六方和菱方有序固溶体的结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六方和菱方固溶体材料具有许多潜在的应用价值,对其进行研究的目的在于探究其性质与结构的内在关系、预报新材料,为实际应用和技术研究提供理论性支撑。
     本文采用基于密度泛函理论的第一性原理方法、结合密度波理论,研究了六方和菱方固溶体材料的结构和性质,取得的代表性成果如下:
     用密度波理论研究确定了简单菱方晶格的7种有序结构类型,并预报了刚玉型阳离子有序固溶体的结构,得到已有实验结果的佐证。
     根据密度波理论建立晶胞模型,使用材料建模与模拟软件包Materials Studio 4.0,对有序LixTiS2,stage-2 LixTiS2,AgxTiS2和AgxTiTe2系列的结构和性质进行了研究。
     选用DFT-LDA方案,在0≤x≤1范围内,对这4个系列进行了几何结构优化和总能量计算。得到的每个系列的晶格参量协调性好、与实验结果吻合较好,特别是Li1/4TiS2系统的c0好于国际同类工作。研究了阶梯化对有序LixTiS2系统的影响。发现了其夹层间距的额外膨胀和压缩的互补关系,并给予物理解释。
     用形成能判断有序结构的稳定性,预报了stage-2有序Li1/4TiS2和有序Ag3/4TiTe2等晶体的结构类型。将离子导电性与形成能建立了定性的关系,预报了AgxTiS2的有序—无序相变温度和离子扩散活化能较高;LixTiS2的离子导电性较好,得到已有实验结果的佐证。
     选用DFT-GGA方案,研究了AgxTiTe2系列的光学性质。得到的反射光谱与实验结果吻合较好;吸收光谱表明,AgxTiTe2吸收太阳光能力较强、范围较宽,有可能成为新型光电子材料。
Hexagonal and rhombohedral solid solution materials are candidates for many potential valuable applications. The studies on these materials aim at probing into the internal relation of properties and structures and predicting new materials, as well as providing theoretical supports for their actual applications and technical researches.
     We have completed the studies on the structures and properties of hexagonal and rhombohedral solid solution materials using the first principles method based on the density functional theory (DFT) combined with the concentration wave theory (CWT). The typical results of the dissertation are as follows:
     Using the CWT, we have determined 7 ordered structure types of simple rhombohedral lattice, and applied them to predict the structures of corundum type cation ordered solid solutions, which are supported by experimental results reported. For LixTiS2, stage-2 LixTiS2, AgxTiS2, and AgxTiTe2 series, we have constructed crystal cell models according to the CWT, and made studies on their structures and properties using materials modeling and simulating software package Materials Studio 4.0.
     In a range of 0≤x≤1, we have completed the geometry optimizations and total energy calculations for the 4 whole series with DFT-LDA scheme. For every series, the obtained lattice parameters assort well with each other and accord with experiment results, and especially, c0 of Li1/4TiS2 system is better than the results of analogous work in the literature. We have investigated the effects of intercalates staging in LixTiS2 systems, and found the complementary relation of the additional expansion and the compression of spacing between sandwiches, and presented reasonable explanations.
     Using formation energy to estimate the stability of ordered structures, we have predicted the structure types of stage-2 ordered Li1/4TiS2, ordered Ag3/4TiTe2, and other crystal systems. We have also proposed a qualitative relation of ionic conductivity and formation energy, and estimated that the order-disorder transition temperature and the ionic activation energy of AgxTiS2 are higher than those of LixTiS2, and the ionic conductivity of LixTiS2 is better than that of AgxTiS2, which are supported by experimental results reported.
     By virtue of DFT-GGA scheme, we have studied the optical properties of AgxTiTe2 series. The obtained reflectance spectra are in good accordance with the experimental results reported, and the absorption spectra show that AgxTiTe2 systems may be a new kind of photoelectronic materials for their good absorptive capacity for absorbing sunlight in a large range.
引文
[1] Morosan E, Li L, Ong N P, et al, Anisotropic properties of the layered superconductor Cu0.07TiSe2, Phys Rev B, 2007, 75 (10): Art. No. 104505
    [2] Sato Y, Kume T, Hagiwara R, et al, Reversible intercalation of HF in fluorine-GICs, Carbon, 2003, l (41): 351~357
    [3] Reshak A H, Auluck S, Electronic and optical properties of the 1T phases of TiS2, TiSe2, and TiTe2, Phys Rev B, 2003, 68 (24): Art. No. 245113
    [4] Austria C, Zhang J, Valle H, et al, Amine-controlled assembly of metal-sulfite architecture from 1D chains to 3D framework, Inorg Chem, 2007, 46 (16): 6283~6290
    [5] Patla I, Acharya S, Zeiri L, et al, Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires, Nano Lett, 2007, 7 (6): 1459~1462
    [6] Long Z L, Zhou Y C, Xiao L, Characterization of black chromate conversion coating on the electrodeposited zinc-iron alloy, Appl Surf Sci, 2003, 218 (1-4): 123~136
    [7] Tan X, Zhou Y C, Zheng X J, Dependence of morphology of pulsed-laser deposited coatings on temperature: a kinetic Monte Carlo simulation, Surf Coat Tech, 2005, 197 (2-3): 288~293
    [8] Guisbiers G, Pereira S, Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures, Nanotechnology, 2007, 18 (43): Art. No. 435710
    [9] Derakhshan S, Cuthbert H L, Greedan J E, et al, Electronic structures and low-dimensional magnetic properties of the ordered rocksalt oxides Na3Cu2SbO6 and Na2Cu2TeO6, Phys Rev B, 2007, 76 (10): Art. No. 104403
    [10] Gippius A A, Morozova E N, Okhotnikov K S, et al, NMR study of low dimensional spin system Cu2(PO3)2CH2, Physica C-Superconductivity and its Applications, 2007, 460: 927~928
    [11] Sun C Q, Size dependence of nanostructures: impact of bond order deficiency, Prog Solid State Ch, 2007, 35 (1):1~159
    [12]冯秋菊,申德振,张吉英,等,ZnS纳米棒阵列的结构和光学特性,发光学报,2005,26 (5):627~630
    [13] Wang H, Optical and electrical characteristics, preparation and application of Al doped zinc oxide thin films, Electronic Components & Materials, 2005, 24: 59~62
    [14] Sarkar D, Calleja J M, van der Meulen, et al, Optical properties of InAs/AlAs self-assembled quantum dots, Mater Sci Forum, 2006, 555: 9~17
    [15] Vovchenko L, Matzui L, Stelmakh O, et al, Electric and magnetoresistance of nanocomposite material graphite-cobalt, Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13(suppl): 491~495
