杨振宇,李仲平.三维编织复合材料力学行为研究进展.复合材料学报,2004,21(2):1-7.
    [6]王新峰.机织复合材料多尺度渐进损伤研究[D].南京:南京航空航天大学,2007,85-104.
    [7]庞宝君,杜善义,韩杰才,赫晓东,严勇.三维四向编织碳/环氧复合材料实验研究.复合材料学报,1999,16(4):136-141.
    [8]孙宝忠.三维纺织结构复合材料压缩性能的应变率效应及动态特性分析[D].上海:东华大学,2007,3-12.
    [9]郭旭,李旺,邱夷平.三维机织芳纶/环氧复合材料应变率压缩响应研究.航空材料学报,2006,26(6):68-71.
    [10]田伟,祝成炎,王善元.三维整体夹芯机织复合材料的抗冲击与能量吸收性能.材料工程, 2008, z1:111-116.
    [11]杨彩云,李嘉禄.三维机织复合材料力学性能的各向异性.复合材料学报,2006,23(2):59-64.
    [12]Sharma S B, Porat I, Potluri P, Atkinson J. Manufacturing of doubly curved tubular composite structures:mapping and weave modifications. Journal of Thermoplastic Composite Materials,2002, 15(3):209-225.
    [13]Mouritz A P, Bannister M K, Falzon P J, Leong K H. Review of applications for advanced three-dimensional fibre textile composites. Composites Part A:Applied Science and Manufacturing, 1999,30(12):1445-1461.
    [14]Whitney T J, Chou T W. Modeling of 3-D Angle-Interlock Textile Structural Composites. Journal of Composite Materials,1989,23(9):890-911.
    [15]Byun J H, Chou T W. Elastic Properties of Three-dimensional Angle-interlock Fabric Preforms. Journal of the Textile Institute,1990,81(4):538-548.
    [16]Sheng S Z, Hoa S V. Modeling of 3D angle interlock woven fabric composites. Journal of Thermoplastic Composite Materials,2003,16(1):45-58.
    [17]Yanjun C, Guiqiong J, Bo W, Wei L. Elastic behavior analysis of 3D angle-interlock woven ceramic composites. Acta Mechanica Solida Sinica,2006,19(2):152-159.
    [18]Davidson D L. Ceramic-matrix composites fatigue and fracture. Journal of the Minerals Metals & Materials Society,1995,47(10):46-50.
    [19]Gowayed Y, Yi L. Mechanical behavior of textile composite materials using a hybrid finite element approach. Polymer Composites,1997,18(3):313-319.
    [20]Gowayed Y, Fan H. Fatigue behavior of textile composite materials subjected to tension-tension loads. Polymer Composites,2001,22(6):762-769.
    [21]杨彩云,刘雍,陈利,李嘉禄.结构参数对碳/树脂3D机织复合材料拉伸性能的影响.复合材料学报,2006,23(1):85-91.
    [22]Jarmon D C, Weeks C A, Naik R A, Kogstrom C L, Logan C P, Braun P F. Mechanical property comparison of 3-D and 2-D graphite reinforced epoxy composites fabricated by resin transfer molding. 43rd International Sampe Symposium and Exhibition on Materials and Process Affordability-Keys to the Future,1998,43:2043-2056.
    [23]Chen X, Spola M, Paya J G, Sellabona P M. Experimental studies on the structure and mechanical properties of multi-layer and angle-interlock woven structures. Journal of the Textile Institute,1999, 90(1):91-99.
    [24]Tsai K H, Chiu C H, Wu T H. Fatigue behavior of 3D multi-layer angle interlock woven composite plates. Composites Science and Technology,2000,60(2):241-248.
    [25]Dong W F, Xiao J, Li Y. Finite element analysis of the tensile properties of 2.5 D braided composites. Materials Science and Engineering:A,2007,457(1-2):199-204.
    [26]Sullivan R M, Murthy P L N, Mital S K, Palko J L, Cuneo J C, Koenig J R. Development of design analysis methods for carbon silicon carbide composite structures. Journal of Composite Materials,2007,41(10):1197-1215.
    [27]杨连贺,邱冠雄,黄故.任意结构三维机织复合材料弹性性能的计算机模拟.复合材料学报,2000,17(2):79-83.
    [28]Ganesh V K, Ramakrishna S, Teoh S H, Naik N K. Microstructural design of textile composites. Materials & Design,1997,18(3):175-181.
    [29]Naik N K, Thuruthimattam B J. Behavior of 3-D orthogonally woven composites under tensile loading. Journal of Composites Technology & Research,1999,21(3):153-163.
