液相脉冲激光烧蚀法制备功能纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料,能源以及信息被公认为现代文明的三大支柱,支撑着现代文明的发展。新材料的发现与制备不断推动着科学的发展,技术的进步以及人们生活水平的提高。纳米材料概念的提出和纳米技术的发展使得材料在人类文明的发展和人们的日常生活中发挥着越来越广泛而深远的影响。纳米材料研究中不断涌现的各种新奇的现象充实着人类知识的宝库。纳米材料的广泛使用使得各种科技和生活器件不断趋向于微型化便捷化多功能化。作为一种新型简便的制备纳米材料的方法,液相脉冲激光烧蚀法已被广泛用于制备各种功能纳米材料。
     本文主要系统研究了液相脉冲激光烧蚀法制备多种功能纳米材料的可能性。我们重点梳理并抓住了液相脉冲(主要是飞秒)激光烧蚀法的基本特点,即局部高温高压环境,快速冷却,以及纳米材料的同步修饰与复合。进而以此为基本的指导思路和依据进行实验设计,实现了多种功能纳米材料的制备。
     一,亚稳态功能纳米材料的制备
     一般亚稳相的制备都需要在高温高压条件下进行,并需要快速冷却,因此制备过程复杂,条件控制严格。由于脉冲激光(特别是飞秒激光)的脉宽很短,峰值功率极高,脉冲的能量可以在极短的时间内注入到材料内部。因此,液相脉冲激光烧蚀法可以在局部区域产生极端高温高压的条件,并产生等离子体。在这种局部的非平衡环境中,各种化学反应都可能发生,特别有利于产生亚稳态结构。同时周围液体的强烈的压缩和冷却作用可以使等离子体快速冷却下来,从而使亚稳相材料保存下来。通过控制溶液的性质以及脉冲光源,我们实现了不同亚稳态纳米材料的制备。我们使用液相飞秒与纳秒激光烧蚀法在氨水中分别成功制备了高温亚稳相-立方相二氧化锆和四方相二氧化锆。由于飞秒激光的峰值功率要比纳秒激光的高很多,所产生的温度和压强也更高。同时,等离子体的冷却速率也更高。所以我们认为飞秒激光比纳秒激光更有利于高温相的生成和稳定。
     二,表面修饰纳米材料的制备
     纳米材料的性质与其表面结构有着重要的关系。特别的,表面结构往往决定了其在不同环境中的相容性。同时特定的表面修饰还可以控制纳米材料的尺寸,提高纳米材料结构和性能的稳定性。一般制备表面修饰纳米材料都需要两步,即纳米材料的制备与修饰,反应条件控制往往较为严格。而在液相脉冲激光烧蚀法中,通过控制溶液的性质,即可一步实现纳米材料的制备与修饰。我们使用飞秒激光烧蚀法在1-已烯和丙烯酸/乙醇的混合溶液中分别制备了分散性很好的疏水性和亲水性硅纳米粒子。我们认为在液相飞秒激光烧蚀的极端环境中,活性很高的硅纳米粒子易与溶液的中不饱和有机物(1-已烯或者丙烯酸)发生加成反应,从而形成表明修饰。我们还发现,通过控制溶液的性质,不仅可以调控硅纳米粒子的表面结构与尺寸,还可以控制硅纳米粒子的光学性质。
     三,表面修饰亚稳态纳米材料的制备
     金刚石纳米粒子(碳纳米粒子的一种)具有优异的光学性质和生物相容性,但是其制备方法迄今仍然很有限。特别是,制备尺寸在5nm以下的金刚石纳米粒子仍然比较困难。金刚石属于碳的亚稳态结构,所以一般需要提供较高的温度才能形成。我们使用液相飞秒激光烧蚀法制备了金刚石纳米粒子。通过调控靶材和溶液,实现了对金刚石纳米粒子的尺寸,结构,表面性质和光学性质的调控。飞秒激光烧蚀分散在丙酮或者乙醇中的玻璃态碳、石墨粉末或者碳化甘蔗渣粉末制备出了不同尺寸,不同表面结构以及光学性质的金刚石纳米粒子。
     四,自组装纳米结构的制备
     作为一种新型的明星纳米材料,石墨烯具有独特的二维单层碳原子层结构,并表现出很多优异的性能。我们发现分散在乙醇溶液中的石墨烯经过飞秒激光烧蚀之后,可以转变成球状结构。这是第一次报道用飞秒激光诱导石墨烯组装形成球。通过控制飞秒激光的脉冲能量和照射时间,可以在很大范围内控制复合石墨烯球的尺寸。我们认为石墨烯在飞秒激光诱导下发生了逐层组装,形成球状结构。
     五,复合纳米材料的制备
     纳米材料的复合不仅可能保留原材料的性能,还可能带来原有性能的大幅度提升,甚至产生新的性能。目前已有很多制备不同复合材料的方法,但是制备含有超细纳米粒子的复合物方法却仍然不多。这主要是由于超细纳米粒子容易发生团聚。我们利用飞秒激光烧蚀法一步实现了氧化石墨烯的还原以及与超细纳米粒子的复合。我们制备了超细银纳米粒子-石墨烯复合物以及超细氧化锌纳米粒子-石墨烯复合物。银纳米粒子与氧化锌纳米粒子都是以单分散的状态生长在石墨烯上,其尺寸主要在3nm以下。我们认为大量的异质形核、超快冷却速率以及很小的热效应等因素限制了纳米粒子的尺寸,从而有利于形成超细纳米粒子。可以预测使用不同的前驱体,液相脉冲激光烧蚀法可以制备出更多的超细纳米粒子甚至是多功能复合纳米粒子与石墨烯的复合物。
Materials, energy, and information are recognized as the three pillars of modern civilization, supporting the development of modern civilization. Discovery and preparation of new materials promote the development of science, technology and people's living standards. The development of nanomaterials and nanotechnology makes the material having an increasingly profound and significant impact on the development of human civilization and people's daily life. Various new emerging phenomena and novel properties of nanomaterials enrich our knowledge about nature and science. Widespread use of nanomaterials makes a variety of devices in technology and life smaller, faster, smarter and multi-functional. As a simple method for preparing novel nanomaterials, pulsed laser ablation in liquid has been widely adopted to fabricate functional nanomaterials.
     This disertation systematically exploited the possibility of preparing a wide range of functional nanomaterials by pulsed laser ablation in liquid. We focused on the basic characteristics of pulsed laser (mainly femtosecond laser) ablation in liquid, such as the local high temperature and high pressure conditions, rapid cooling, as well as in situ functionalization and hybridization of nanomaterials. Guided by these basic characteristics, we conceived, designed and carried out the experiments to prepare functiononal nanomaterials.