    [16] Xie R, Rosenmann D, Rydh A, et al, Anisotropic superconducting phase diagram of C6Ca, Physica C, 2006, 439 (2): 43~46
    [17] Chen X G, Qin J G, Inokuchi M, et al, Magnetic intercalate of pararosaniline into layered MnPS3, Synthetic Met, 2003, 137 (1-3): 1339~1340
    [18] Gutzmann A, Nather C, Bensch W, New layered quaternary tantalum thiophosphates containing binuclear [Ta2S10] units: Synthesis and crystal structures of the two new compounds K0.42TaPS5 and Rb0.42TaPS5, Z Anorg Allg Chem, 2005, 631 (2-3): 524~529
    [19] Skorokhod V V, Layered composites: structural classification, thermophysical and mechanical properties, Powder Metall Met C, 2003, 42: 437~461
    [20]陈兴国,张萱,杨楚罗等,层状过渡金属硫代亚磷酸盐及其夹层化合物,无机化学学报, 2003, 19 (5): 449~458
    [21] Cherstiouk O V, Simonov P A, Savinova E R, Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG, Electrochim Acta, 2003, 48 (25-26): 3851~3860
    [22] Suchita K, Gosavi S W, Urban J, et al, Nanoshell particles: synthesis, properties and applications, Curr Sci India, 2006, 91 (8): 1038~1052
    [23] Oms O, Le Bideau J, Leroux F, et al, Mixed 1D-2D inorganic polymeric zinc ferrocenylphosphonate: Crystal structure and electrochemical study, J Am Chem Soc, 2004, 126 (38): 12090~12096
    [24] Lau Y M, Chee P C, Thong J T L, et al, Properties and applications of cobalt-based material produced by electron-beam-induced deposition, J Vac Sci Technol A, 2002, 20 (4): 1295~1302
    [25] Kuc A, Zhechkov L, Patchkovskii S, et al, Hydrogen sieving and storage in fullerene intercalated graphite, Nano Lett, 2006, 7: 44~48
    [26] Cheng F G, Chen J, Storage of hydrogen and lithium in inorganic nanotubes and nanowires, J Mater Res, 2006, 21: 2744~2757
    [27] Ying M J, Xia Y Y, Zhao M W, et al, Quasi-one-dimensional solid lattice and liquid hydrogen in single-walled carbon nanotubes, Chin Phys Lett, 2003, 20: 550~553
    [28] Berdinsky A S, Fullerite films-new material for sensor electronics, 2003 Siberian Russian Workshop on Electron Devices and Materials, Proceedings, 4th Annual (IEEE Cat No.03EX664), 2003: 10~18
    [29] Comini E, Faglia G, Sberveglieri G, Stable and very sensitive gas sensor based on novel mixed-metal oxides, Proceedings of the SPIE-The International Society for Optical Engineering, 2004, 5275: 1~8
    [30] Friend R H, Yoffe A D, Electronic properties of intercalation complexes of the transition metal dichalcogenides, Adv Phys, 1987, 36 (1):1~94
    [31] Yoffe A D, Electronic properties of low dimensional solids: The physics and chemistry of layer type transition metal dichalcogenides and their intercalate complexes, Solid State Ionics, 1990, 39 (1): 1~7
    [32] Bissessur R, Liu P K Y, Direct insertion of polypyrrole into molybdenum disulfide, Solid State Ionics, 2006, 177 (1-2): 191~196
    [33] Wada H, Nozaki H, Sato A, et al, Synthesis, crystal structure and property of the iron-rich tantalum compounds (Fe,Ta)5X8 with X=S, Se, J Alloy Compd, 2004, 383: 148~151
    [34] Guseinov G D, Mustafaeva S N, Guseinova RG, et al, The nature of electric memory in lithium-intercalated chain-structure TlInSe2 single crystals, Phys Status Solidi A, 1986, 95 (2): K159~ K164
    [35] Gverdtsiteli I G, Kalandarishvili AG, Zaitsev V P, et al, Anisotropy in the electrical resistance of pyrolytic graphite intercalated by cesium and rubidium, Inorg Mater, 1983, 19 (9): 1302~1305
    [36] Rozploch F, Skowronski J M, Nowak L, et al, New point of view on anisotropy of electrical properties in graphite and some graphite intercalation compounds, J Phys Chem Solids, 2004, 65 (2-3): 195~197
    [37] Romanenko A I, Anikeeva O B, Okotrub A V, et al, Transport and magnetic properties of multiwall carbon nanotubes before and after bromination, Phys Solid State, 2002, 44 (4): 659~662
    [38] Xu X G, Ding X, Chen Q, et al, Electronic, optical, and magnetic properties of Fe-intercalated H2Ti3O7 nanotubes: first-principles calculations and experiments, Phys Rev B, 2006, 73 (16): Art. No. 165403
    [39] Michioka C, Fukushima K, Suzuki K, et al, Physical properties of RSe2-x (R=Ce, Nd, Sm and Gd) and RbxGdSe3-y, J Phys Chem Solids, 2005, 66 (8-9): 1579~1582
    [40] Takase K, Kubota Y, Takano Y, et al, Anisotropic magnetic properties of intercalation compound Mn1/4TiS2, Physica B, 2000, 284: 1517~1518
    [41] Grechnev G E, Ahuja R, Jinghua Guo, et al, Electronic structure and optical spectra of novel rechargeable lithium batteries, Proceedings of the SPIE-The International Society for Optical Engineering, 2003, 5507 (1): 35~44
    [42] Dumchenko D, Gherman C, Kulyuk L, Radiative centers formed by halogen molecules intercalated in MoS2 and WS2 layered semiconductors, J Optoelectron Adv M, 2005, 7 (2): 775~779
    [43] Zhang Y, Liu Y W, Cheng Y S, et al, Novel high rate lithium intercalation cathode materials, J Rare Earth, 2005, 23 (6): 701~705
    [44] Massey C, McKnight G, Ping Liu, et al, Graphite intercalation compounds as actuation materials, Proceedings of the ASME Aerospace Division, 2004: 117~122
    [45] Delmas C, Croguennec L, Layered Li(Ni,M)O2 systems as the cathode material in lithium-ion batteries, MRS Bull, 2002, 27 (8): 608~612
    [46] Levasseur S, Menetrier M, Delmas C, Combined effects of Ni and Li doping on the phase transitions in LixCoO2 electrochemical and Li-7 nuclear magnetic resonance studies, J Electrochem Soc, 149 (12): A1533~A1540
    [47] Titov A N, Bryntse I, Titova S G, et al, Silver intercalation in PbS1.18(TiS2)n, n=1, 2, misfit layer compounds, Solid State Ionics, 2001, 140 (3-4): 293~300
    [48] Srivastava S K, Pramanik M, Palit D, et al, X-ray diffraction,topographical studies, and thermal behavior of layer-type CdIn2S4-Sex ( 1. 75≤x≤2.75) and its lithium intercalation compounds, Chem Mater, 2004, 16 (21): 4168~4173