    [30]Naik N K, Sekher Y C, Meduri S. Damage in woven-fabric composites subjected to low-velocity impact. Composites Science and Technology,2000,60(5):731-744.
    [31]Naik N K, Ramasimha R, Arya H, Prabhu S V, Shamarao N. Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates. Composites Part B-Engineering,2001,32(7):565-574.
    [32]Naik N K, Reddy K S, Raju N B. Damage evolution in woven fabric composites:Transverse static loading. Journal of Composite Materials,2003,37(1):21-34.
    [33]Naik N K, Doshi A N. Ballistic impact behaviour of thick composites:Parametric studies. Composite Structures,2008,82(3):447-464.
    [34]Naik N K, Doshi A V. Ballistic impact behavior of thick composites:Analytical formulation. Aiaa Journal,2005,43(7):1525-1536.
    [35]Naik N K, Yernamma P, Thoram N M, Gadipatri R, Kavala V R. High strain rate tensile behavior of woven fabric E-glass/epoxy composite. Polymer Testing,2010,29(1):14-22.
    [36]Naik N K, Azad S N M, Prasad P D, Thuruthimattam B J. Stress and failure analysis of 3D orthogonal interlock woven composites. Journal of Reinforced Plastics and Composites,2001,20(17): 1485-1523.
    [37]Naik N K, Azad S N M, Prasad P D. Stress and failure analysis of 3D angle interlock woven composites. Journal of Composite Materials,2002,36(1):93-123.
    [38]Brown K A, Brooks R, Warrior N A. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Composites Science and Technology,2010,70(2): 272-283.
    [39]Ko F K, Hartman D. Impact behavior of 2-D and 3-D glass-epoxy composites. Sampe Journal, 1986,22(4):26-30.
    [40]Kuo W-S, Lee L-C. Impact response of 3-D woven composites reinforced by consolidated rods. Polymer Composites,1998,19(2):156-165.
    [41]Chiu C H, Lai M H, Wu C M. Compression failure mechanisms of 3-D angle interlock woven composites subjected to low-energy impact. Polymers & Polymer Composites,2004,12(4):309-320.
    [42]Sun B Z, Gu B H, Ding X. Compressive behavior of 3-D angle-interlock woven fabric composites at various strain rates. Polymer Testing,2005,24(4):447-454.
    [43]Gerlach R, Siviour C R, Wiegand J, Petrinic N. In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading. Composites Science and Technology,2012,72(3):397-411.
    [44]Cui F, Sun B Z, Gu B H. Fiber inclination model for finite element analysis of three-dimensional angle interlock woven composite under ballistic penetration. Journal of Composite Materials,2011, 45(14):1499-1509.
    [45]Li Z J, Sun B Z, Gu B H. FEM simulation of 3-D angle-interlock woven composite under ballistic impact from unit cell approach. Computational Materials Science,2010,49(1):171-183.
    [46]Hutchinson J W, Jensen H M. Models of fiber debonding and pullout in brittle composites with friction. Mechanics of Materials,1990,9(2):139-163.
    [47]Languerand D L, Zhang H, Murthy N S, Ramesh K T, Sansoz F. Inelastic behavior and fracture of high modulus polymeric fiber bundles at high strain-rates. Materials Science and Engineering:A,2009, 500(1-2):216-224.
    [48]孙宝忠,顾伯洪.碳纤维高应变率拉伸破坏形态的应变率效应性质.东华大学学报(自然科 学版),2005,31(1):124-127.
    [49]Rao Y, Waddon A J, Farris R J. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer,2001,42(13):5937-5946.
    [50]Wang Z, Xia Y. Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal Weibull distribution. Composites Science and Technology,1998,57(12):1599-1607.
    [51]Kurtz S M, Villarraga M L, Herr M P, Bergstrom J S, Rimnac C M, Edidin A A. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials,2002,23(17):3681-3697.
    [52]Bansal S, Mobasher B, Rajan S D, Vintilescu I. Development of fabric constitutive behavior for use in modeling engine fan blade-out events. Journal of Aerospace Engineering,2009,22(3):249-259.
    [53]Gilat A, Goldberg R K, Roberts G D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite. Composites Science and Technology,2002,62(10-11):1469-1476.
    [54]Shim V P W, Lim C T, Foo K J. Dynamic mechanical properties of fabric armour. International Journal of Impact Engineering,2001,25(1):1-15.
    [1]Goldsmith W, Dharan C K H, Chang H. Quasi-static and ballistic perforation of carbon fiber laminates. International Journal of Solids and Structures,1995,32(1):89-103.
    [2]练军,顾伯洪,王善元.三维编织复合材料弹道侵彻的数值模拟[D].上海:东华大学,2006.