     1. Prepraration of metastable functional nanomaterials
     Preparation of metastable phased nanomaterials is generally performed under high temperature and pressure conditions, and requires rapid cooling, and therefore the manufacturing processes are usually complicated. Since the pulse width of the pulsed laser (especially femtosecond laser) is very short, the peak power intensity is very high and the energy can be injected to the ablated materials in a short period of time. Therefore, extreme conditions with high temperature and high pressure are created in the local area, and a plasma plume is also produced. Under such local nonequilibrium environments, many chemical reactions may occur, particularly conducive to produce metastable structures. Furthermore, the rapid cooling and the compression effect casued by the surrounding liquid cool the plasma down quickly, and thereby the generated metastable nanomaterials are frozen. By controlling the nature of the liquid and the pulsed lasers, we prepared different metastable nanomaterials. Cubic and tetragonal zirconia were successfully fabricated by femtosecond and nanosecond laser ablation in ammonia, respectively. Due to the peak power of the femtosecond laser was much higher than that of the nanosecond laser, the resulting temperature and pressure was higher using the femtosecond laser. Also, the cooling rate was higher. Therefore, we suggested that femtosecond laser was more conducive to the formation and stabilization of high-temperature phased nanomaterials.
     2. Preparation of surface functionalized nanomaterials
     The surface structure of nanomaterials has a significant impact on their properties. In particular, the surface structure often determines the solubility and compatibility of nanomaterials under different environments. Furthermore, the surface modification can also control the size of nanomaterials to improve the stabilization of their structure and properties. Preparation of surface functionalized nanomaterials usually needs two steps, including the preparation and functionalization processes, which is often complicated and stringent. Whereas, by controlling the nature of the solutions, preparation of specific surface functionlized nanomaterials can be achieved by using pulsed laser alation in liquid in one step. In this case, well dispersed hydrophobic and hydrophilic silicon nanoparticles (NPs) were prepared by femtosecond laser ablation in1-hexene and a mixed solution of acrylic acid and ethanol, respectively. We proposed that under extreme environments created by femtosecond laser ablation in liquid, silicon NPs generated by ablation were highly active and easily reacted with the unsaturated organic compounds (1-hexene or acrylic acid) through addition reactions, thereby forming surface functionalized silicon NPs. We found that not only the size and surface structures, the optical properties were also regulated.