    [49] Liang W Y, Eectronic properties of transition metal dichalcogenides and intercalation complexes, (Ed) Dresselhaus M S, Intercalation in Layered Materials, New York: Plenum, 1986, 31~73
    [50] Bredow T, Heitjans P, Wilkening M, Electric field gradient calculations for LixTiS2 and comparison with Li-7 NMR results, Phys Rev B, 2004, 70 (11): No. 115111
    [51] Wilkening M, Kuchler W, Heitjans P, From ultraslow to fast lithium diffusion in the 2D ion conductor Li0.7TiS2 probed directly by stimulated-echo NMR and nuclear magnetic relaxation, Phys Rev Lett, 2006, 97(6) : 065901
    [52] Wilkening M, Heitjans P, Ultraslow diffusion in polycrystalline h-LiTiS2 studied by Li-7 spin-alignment echo NMR spectroscopy, Defect Diffus Forum, 2005, 237-240: 1182~1187
    [53] Wilkening M, Heitjans P, New prospects in studying Li diffusion-two-time stimulated echo NMR of spin-3/2 nuclei, Solid State Ionics, Diffusion & Reactions, 2006, 177 (35-36): 3031~3036
    [54] Sides C R, Li N C, Patrissi C J, et al, Nanoscale materials for lithium-ion batteries, MRS Bull, 2002, 27 (8): 604~607
    [55] Manickam M, Mitchell D R G, Singh P, TEM investigation of MnO2 cathode containing TiS2 and its influence in aqueous lithium secondary battery, Electrochim Acta , 2007, 52 (9): 3294~3298
    [56] Xie H M, Yan X D, Yu H Y, et al, A new tin graphite intercalation compound for lithium ion batteries, Chem Res Chinese U, 2006, 22 (5): 639~642
    [57] Inagaki M, Application of graphite intercalation compounds, J Mater Res, 1989, 4 (6): 1560~1568
    [58] Yazami R, Touzain P, A reversible graphite-lithium negative electrode for electrochemical generators, J Power Sources, 1983, 9 (3-4): 365~371
    [59] Yazami R, Genies S, Chemical stability of lithiated-HOPG with some organic electrolytes, Denki Kagaku, 1998, 66 (12): 1293~1298
    [60] Garoche P, Veyssie J J, Manuel P, et al, Experimental investigation of superconductivity in 2H-NbSe2 single crystal, Solid State Commun, 1976, 19 (5): 455~460
    [61] Sasaki T, Badica P, Yoneyama N, et al, Superconducting properties under magnetic field in Na0.35CoO2 center dot 1.3H2O single crystal, J Phys Soc Jpn, 2004, 73 (5): 1131~1134
    [62] Titov A N, Konstantinov V L, Neverov V N, et al, Possible superconductivity in TiSe2 intercalated by transition metals, J Supercond Nov Magn, 2006, 19 (1-2): 73~76
    [63] Morosan E, Zandbergen H W, Dennis B S, et al, Superconductivity in CuxTiSe2, Nat Phys, 2006, 2 (8): 544~550
    [64] Bud'ko S L , Canfield P C, Morosan E, et al, Thermal expansion and effect of pressure on superconductivity in CuxTiSe2, J Phys: Condens Matter, 2007, 19 (17): Art. No. 176230
    [65] Li G, Hu W Z, Qian D, Semimetal-to-semimetal charge density wave transition in 1T-TiSe2, Phys Rev Lett, 2007, 99 (2): Art. No. 027404
    [66] Nakajima T, Nakane K, Kawaguchi M, et al, Preparation, structure and electrical conductivity of graphite intercalation compound with titanium fluoride, Carbon, 1987, 25 (5): 685~689
    [67] Hagiwara R, Nakajima T, Watanabe N, Kinetic study of discharge reaction of lithium-graphite fluoride cell, J Electrochem Soc, 1988, 135 (9): 2128~2133
    [68] Shioya J, Matsubara H, Murakami S, Properties of AsF5-intercalated vapor -grown graphite, Synthetic Met, 1986, 14 (1-2): 113~123
    [69]康飞宇,石墨层间化合物的研究与应用前景,新型碳材料,1991,1(3-4):89~97
    [70] Alonso G, Berhault G, Collins V, et al, Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates, J Catal, 2002, 208 (2): 359~369
    [71] Lin B Z, Pei X K, Zhang J F, et al, Preparation and characterization of nanocomposite materials consisting of molybdenum disulfide and cobalt (II) coordination complexes, J Mater Chem, 2004, 14 (13): 2001~2005
    [72] Gonzalez-Cortes S L, Xiao T C, Lin T W, et al, Influence of double promotion on HDS catalysts prepared by urea-matrix combustion synthesis, Appl Catal A-Gen, 2006, 302 (2): 264~273
    [73] Shioyama H, Tatsumi K, Iwashita N, et al, On the interaction between the potassium-GIC and unsaturated hydrocarbons, Synth Met, 1998, 96 (3): 229~233
    [74] Yanase S, Hayama W, Oi T, Lithium isotope effect accompanying electro -chemical intercalation of lithium into graphite, Z Naturforsch A, 2003, 58 (5-6): 306~312
    [75] Dunaev A V, Sorokina N E, Maksimova N V, et al, Electrochemical behavior of graphite in nonaqueous FeCl3 solutions, Inorg Mater, 2005, 41 (2): 127~132
    [76] Pasuk I, Petrescu M, Hristea G, Structure characterization by X-ray diffraction of graphite intercalation compounds, University "Politehnica" of Bucharest, Scientific Bulletin Series B: Chemistry and Materials Science, 2003, 65: 51~62
    [77] Hirai N, Takashima M, Tanaka T, et al, Characteristics of the absorption and the emission of hydrogen in palladium nanoparticles encapsulated into graphite at 1.0 MPa hydrogen pressure, Sci Technol Adv Mat, 2004, 5 (1-2): 181~185
    [78] Akuzawa N, Kunihashi Y, Sato Y, et al, Effect of sorbed molecules on the resistivity of alkali metal-graphite intercalation compounds, J Solid State Chem, 2007, 180 (3): 894~901
    [79] Challet S, Azais P, Pellenq R J M, et al, Hydrogen adsorption in microporous alkali-doped carbons-(activated carbon and single wall nanotubes), J Phys Chem Solids, 2004, 65 (2-3): 541~544
    [80] Murakami H, Sano M, Ichimura K, Hydrogen in potassium-doped carbon nanotubes studied by positron annihilation, Radiat Phys Chem, 2003, 68 (3-4): 545~547
    [81] Perevalov T V, Shaposhnikov A V, Gritsenko V A, et al, Electronic structure ofα-Al2O3: Ab initio simulations and comparison with experiment, JETP Lett, 2007, 85 (3): 165~168
    [82] Sidorkin A, Nesterenko L, Smirnov G, et al, Dielectric properties of lead titanate thin films on corundum substrates, Phys Solid State, 2006, 48 (6): 1189~1191