    [3]Gellert E P, Cimpoeru S J, Woodward R L. A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites. International Journal of Impact Engineering, 2000,24(5):445-456.
    [4]Grujicic M, Pandurangan B, Koudela K L, Cheeseman B A. A computational analysis of the ballistic performance of light-weight hybrid composite armors. Applied Surface Science,2006,253(2): 730-745.
    [5]Smith J C, Mccrackin F L, Schiefer H F. Stress-strain relationships in yarns subjected to rapid impact loading-part V:wave propagation in long textile yarns impacted transversely. Textile Research Journal,1958,28(4):288-302.
    [6]Smith J C, Blandford J M, Schiefer H F. Stress-strain relationships in yarns subjected to rapid impact loading. Textile Research Journal,1960,30(10):752-760.
    [7]Zhu L T, Sun B Z, Hu H, Gu B H. Constitutive equations of basalt filament tows under quasi-static and high strain rate tension. Materials Science and Engineering:A,2010,527(13):3245-3252.
    [8]Zhu L T, Sun B Z. Micromechanics analysis of the tensile behavior of twaron fiber tows at various strain rates. Advanced Materials Research,2011,181-182:749-753.
    [9]Wang Y, Xia Y. The effects of strain rate on the mechanical behaviour of kevlar fibre bundles:an experimental and theoretical study. Composites Part A:Applied Science and Manufacturing,1998, 29(11):1411-1415.
    [10]Wang Y, Xia Y. Dynamic tensile properties of E-glass, Kevlar49 and polyvinyl alcohol fiber bundles. Journal of materials science letters,2000,19(7):583-586.
    [1]Cui F, Sun B Z, Gu B H. Fiber inclination model for finite element analysis of three-dimensional angle interlock woven composite under ballistic penetration. Journal of Composite Materials,2011, 45(14):1499-1509.
    [2]Hallquist J O. LS-DYNA keyword user's manual-volume II material model. Livermore Software Technology Corporation, Livermore, CA,2012,52-53,112-116.
    [3]Wang F J, Wang L P, Cheng J G, Yao Z H. Contact force algorithm in explicit transient analysis using finite-element method. Finite Elements in Analysis and Design,2007,43(6):580-587.
    [4]Hallquist J O. LS-DYNA3D theoretical manual. Livermore software technology corporation,1993, 19.1-19.2.
    [5]Thiruppukuzhi S V, Sun C T. Testing and modeling high strain rate behavior of polymeric composites. Composites Part B-Engineering,1998,29(5):535-546.
    [6]Chen J K, Beraun J E. A non-quadratic elasticity model suitable for metal matrix composites. Journal of Composite Materials,1998,32(23):2156-2176.
    [7]刘士光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008,92-97.
    [8]Li Z, Sun B, Gu B. FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach. Computational Materials Science,2010,49(1):171-183.
    [1]Jones N. Structural Impact [M]. Cambridge University Press,1990,348-352.
    [2]Hallquist J O. LS-DYNA3D theoretical manual. Livermore software technology corporation,1993, 16.6-16.8.
    [1]Hearle J W S. High-performance fibres [M]. Woodhead Publishing,2001,23-58.
    [2]Rao Y, Waddon A J, Farris R J. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer,2001,42(13):5937-5946.
    [3]Rao Y, Waddon A J, Farris R J. The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers. Polymer,2001,42(13):5925-5935.
    [4]Takayanagi M, Katayose T. Syntheses and characterization of N-grafted poly(p-phenylene terephthalamide). Journal of Polymer Science:Polymer Chemistry Edition,1983,21(1):31-39.
    [5]Yang X, Hsu S L. Application of molecular simulation technique to calculate structure and define deformation mechanisms of high-performance polymers. Macromolecules,1991,24(25):6680-6685.
    [6]Wang Y, Xia Y. The effects of strain rate on the mechanical behaviour of kevlar fibre bundles:an experimental and theoretical study. Composites Part A:Applied Science and Manufacturing,1998, 29(11):1411-1415.
    [7]Zhu D, Mobasher B, Erni J, Bansal S, Rajan S D. Strain rate and gage length effects on tensile behavior of Kevlar 49 single yarn. Composites Part A:Applied Science and Manufacturing,2012, 43(11):2021-2029.
    [8]Shim V P W, Lim C T, Foo K J. Dynamic mechanical properties of fabric armour. International Journal of Impact Engineering,2001,25(1):1-15.
    [9]Tan V, Zeng X, Shim V. Characterization and constitutive modeling of aramid fibers at high strain rates. International Journal of Impact Engineering,2008,35(11):1303-1313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700