     3. Preparation of surface functionalized metastable nanomaterials
     Nanodiamonds (a kind of carbon NPs) exhibit excellent optical properties and biocompatibility. Unfortunately, there are no many methods for preparing nanodiamonds. In particular, preparing nanodiamonds with size smaller than5nm is still quite difficult. Diamond is a kind of metastable carbon structure, which is usually generated under high temperature conditions. We prepared nanodiamonds by using femtosecond laser ablation in liquid. Nanodiamonds with different sizes, surface states and optical properties were fabricated by femtosecond laser ablation of glassy carbon, graphite or carbonizated sugarcane bagasse powders dispersed in ethanol or acetone.
     4. Prepare of nanostructures through femtosecond laser induced self-assembly
     As a new kind of carbon materials, graphene, a two-dimensional monolayer of carbon structure, exhibits many superior properties. We found that graphene dispersed in the ethanol was converted into spheres after femtosecond laser ablation. This is the first time to report on femtosecond laser induced self-assembly of graphene to generate spheres. By changing the pulse energy and irradiation time, the size of grapene spheres was tuned in a wide range. We proposed that the layer-by-layer assembly of graphene is responsible for the conversion of graphene into spheres.
     5. Preparation of hybrid nanomaterials
     Hybrid nanomaterials may not only retain the initial properties of each component, but also exhibit enhanced performance and new properties. Currently, there are many methods for preparing hybrid nanomaterials. However, fabrication of hybrid nanomaterials containing ultrafine NPs is difficult, and this is mainly due to the aggregation of ultrafine NPs. The reduction of graphene oxide and generation of ultrafine NPs-graphene hybrids were realized simultaniously. We prepared ultrafine Ag NPs-graphene hybrids and ultrafine ZnO NPs-graphene hybrids. Ag and ZnO NPs with the size smaller than3nm were monodispersed on the graphene. We suggested the heterogeneous nucleation, fast cooling rate and small thermal effects hindered the growth of NPs, thus contributing to the formation of ultrafine NPs. Our results implied that using different precursors, femtosecond laser ablation in solution would be a general mthod to prepare ultrafine NPs-graphene hybrids, and even multifunctional hybrids.
引文
[1]L. E. Brus. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys.,1983,79(11):5566-5571.
    [2]L. E. Brus. Electron-electron and electronhole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state. J. Chem. Phys.,1984, 80(9):4403-4409.
    [3]A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996, 271(5251):933-937.
    [4]T. Vossmeyer, L. Katsikas, M. Gienig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmiiller, and H. Weller. CdS nanoclusters:synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem.,1994,98(31):7665-7673.
    [5]L. P. Liu, Q. Peng, and Y. D. Li. Preparation of CdSe Quantum Dots with full color emission based on a room temperature injection technique. Inorg. Chem.,2008,47 (11):5022-5028.
    [6]Y. Wang. Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc. Chem. Res.,1991,24 (5):133-139.
    [7]M. Nyk, D. Wawrzynczyk, J. Szeremeta, and M. Samoc. Spectrally resolved size-dependent third-order nonlinear optical properties of colloidal CdSe quantum dots. Appl. Phys. Lett., 2012,100(4):041102.
    [8]Z. H. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N. B. Wong, and S. T. Lee. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater.,2009,21(6):661-664.
    [9]A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J Kim, C. Y. Chim, G. Galli, and F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett.,2010,10 (4):1271-1275.
    [10]S. K. Ghosh, and T. Pal. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications. Chem. Rev.,2007,107(11):4797-4862.
    [11]C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev.,2005,105(4):1025-1102.
    [12]B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia. Maneuvering the surface Plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B,2006,110(32):15666-15675
    [13]D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev.,2010,110(1): 389-458.
    [14]M. J. Aus, B. Szpunar, U. Erb, A. M. ElSherik, G. Palumbo, and K. T. Aust. Electrical resistivity of bulk nanocrystalline nickel. J. Appl. Phys.1994,75(7):3632-3634.
    [15]E. Botcharova, J. Freudenberger, and L. Schultz. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys. Acta Mater.,2006,54(12):3333-3341.
    [16]R. B. Kale, and C. D. Lokhande. Influence of air annealing on the structural, optical and electrical properties of chemically deposited CdSe nano-crystallites. Appl. Surf. Sci.,2004, 223(4):343-351.