    [83] Guo Q L, Wang E G, Geometric and electronic structure of Cu on corundum (0001) surfaces, Sci Technol Adv Mater, 2005, 6 (7): 795~798
    [84]李铁藩,金属高温氧化和热腐蚀,北京:化学工业出版社,2003,213~219
    [85] Ma X X, Liang W, Zhao X G, et al, Effect of Al2O3 layer on improving high-temperature oxidation resistance of siliconized TiAl-based alloy, Mater Lett, 2006, 60 (13-14): 1651~1653
    [86]张永刚,韩雅芳,陈国良,等,金属间化合物结构材料,北京:国防工业出版社,2003
    [87] Bianco R, Rapp P A, Metallurgical and Ceramic Coatings (Ed: Stern H K), London:Chapman and Hall, 1993
    [88]陈国良,林均品,有序金属间化合物结构材料物理金属学基础,北京:冶金工业出版社,1999
    [89] Avrahami Y, Tuller H, Improved electromechanical response in rhombohedral BaTiO3, J Electroceram, 2004, 13(1-3): 463~469
    [90] Oku T, Hiraga K, Matsuda T, et al, Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method, Diam Relat Mater, 2003, 12 (3-7): 1138~1145
    [91] Machon D, McMillan P F, Xu B, et al, High-pressure study of theβ-to-αtransition in Ga2O3, Phys Rev B, 2006, 73 (9): Art. No. 094125
    [92] Haverty M, Kawamoto A, Cho K, et al, First-principles study of transition-metal aluminates as high-k gate dielectrics, Appl Phys Lett, 2002, 80 (15): 2669~2671
    [93] Benam M R, Aliabad H A R, Hosseini S M, Effect of substituted IIIB transition metals on the energy gap of alpha-Al2O3 by first-principle calculations, Phys Status Solidi A, 2006, 203 (9): 2223~2228
    [94] Nagai T, Hamane D, Devi P S, et al, A new polymorph of FeAlO3 at high pressure, J Phys Chem B, 2005, 109 (39): 18226~18229
    [95] Cordier A, Peigney A, De Grave E, et al, Synthesis of the metastableα-Al1.8Fe0.2O3 solid solution from precursors prepared by combustion, J Eur Ceram Soc, 2006, 26 (15): 3099~3111
    [96] Suzuki R O, Ohta K, Chromia coating on iron formed from CrO3 in ozone, Oxid Met, 2006, 65 (1-2): 39~52
    [97] Besmann T M, Kulkarni N S, Spear K E, Thermochemical analysis and modeling of the Al2O3-Cr2O3, Cr2O3-SiO2, and Al2O3-Cr2O3-SiO2 systems relevant to refractories, J Am Ceram Soc, 2006, 89 (2): 638~644
    [98]李铁藩,21世纪高温氧化的发展方向,材料保护,2000,33 (1):12~15
    [99] Singheiser L, Niewolak L, Flesch U, et al, Fundamental considerations for the development of oxidation-resistant alloys and coatings based onγ-TiAl, Metall Mater Trans A, 2003, 34 A (10): 2247~2251
    [100] Hibma T, Structural aspects of monovalent cation intercalates of layered dichal -cogenides, (Ed) Whittingham M S, & Jacobson A J, Intercalation Chemistry, New York: Academic Press, 1982, 285~313
    [101] Julien C M, Lithium intercalated compounds-charge transfer and related properties, Mat Sci Eng R, 2003, 40 (2): 42~102
    [102]杨东兴,康飞宇,一种纳米复合材料—石墨层间化合物的结构与合成,清华大学学报,2001,41 (10):9~12
    [103] Suzuki M, Santodonato L J, Suzuki I S, et al, Structural phase transition of high-stage MoCl5 graphite intercalation compounds, Phys Rev B, 1991, 43 (7): 5805~5814
    [104] Wada N, Minomura S, Pluth J, Evidence for 2D solid in intercalated graphite CsC24, Solid State Commun, 1985, 55 (5): 393~396
    [105] Whittingham M, Ebert L B, Applications Of Intercalation Compounds, Inter -calated Layered Materials, V6, edited by Levy F, Holland Dordredrt: Reidel D, 1979, 533~562
    [106] Wang J C, Model for lithium intercalation into TiS2, Solid State Ionics, 1990, 40/41: 548~552
    [107]大谷杉郎,对新型碳材料的期待,新型碳材料,1992,(1): 1~6
    [108] Minemoto H, Suematsu H, Structural phase transitions in stage 1 potassium -graphite intercalation compound at high temperatures, Synth Met, 1985, 12 (1): 33~38
    [109] Clarke R, Hernandez P, Homma H, et al, Ordering and kinetices in graphite intercalated with nitric acid, Synth Met, 1985, 12 (1): 27~32
    [110] Clarke R, Staging and ordering in alkali-metal graphite intercalation compounds, (Ed) Sinha, Ordering in Two Dimensions, North Holland: Elscevier Inc, 1980, 53~59
    [111] Ohshima K, Moss S C, X-ray diffracton study of basal-(ab)-plane structure and diffuse scattering from silver atoms in disordered stage-2 Ag0.18TiS2, Acta Crystallogr A , 1983, A 39: 298~305
    [112] Mori M, Ohshima K, Moss S C, et al, X-ray study of c-axis parameters in disordered stage-2 AgxTiS2, Solid State Commun, 1982, 43 (10): 781~784
    [113] Hibma T, Ordering of the alkali-ions in NaxTiS2 and LixTiS2, Physica B, 1980, 99: 136~140
    [114] Dahn D C, Carolan J F, Haering R R, Low-temperature specific heat of LixNbS2 intercalation compounds, Phys Rev B, 1986, 33 (8): 5214~5220
    [115] Beal A R, The first row transition metal intercalation complexes of some metallic group V A transition metal dichalcogenides, (Ed) Levy F, Reidel D, Intercalated layered materials, Holland: Dordrecht, 1979, 251~305
    [116] Danot M, Rouxel J, Gorochov O, Proprietes electriques, magnetiques et structurales des phases MxTiS2 (M=Fe, Co, Ni), Mat Res Bull, 1974, 9 (10): 1383~1392
    [117] Fujimori A, Suga S, Negishi H, et al, X-ray photoemission and auger-electron spectroscopic study of the electronic structure of intercalation compounds MxTiS2 (M=Mn, Fe, Co, and Ni), Phys Rev B, 1988, 38 (6): 3676~3689
    [118] Ionue M, Hughes H P, Yoffe A D, The electronic and magnetic properties of the 3d transition metal intercalates of TiS2, Adv Phys, 1989, 38 (5): 565~604
    [119] Leonelli R, Plischke M, Irwin J C, Light-scattering study of intercalate order -disorder transition in Ag0.33TiS2, Phys Rev Lett, 1980, 45 (15): 1291~1294
    [120] Wiegers G A, Bronsema K D, van Smaallen S, et al, X-ray study of the second -order phase transition of Ag0.35TiS2: a phase transition characterized by two order parameters, J Solid State Chem, 1987, 67 (1): 9~20
    [121] Titov A N, Titova S G, Phase diagram and electronic properties of AgxTiTe2, J Alloy Compd, 1997, 256: 13~17
    [122] van der Lee A, van Smaalen S, Wiegers G A, Order-disorder transition in silver-intercalated niobium disulfide compounds I. Structural determination of Ag0.6NbS2, Phys Rev B, 1991, 43 (12): 9420~9430
    [123] Huster M E, Heiney P A, Cajipe V B, et al, Structure of high-stage potassium intercalated graphite, Phys Rev B, 1987, 35 (7): 3311~3326
    [124] Matsuda M, Abe K, Miyake M, Softchemical synthesis and conduction properties of new layered bismuth-based compound incorporated with silver and iodine elements, Solid State Ionics, 2002, 154: 413~418
    [125] Tesshima T, Naoshi S, Kazuko M, Electronic band structures of 1T-type TiS2 intercalated with light 3d transition-metals, J Phys Soc Jpn, 1991, 60 (3): 1005~1010
    [126] Boehm M C, Schulte J, Schloegl R, Solid state electronic structure of potassium graphite intercalation compounds; the systems KC24 and KC8, Phys Status Solidi B, 1996, 196 (1) : 131~144
    [127] Plischke M, Bardhan K K, Leonelli R, Intetcalate order-disorder transition in stage-2 AgxTiS2, Can J Phys, 1983, 61 (3): 397~404
    [128] Kuroiwa Y, Ohshima K, Watanabe Y, X-ray-diffraction study of in-plane and interlayer correlations in layered compounds AgxTiS2, Phys Rev B, 1990, 42 (18): 11591~11597
    [129] Suter R M, Shafer M W, Horn P M, X-ray study of superlattice melting in TiS2Ag0.33, Phys Rev B, 1982, 26 (3):1495~1498
    [130] Danot M, Brec R, Structure crystalline de Co0.25TiS2, Acta Cryst, 1975, B31: 1647~1652
    [131] Fristot D, Charlier A, Charlier M F, Graphite intercalation compounds: exchange parameters and self-consistent analytical potentials, J Phys: Condens Matter, 1991, 5323~5333
    [132] Zabel H, Order and disorder in graphite-potassium intercalation compounds, (Ed) Sinha, Ordering in Two Dimensions, North Holland: Elscevier Inc, 1980, 61~66
    [133] Hosseini S M, Rahnamaye A H A, Kompany A, Influence of La on electronic structure ofα-Al2O3 high k-gate from first principles, Ceram Int, 2005, 31 (5): 671~675
    [134] Berry F J, Helgason O, Moyo T, et al, Tin doping ofα-Cr2O3 andα-(FeCr)2O3, Mater Lett, 2005, 59 (26): 3241~3245
    [135] Ishida M, Takeshita K, Suzuki K, et al, Application of Fe2O3-Al2O3 composite particles as solid looping material of the chemical-loop combustor, Energ Fuel, 2005, 19 (6): 2514~2518
    [136] Khachatuyan A G, Ordering in substitutional and interstitial solid solutions, Prog Mater Sci, 1978, 22: 1~150
    [137] Gu B L, Zhang X W, Ni J, et al, Probability wave theory of the atomic configuration for muticomponet crystal structures and its application to the ordered structure of compound perovskite materials, J Appl Phys, 1991, 70 (8): 4224~4232
    [138] Gu B L, Huang Z F, Ni J, et al, Dynamic model of epitaxial growth in ternaryⅢ-Ⅴsemiconductor alloys, Phys Rev B, 1995, 51 (11): 7104~7109
    [139] Gu B L, Song Q G, Ni J, Unified model for ordering and staging of intercalated M ions in MxTiS2, J Appl Phys, 1999, 85 (2): 819~824
    [140]宋庆功,丛选忠,张庆军,等,六方密堆二元合金的有序结构,物理学报,2000,49 (11): 2201~2209
    [141] Kim Y S, Koyama Y, Tanaka I, Chemical bondings around intercalated Li atoms in LiTiX2 (X = S, Se, and Te), Jpn J Appl Phys, 1998, 37 (12A): 6440~6445
    [142] Winter R, Heitjans P, Li+ diffusion and its structural basis in the nanocrystalline and amorphous forms of two-dimensionally ion-conducting LixTiS2, J Phys Chem B, 2001,105 (26): 6108~6115
    [143] Vakarin E V, Badiali J P, Interplay of configurational and structural transitions in the course of intercalation, J Phys Chem B, 2002, 106 (32): 7721~7724
    [144] Vakarin E V, Badiali J P, Levi M D, et al, Role of host distortion in the intercalation process, Phys Rev B, 2001, 63 (1): Art. No. 014304
    [145] Thompson A H, Lithium ordering in LixTiS2, Phys Rev Lett, 1978, 40 (23): 1511~1514
    [146] Hallak H A, Lee P A, Lithium ordering in LixTiS2: A superlattice structure for Li0.33TiS2, Solid State Commun, 1983, 47 (6): 503~505
    [147] Kosidowski L, Powell A V, Mayers J, The kinetic energy of lithium in LiTiS2 as determined by neutron Compton scattering, Physica B, 1998, (241-243): 335~337
    [148] Bardhan K K, Kirczenow G, Irwin J C, High-temperature staging phase diagram of the intercalation compound AgxTiS2, J Phys C (Solid State Phys), 1985, 18 (6): L131~ L 137
    [149] Kleinberg R L, Silbernagel B C, Thompson A H, Lithium ordering and NMR linewidth in Li0.33TiS2, Solid State Commun, 1982, 41 (5): 401~405
    [150] Dahn J R, McKinnon W R, Lithium intercalation in 2H-LixTaS2, J Phys C ( Solid State Phys), 1984, 17 (24): 4231~4243
    [151] Kuroiwa Y, Tamura T, Ohshima K-I, In-plane local arrangements of Ag atoms in the stage-2 intercalation compound Ag0.15TiS2, J Appl Cryst, 1998, 31 (1): 91~93
    [152] Song Q G,Liu J N,Gu B L,Ordered structures of m-ions in intercalation compounds MxTX2 using probability wave theory of atomic configuration,Sci China Ser A,1993,36 (2): 191~200
    [153]肖奇,邱冠周,覃文庆,等,FeS2 (pyrite)电子结构与光学性质的密度泛函计算,光学学报,2002,22(12):1501~1506
    [154] Zhang L W, Zhang B L, Yao N, et al, Photoresponse of TiO2 thin films deposited by DC reactive magnetron sputtering, J Synth Cryst, 2004, 33 (4): 667~669
    [155] Guo G Y, Liang W Y, The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2, J Phys C (Solid State Phys), 1986, 19 (7): 995~1008
    [156] Shorikova D O, Titov A N, Titova S G, et al, Structural parameters of intercalation compounds based on titanium dichalcogenides near the temperature of the polaronic band collapse, Nucl Instrum Meth A, 2001, 470 (1): 215~218
    [157] Wilson J A, Modelling the contrasting semimetallic characters of TiS2 and TiSe2, Phys Stat Sol B, 1978, 86 (1): 11~36