    [17]N. A. Frey, S. Peng, K. Cheng, and S. H. Sun. Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev.,2009,38(9):2532-2542.
    [18]C. B. Murray, S. H. Sun, H. Doyle, and T. Betley. Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices. MRS Bull.2001, 26(12):985-991.
    [19]A. H. Lu, E. L. Salabas, and F. Schuth. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed.,2007,46(8):1222-1244.
    [20]A. N. Goldstein; C. M. Echer, and A. P. Alivisatos. Melting in Semiconductor Nanocrystals. Science,1992,256(5062):1425-1427.
    [21]W. H. Qi, M. P. Wang. Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys.,2004,88(2-3):280-284.
    [22]K. Zhou, and Y. D. Li. Catalysis Based on Nanocrystals with Well-Defined Facets. Angew. Chem. Int. Ed.,2012,51(3):602-613.
    [23]S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, and G. A. Somorjai. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Lett.,2010, 10(7):2709-2713.
    [24]Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev.,2011, 40(7):4167-4185.
    [25]N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, and Z. L. Wang. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science,2007,316(5825):732-735.
    [26]K. Lu. Nanocrystalline metals crystallized from amorphous solids:nanocrystallization, structure, and properties. Mater. Sci. Eng.:R,1996,16(4):161-221.
    [27]V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature,1994,370:354-357.
    [28]Q. L. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics,2007,1: 717-722.
    [29]V. I. Klimov, A. A. Mikhailovsky, Su Xu,A. Malko,J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi. Optical gain and stimulated emission in nanocrystal quantum dots science.2000:290(5490):314-317.
    [30]T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics,2011,5,176-182.
    [31]P. G. Bruce, B. Scrosati, and J. M. Tarascon. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed.,2008,47(16):2930-2946.
    [32]S. M. Nie, and S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science,1997,275(5303):1102-1106.
    [33]L Li, U. Steiner, and S. Mahajan. Single nanoparticle SERS probes of ion intercalation in metal-oxide electrodes. Nano Lett.2014,14(4):495-498.
    [34]W. H. Zhang, F. Ding, and S. Y. Chou. Large Enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+nanocrystal by 3D plasmonic nano-antennas. Adv. Mater.2012,24(35): OP236-OP241.
    [35]H. F. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit. Thousand-fold enhancement of single-molecule fluorescence near a single gold Nanorod. Angew. Chem. Int. Ed.,2013, 52(4):1217-1221.
    [36]J. A. Farmer, and C. T. Campbell. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science,2010,329(5994):933-936.
    [37]X. B. Chen, and S. S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.,2007,107(7):2891-2959.
    [38]H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li, P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano,2010,4(1):380-386.
    [39]P. Christopher, H. L. Xin, and S. Linic. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem.,2011,3:467-472.
    [40]D. S. Wang, T. Xie, and Y. D. Li. Nanocrystals:solution-based synthesis and applications as nanocatalysts. Nano Research,2009,2(1):30-46.
    [41]W. C. W. Chan, and S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018.
    [42]M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016.
    [43]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S.Gambhir, S. Weiss. Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307(5709):538-544.
    [44]M. Zheng, S. Liu, J. Li, D. Qu, H. F. Zhao, Xingang Guan, X. L. Hu, Z. G. Xie, X. B. Jing, and Z. C. Sun. Integrating oxaliplatin with highly luminescent carbon dots:an unprecedented theranostic agent for personalized medicine. Adv. Mater.,2014, DOI: 10.1002/adma.201306192.
    [45]P. K Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal prop-erties and some applications in imaging, sensing, biology, and medicine. Ace. Chem. Res.2008,41(12):1578-1586.
    [46]S. Karthik, B. Saha, S. K, Ghosh, and N. D. P. Singh. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem. Commun.,2013, 49(89):10471-10473.
    [47]G. W. Yang. Laser ablation in liquids:applications in the synthesis of nanocrystals. Prog. Mater. Sci.,2007,52(4):648-698.
    [48]R. R. Gattass, and E. Mazur. Femtosecond laser micromachining in transparent materials. Nat photonics,2008,2:219-225.
    [49]J. R. Qiu, K. Miura, and K. Hirao. Femtosecond laser-induced microfeatures in glasses and their applications. J. Non-Cryst. Solids,2008,354(12-13):1100-1111.
    [50]D. Z. Tan, S. F. Zhou, J. R. Qiu and N. Khusro, Preparation of functional nanomaterials with femtosecond laser ablation in solution. J. Photochem. Photobiol. C:Photochem. Rev.,2013, 17:50-68.
    [51]A. Menendez-Manjon, P. Wagener, and S. Barcikowski. Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids. J. Phys. Chem. C,2011,115(12):5108-5114.
    [52]V. Amendola, and M. Meneghetti. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys., 2013,15(9):3027-3046.
    [53]T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto. Laser ablation at solid-liquid interfaces:An approach from optical emission spectra. J. Chem. Phys.,2000, 112(9):8645-8653.
    [54]T. Sakka, K. Takatani, Y. H. Ogata, and M. Mabuchi, Laser ablation at the solid-liquid interface:transient absorption of continuous spectral emission by ablated aluminium atoms. J. Phys. D,2002,35(1):65-73.
    [55]K. Saito, K. Takatani, T. Sakka, and Y. H. Ogata. Observation of the light emitting region produced by pulsed laser irradiation to a solid-liquid interface. Appl. Surf. Sci.,2002, 197-198:56-60.
    [56]J. Lam, D. Amans, F. Chaput, M. Diouf, G. Ledoux, N. Mary, K. Masenelli-Varlot, V. Motto-Ros, and C. Dujardin. γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids:a plasma analysis. Phys. Chem. Chem. Phys.,2014,16(3):963-973.
    [57]T. Sakka, K. Saito, and Y. H. Ogata. Emission spectra of the species ablated from a solid target submerged in liquid:vibrational temperature of C2 molecules in water-confined geometry. Appl. Surf. Sci.,2002,197-198:246-250.
    [58]A. Nath, and A. Khare. Laser-induced high-pressure and high-temperature conditions at the titanium-water interface and their implication on TiO2 nanoparticles. J. Opt. Soc. Am. B, 2012,29(3):351-356.
    [59]A De Bonis, M Sansone, L D'Alessio, A Galasso, A Santagata, and R Teghil. Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid. J. Phys. D:Appl. Phys.,2013,46:445301.
    [60]A. De Giacomo, M. Dell'Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G. C. Messina, G. Compagnini, and S. Barcikowski. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys., 2013,15(9); 3083-3092.
    [61]Z. Yan, and D. B. Chrisey. Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. C:Photochem. Rev.,2012,13(3):204-223.
    [62]P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, and S. Barcikowski. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys.,2013,15(9):3068-3074.
    [63]L. Lavisse, J. L. Le Garrec, L.Hallo, J. M. Jouvard, S. Carles, J. Perez, J. B. A. Mitchell, J. Decloux, M. Girault, V. Potin, H. Andrzejewski, M. C. MarcodeLucas, and S. Bourgeois. In-situ small-angle x-ray scattering study of nanoparticles in the plasma plume induced by pulsed laser irradiation of metallic targets. Appl. Phys. Lett.,2012,100(16):164103.
    [64]P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, Marc Sentis, V. Y. Timoshenko, and A. V. Kabashin, Femtosecond laser fragmentation from water-dispersed microcolloids:toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications. J. Mater. Chem. B,2013,1(13):2489-2495.
    [65]S. Hashimoto, D. Werner, and T. Uwada. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C:Photochem. Rev.,2012,13(1):28-54.
    [66]A. Takami, H. Kurita, and S. Koda, Laser-induced size reduction of noble metal particles. J. Phys. Chem. B,1999,103(8):1226-1232.
    [67]S. Inasawa, M. Sugiyama, and Y. Yamaguchi. Bimodal size distribution of gold nanoparticles under picosecond laser pulses. J. Phys. Chem. B,2005,109(19):9404-9410.
    [68]D. Werner, S. Hashimoto. Improved Working Model for Interpreting the Excitation Wavelength- and Fluence-Dependent Response in Pulsed Laser-Induced Size Reduction of Aqueous Gold Nanoparticles. J. Phys. Chem. C 2011,115(12):5063-5072.
    [69]D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, Femtosecond Laser-Induced Size Reduction of Aqueous Gold Nanoparticles:In Situ and Pump-Probe Spectroscopy Investigations Revealing Coulomb Explosion. J. Phys. Chem. C,2011,115(17):8503-8512.
    [70]E. P. Furlani, I. H. Karampelas, and Q. Xie. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip,2012,12(19): 3707-3719.