    [158] Pleshchev V G, Titov A N, Kuranov A V, Electrical and magnetic properties of titanium diselenide intercalated with cobalt, Phys Solid State, 1997, 39 (9): 1442~1445
    [159] Titov A N, Characteristics of the thermodynamics of the electronic subsystem in intercalated titanium dichalcogenides, Phys Solid State, 1998, 40 (7): 1081~1083
    [160] Titov A N, Conductivity anisotropy of the (PbS)0.59TiS2 misfit compound, Phys Solid State, 2000, 42 (3): 431~433
    [161] Rousseaux F, Moret R, Guerard D, et al, Low-temperature ordering and phase transions in KC24 single crystals, Synthetic Met, 1985, 12: 45~50
    [162] Fuerst C D, Fischer J E, Pressure-induced transitions in KC8: observation of a fractional stage, Phys Rev Lett, 1983, 59 (5): 357~360
    [163] Khachatuyan A G, The problem of symmetry in statistical thermodynamics of substitutional and interstitial ordered solid solutions, Phys Status Solidi B, 1973, 60 (1): 9~37
    [164] Khachaturyan A G, On the determination of the stress-Induced interaction energy of impurity atoms in the crystal lattice, Sov Phys Solid State, 1962, 4 : 2081~2084
    [165] Khachaturyan A G, Semenovskaya S, Vainshtein B, The thermodynamic approach to the structure analysis of crystals, Acta Crystallogr A, 1981, A37 (5) : 742~754
    [166] Pokrovskii B I, Khachaturyan A G, Use of concentration waves to analyze the structures of chemical compounds, Soviet Physics– Crystallography, 1982, 27 (6): 638~642
    [167] Gufan Yu M, Dmitriev V P, Popov V P, et al, Structures of ordered alloys with close-packed hexagonal lattice, Fizika Metallovi Metallovedenie, 1978, 46 (6): 1133~1143
    [168] Solov'eva M I, Shtern D M, Structure of HCP binary ordered phases, Soviet Physics Journal, 1990, 33 (6): 90~94
    [169] Gu B L, Zhang X W, Probability wave theory of the atomic configuration for multi-component crystal structures, Sci China Ser A, 1991, 34 (8): 955~968
    [170] Gu B L, Zhang X W, Wang Q, et al, Application of the probability wave theory of atomic configuration——the ordered structures of compound perovskite materials, Sci China Ser A, 1991, 34 (7): 814~824
    [171] Gui H, Zhang X W, Gu B L, Application of the density wave theory of atomic configuration to the oxygen ordering on basal plane in YBa2Cu3O7-x super- conductor, Sci China Ser A, 1992, 35 (9): 191~200
    [172] Song Q G, Gu B L, Ordered structures of interstitial atoms in hexagonal close-packed crystals, Chinese Sci Bull, 1993, 38 (10): 823~827
    [173]宋庆功,顾秉林,插层化合物MxTiS2中M离子的三维有序结构,清华大学学报(自然科学版), 1993, 33 (6): 35~45
    [174]宋庆功,丛选忠,张庆军,等,六角蜂窝晶格的有序结构,物理学报, 2000,49 (10) : 2011~2016
    [175]宋庆功,姜恩永,菱方晶体的有序结构,科学通报,2007,52 (23) : 2715~2719
    [176] Landau L D, Lifshitz E M, Statistical Phisics (3rd ed), PartΙ, Oxford: Pergamon Press, 1980, 419~422
    [177] Liao T, Wang J Y, Zhou Y C, Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations, Phys Rev B, 2006, 73 (21): Art. No. 214109
    [178] Cai Y Q, Zhang L T, Zeng Q F, et al, First-principles study of vibrational and dielectric properties ofβ-Si3N4, Phys Rev B, 2006, 74 (17): Art. No. 174301
    [179] Jia T, Shen J, Chen N X, Atomistic simulation for the phase stability and site preference of R3(Fe,T)29 (R=Nd, Gd, Y; T=Ta, W), J Phys: Condens Matter, 2005, 17: 1351~1362
    [180] Sun C Q, Oxidation electronics: bond-band-barrier correlation and its application, Prog Mater Sci, 2003, 48: 521~685
    [181] Kikuchi R, Masuda-Jindo K, Cluster variation method in the computational materials science, CALPHAD, 2002, 26 (1): 33~52
    [182] Mohri T, Ohno M, Chen Y, Towards the first-principles investigation of ordering dynamics, Mater Sci Forum, 2005, 475-479: 3075~3085
    [183] Sakamoto Y, Phase transition of 2×2 adsorbates on FCC(111) and HCP(0001) surfaces, Surf Sci, 2003, 530 (1-2): 55~62
    [184]周玉,材料分析方法,北京:机械工业出版社,2004,21~107
    [185] Boebinger G S, Wakefield N I F, Marseglia E A, et al, Transport and structrural properties of the silver intercalation complexes of 2H-TaS2, Physica B & C, 1983, (117-118): 608~610
    [186] Ohshima K, Moss S C, Clarke R, X-ray crystallographic study of disordered C24Rb, Synth Met, 1985, 12: 125~130
    [187] van Bakel G P E M, de Hosson J Th M, Hibma T, Scanning tunneling microscopy imaging of transition-metal dichalcogenides, Appl Phys Lett, 1990, 56 (24): 2402~2404
    [188] Wang C, Slough C G, Coleman R V, Spectroscopy of dichalcogenides and trichalcogenides using tunneling microscopy, J Vac Sci Technol B, 1991, 9 (2): 1048~1051
    [189]朗道,栗弗席兹著(杨训恺译),统计物理学,北京:高等教育出版社,1964:535~564
    [190]李言荣,恽正中,材料物理学概论,北京:清华大学出版社,2001:277~283
    [191] Ipatova I P, Kitaev Y E, Landau theory of second-order phase transitions on solid surfaces, Prog Surf Sci, 1985, 18: 189~246
    [192] de Riddder R, Structurral interpretation of diffuse intensity contours observed in electron diffraction patterns of intercalation compounds, Physica B, 1980, 99: 39~46
    [193] Park S H, Sposito G, Molecular modeling of clay mineral structure and surface chemistry, (Ed Auerbach S M, Carrado A, Dutta P K), In Handbook of Layered Materials, New York: Marcel Dekker Inc, 2004, 39~89
    [194]曹茂盛,黄龙男,陈铮,材料现代设计理论与方法,哈尔滨:哈尔滨工业大学出版社,2002,23~26
    [195] Aguirre-Contreras W R, Zamora L E, Alcázar G P, et al, Monte Carlo study of the change of critical temperature in a diluted Ising model due to configuration disorder, Phys Lett A, 2007, 360 (3): 411~414
    [196] Kalikmanov V I, Koudriachova M V, de Leeuw S W, Lattice-gas model for intercalation compounds, Solid State Ionics, 2000, 136: 1373~1378
    [197] Kaburagi M, Kanamori J, Ground state structure of triangular lattice gas model with up to 3rd neighbor interactions, J Phys Soc Jpn, 1978, 44 (3): 718~727
    [198] Kaburagi M, Tonegawa T, Kanamori J, Phase diagram for the triangular Ising lattice, J Magn Magn Mater, 1983, 31-34: 1037~1038
    [199] Kikuchi R, A theory of cooperative phenomena, Phys Rev, 1951, 81 (6): 988~1003
    [200] van Baal C M, order-disorder transformations in a generalized Ising alloy, Physica, 1973, 64: 571~586
    [201] Kikuchi R, Superposition approximation and natural iteration calculation in cluster-variation method, J Chem Phys, 1974, 60 (3): 1071~1080
    [202]郝士明,CVM及其在合金相图计算中的应用,材料与冶金学报, 2003, 2 (4): 286~299
    [203] Colinet C,Applications of the cluster variation method to empirical phase diagram calculations, Calphad, 2001, 25 (4): 607~623
    [204] Kikuchi R, Masuda-Jindo K, The continuous displacement CVM treatment of alloy systems, Comp Mater Sci, 1997, 8: 1~7
    [205]张文彦,支继军,张继先,自然科学大事典,北京:科学技术文献出版社,1992,184~188
    [206]张文彦,支继军,张继先,自然科学大事典,北京:科学技术文献出版社,1992,295~296
    [207]丁迅雷,金团簇上小分子吸附的第一性原理研究:[博士学位论文],合肥;中国科技大学,2004
    [208] Kohn W, Nobel lecture: Electronic structure of matter—wave functions and density functionals, Rev Mod Phys, 1999, 71: 1253~1256
    [209] Hohenberg P, Kohn W, Inhomogeneous electron gas, Phys Rev B, 1964, 136: 864~871
    [210] Kohn W and Sham L J, Self-consistent equations including exchange and correlation effects, Phys Rev A, 1965, 140: 1133~1138
    [211]李震宇,新材料物性的第一性原理研究:[博士学位论文],合肥;中国科技大学,2004
    [212]吴兴惠,项金钟,现代材料计算与设计教程,北京:电子工业出版社,2002,18~22
    [213] Capelle K, Vignale G, Nonuniqueness of the potentials of spin-density -functional theory, Phys Rev Lett, 2001, 86 (24): 5546~5549
    [214] Yang W, Ayers P W, Wu Q, Potential functionals: dual to density functionals and solution to the v-representability problem, Phys Rev Lett, 2004, 92: Art No: 146404
    [215] Lüders M, Ernst A, Temmerman W M, et al, Ab initio angle-resolved photoe- mission in multiple scattering formulation, J Phys: Cond Mat, 2001, 13: 8587 ~8606
    [216] Stowasser R, Hoffmann R, What do the Kohn-Sham orbitals and eigenvalues mean? J Am Chem Soc, 1999, 121 (14): 3414~3420
    [217] Ceperley D M, Alder B J, Ground state of the electron gas by a stochastic method, Phys Rev Lett, 1980, 45: 566~569
    [218] Perdew J P, Zunger A, Self-interaction correction to density-functional approximations for many-electron systems, Phys Rev B, 1981, 23 (10): 5048 ~5079
    [219] Perdew J P, Wang Y, Accurate and simple analytic representation of the electron-gas correlation energy, Phys Rev B, 1992, 45 (23): 13244~13249
    [220] Martin R M, Electronic Structure: Basic Theory and Practical Methods, Cambridge: Cambridge University Press, 2004
    [221] Perdew J P, Burke K, Ernzerhof M, Generalized gradient approximation made simple, Phys Rev Lett, 1996, 77 (18): 3865~3868
    [222] Adamo C, Barone V, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J Chem Phys, 1998, 108: 664~675
    [223] Filippi C, Umrigar C J, Taut M, Comparison of exact and approximate density functionals for an exactly soluble model, J Chem Phys, 1994, 100 (2): 1290 ~1296
    [224] Xu X, Goddard III W A, The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties, Proc Natl Acad Sci USA, 2004, 101: 2673~2677
    [225] Becke A D, Density-functional thermochemistry. III. The role of exact exchange, J Chem Phys, 1993, 98: 5648~5652
    [226] Ernzerhof M, Scuseria G E, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, J Chem Phys, 1999, 110: 5029~5036
    [227] Svane A, Gunnarsson O, Transition-metal oxides in the self-interaction–corrected density-functional formalism, Phys Rev Lett, 1990, 65: 1148~1151
    [228] Anisimov V I, Zaanen J, Andersen O K, Band theory and Mott insulators: Hubbard U instead of stoner I, Phys Rev B, 1991, 44: 943~954
    [229]李震宇,贺伟,杨金龙,密度泛函理论及其数值方法新进展,化学进展, 2005,17 (2):192~202
    [230]肖慎修,王崇愚,陈天朗,密度泛函理论的离散变分方法在化学和材料物理学中的应用,北京:科学出版社,1998,18~45
    [231] Reimann S M, Manninen M, Electronic structure of quantum dots, Rev Mod Phys, 2002, 74 (4): 1283~1342
    [232] Zhukovskii Y F, Pugno N, Popov A I, et al, Influence of F centres on structural and electronic properties of A1N single-walled nanotubes, J Phys: Condens Mat, 2007, 19 (39): Art. No. 395021
    [233] Ferrari A M, Ferrero M, Pisani C, An ab initio periodic study of NiO supported at the Pd (100) surface Part 2. The nonstoichiometric Ni3O4 phase, J Phys Chem B, 2006, 110 (15): 7918~7927
    [234] Sorgel, T, Jansen M, Ag3Ni2O4 - A new stage-2 intercalation compound of 2H -AgNiO2 and physical properties of 2H-AgNiO2 above ambient temperature, J Solid State Chem, 2007, 180 (1): 8~15
    [235] Brivio G P, Trioni, M I, The adiabatic molecule–metal surface interaction: theoretical approaches, Rev Mod Phys, 1999, 71: 231~265
    [236] Betranhandy E, Matar S F, El-Kfoury C, et al, Interplay of electronic structure and bulk properties in 2D and 3D ternary carbonitrides from first principles, Z Anorg Allg Chem, 2004, 630 (15): 2587~2598
    [237] Gao F M, He J L, Wu E D, et al, Hardness of covalent crystals. Phys Rev Lett, 2003, 91 (1): Art. No. 015502
    [238] Liu B X, Lai W S, Zhang Q, Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems, Mat Sci Eng R, 2000, 29 (1-2): 1~48
    [239] Liu B X, Lai W S, Zhang Z J, Solid-state crystal-to-amorphous transition in metal-metal multilayers and its thermodynamic and atomistic modeling, Adv Phys, 2001, 50 (4)): 367~429
    [240] Wang J Y, Zhou Y C, Ab initio elastic stiffness of nano-laminate (MxM2-xAlC ) (M=Ti, V, Nb and Cr) solid solution, J Phys: Condens Matter, 2004, 16 (16): 2819~2827
    [241] Segall M D, Lindan P J D, Probert M J, et al, First-principles simulation: ideas, illustrations and the CASTEP code, J Phys: Condens Matter, 2002, 14 (11): 2717~2743
    [242] Vanderbilt D, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys Rev B, 1990, 41 (11): 7892~7895
    [243] Hamann D R, Schluter M, Chiang C, Norm-conserving pseudopotentials, Phys Rev Lett, 1979, 43 (20): 1494~1497
    [244] Parlinski K, Li Z Q, Kawazoe Y, First-Principles Determination of the Soft Mode in Cubic ZrO2, Phys Rev Lett, 1997, 78 (21): 4063~4066
    [245] Mohr P J, Taylor B N, CODATA recommended values of the fundamental physical constants: 1998, Rev Mod Phys, 2000, 72 (2): 351~495
    [246] Hammer B, Hansen L B, Norskov J K, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys Rev B, 1999, 59 (11): 7413~7421
    [247] Marlo M, Milman V, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys Rev B, 2000, 62 (4): 2899~2907
    [248] Gonze X, Allan D C, Teter M P, Dielectric tensor, effective charges, and phonons in a-quartz by variational density-functional perturbation theory, Phys Rev Lett, 1994, 68 (24): 3603~3606
    [249] Asahi R, Mannstadt W, Freeman A J, Optical properties and electronic structures of semiconductors with screened-exchange LDA, Phys Rev B, 1999, 59 (11): 7486~7492
    [250] Ackland G J, Warren M C, Clark S J, Practical methods in ab initio lattice dynamics, J Phys: Condens Matter, 1997, 9 (37): 7861~7872
    [251]宋庆功,姜恩永,韩志勇,等,材料信息学平台的研究现状发展趋势与作用,材料导报,2008,22 (1): 70~73
    [252]朗道,栗弗席兹著(杨训恺译),统计物理学,北京:高等教育出版社,1964:516~521
    [253]宋庆功,姜恩永,裴海林,等,插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一原理研究,物理学报,2007,56(8):4817~4922
    [254]宋庆功,姜恩永,快离子导体AgxTiS2中Ag+离子-空位的二维基态结构与能量性质研究,物理学报,2008,57(3)(待出版)
    [255] Subba-Rao G V, Shafer M W, Intercalation in layered transition metal dichalcogenides, Intercalated Layered Materials (ed Levy F), Reidel D, Dordrecht, Holland, 1979, 99~200
    [256] Dubois J, Epicier T, Esnouf C, et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x-I. Motivation for a study on W2C and Mo2C and experimental background for an in situ investigation at elevated temperature, Acta Metall, 1988, 36 (8): 1891~1901
    [257] Gusev A L, Disorder and long-range order in non-stoichiometric interstitial compounds, Phys Stat Sol (b), 1991, 163: 17~54
    [258] Scholz G A, Frindt R F, Structure and staging of intercalated AgxTaS2 and AgxTiS2, Mat Res Bull, 1980, 15 (12) :1703~1716
    [259] Buhannic M, Danot M, Iron migration in the van der Waals gap of zirconium disulfide: time evolution of the FexZrS2 compounds, Solid State Comm, 1990, 73 (11): 739~742
    [260] Stampfl C, Schewegmann S, Over H, et al, Structure and stability of a high-coverage (1×1) oxygen phase on Ru (0001), Phys Rev Lett, 1996, 77 (16): 3371~3374
    [261] He P, Jacobi K, Vibrational analysis of the 1×1-O overlayer on Ru (0001), Phys Rev B, 1997, 55 (7): 4751~4754
    [262]何丕模,Jacobi K,Ru(0001)表面上O-Ru伸缩振动的覆盖度依赖特性,物理学报,1999,48(2):248~288
    [263] Mitchell W J, Wang Y, Schick M, et al, Surface phonons on Ru(001) observed by electron energy loss spectroscopy in the presence of ordered oxygen overlayers, J Chem Phys, 1995, 102 (20): 8185~8190
    [264] Ashcroft N W, Mermin N D, Solid State Physics, New York: Hot, Rinehart and Winston Inc, 1976
    [265] Epicier T, Dubois J, Esnouf C, et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x II. In situ high temperature study on W2C1-x and Mo2C1-x, Acta Metall, 1988, 36 (8): 1903~1921
    [266]山口正治,马越佑吉(丁树深译),金属间化合物,北京:科学出版社,1991,8~12
    [267] Robinson D S, Salamon M B, Universality, tricriticality, and the Potts transition in first-stage lithium-intercalated graphite, Phys Rev Lett, 1982, 48 (3): 156~159
    [268] Dahn J R, McKinnon W R, Haering R R, et al, Structure determination of LixTiS2 by neutron diffraction, Can J Phys, 1980, 58 (2): 207~213
    [269] Whittingham M S, Gamble F R Jr, The lithium intercalates of the transition metal dichalcogenides, Mater Res Bull, 1975, 10 (5): 363~379
    [270]徐晓光,魏英进,孟醒,等,Mg,Al掺杂对LiCoO2体系电子结构影响的第一原理研究,物理学报,2004,53:210~213
    [271]徐晓光,王春忠,刘伟,等,Mg掺杂对Li(Co, Al)O2电子结构影响的第一原理研究,物理学报,2005,54:313~316
    [272] Wolverton C, Zunger A, First-principles theory of cation and intercalation ordering in LixCoO2, J Power Sources, 1999, 81: 680~684
    [273] Hao Y J, Cheng Y, Wang Y J, et al, Elastic and thermodynamic properties of c-BN from first-principles calculations, Chin Phys, 2007, 16 (1): 217~222
    [274]宋庆功,姜恩永,康建海,阶梯化对快离子导体LixTiS2的结构与能量性质的影响,物理学报,2008,57(5)(待出版)
    [275] Bühl M, Density functional computations of transition metal NMR chemical shifts: dramatic effects of Hartree-Fock exchange, Chem Phys Lett, 1997, 267: 251~257
    [276] Dean J A, Lange's Handbook of Chemistry (15th Ed.), New York: McGraw-Hill, 1999, 4.32
    [277] Dean J A, Lange's Handbook of Chemistry (15th Ed.), New York: McGraw-Hill, 1999, 4.33
    [278] Whittingham M S, Intercalation chemistry and energy storage, J Solid State Chem, 1979, 29 (3): 303~310
    [279] Gerhards A G, Roede H, Haange R J, et al, Structure and electrochemical properties of intercalation compounds in the system silver-titanium disulfide, AgxTiS2, Synth Met, 1984, 10 (1): 51~66
    [280]刘艳清,李长生,华中,等,过渡族金属硫化物纳米管结构研发现状,材料导报,2006,20(7):105~108
    [281] Starace F S, Length and velocity formulas in approximate oscillator-strength calculations, Phys Rev A, 1971, 3 (4): 1242~1245
    [282] Stampfl C, Van de Walle C G, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys Rev B, 1999, 59 (8): 5521~5535
    [283] Perdew J P, Chevary J A, Vosko S H, et al, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys Rev B, 1992, 46 (11): 6671~6687
    [284] Read A J, Needs R J, Calculation of optical matrix elements with nonlocal pseudopotentials, Phys Rev B, 1991, 44 (23): 13071~13073
    [285] de Boer D K G, van Bruggen C F, Bus G U,et al, Titanium ditelluride: band structure, photoemission, and electrical and magnetic properties, Phys Rev B, 1984, 29 (12): 6797~6809

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700