    [71]K. Yamada, Y. Tokumoto, T. Nagata, and F. Mafune. Mechanism of Laser-induced Size-reduction of Gold Nanoparticles as Studied by Nanosecond Transient Absorption Spectroscopy. J. Phys. Chem. B,2006,110 (24):11751-11756.
    [72]A. Plech, V. Kotaidis, M. Lorenc, and J. Bonberg, Femtosecond laser near-field ablation from gold nanoparticles. Nat. Phys.,2006,2:44-47.
    [73]C. J. Zhao, S. L. Qu, J. R. Qiu, and C. S. Zhu. Photoinduced formation of colloidal Au by a near-infrared femtosecond laser. J. Mater. Res.,2003,18(07):1710-1714.
    [74]C. J. Zhao, S. L. Qu, Y. C. Gao, Y. L. Song, J. R. Qiu, and C. S. Zhu. Preparation and Nonlinear Optical Properties of Au Colloid. Chin. Phys. Lett.2003,20 (10) 1752-1754.
    [75]H. D. Zeng, C. J. Zhao, J. R. Qiu, Y. X. Yang, and G. R. Chen, Preparation and optical properties of silver nanoparticles induced by a femtosecond laser irradiation. J. Cryst. Growth,2007,300(2):519-522.
    [76]Y. Herbani, T. Nakamura, and S. Sato. Synthesis of Near-Monodispersed Au-Ag Nanoalloys by High Intensity Laser Irradiation of Metal Ions in Hexane. J. Phys. Chem. C,2011, 115(14):21592-21598.
    [77]B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. T. Wellegehausen. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A,1996, 63(2):109-115.
    [78]C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen. Short-pulse laser ablation of solid targets. Opt. Commun.,1996, 129(1-2):134-142.
    [79]G. Kuzmin, G. A. Shafeev, V. V. Bukin, S. V. Garnov, C. Farcau, R. Carles, B. Warot-Fonrose, V. Guieu, and G. Viau. Silicon Nanoparticles Produced by Femtosecond Laser Ablation in Ethanol:Size Control, Structural Characterization, and Optical Properties. J. Phys. Chem. C,2010,114 (36):15266-15273.
    [80]M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, and C. S. Yeh. Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol. J. Phys. Chem. B,1999,103 (33):6851-6857.
    [81]W. Ding, J. P. Sylvestre, E. Bouvier, G. Leclair, and M. Meunier. Ultrafast laser processing of drug particles in water for pharmaceutical discovery. Appl. Phys. A,2014,114(1): 267-276.
    [82]E. Akman, B. Genc Oztoprak, M. Gunes, E. Kacar, and A. Demir, Effect of femtosecond Ti:Sapphire laser wavelengths on plasmonic behaviour and size evolution of silver nanoparticles. Photonic. Nanostruct.,2011,9(3):276-286.
    [83]T. Tsuji, K. Iryo, N. Watanabe, and M. Tsuji. Preparation of silver nanoparticles by laser ablation in solution:influence of laser wavelength on particle size. Appl. Surf. Sci.,2002, 202(1-2):80-85.
    [84]C. L. Sajti, R. Sattari, B. N. Chichkov, and S. Barcikowski. Gram Scale Synthesis of Pure Ceramic Nanoparticles by Laser Ablation in Liquid. J. Phys. Chem. C,2010,114(6): 2421-2427.
    [85]X. Zhang, H. Zeng, W. Cai. Laser power effect on morphology and photoluminescence of ZnO nanostructures by laser ablation in water. Mater. Lett.,2009,63(2):191-193.
    [86]A. V. Kabashin, and M. Meunier. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys.,2003,94(12):7941-7943.
    [87]F. Mafune, J. Kohno, Y. Takeda, and T. Kondow, H. Sawabe. Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B,2000, 104(39):9111-9117.
    [88]H. Muto, K. Miyajima, and F. Mafune. Mechanism of Laser-Induced Size Reduction of Gold Nanoparticles As Studied by Single and Double Laser Pulse Excitation. J. Phys. Chem. C2008,112 (15):5810-5815.
    [89]N. Haram, and-N. Ahmad. Effect of laser fluence on the size of copper oxide nanoparticles produced by the ablation of Cu target in double distilled water. Appl. Phys. A,2013,111(4): 1131-1137.
    [90]D. Dorranian, S. Arezoo, A. Afshar. N. Tahmasebi, and A. F. Eskandari. Effect of Laser Pulse Energy on the Characteristics of Cu Nanoparticles Produced by Laser Ablation Method in Acetone. J. Clust. Sci., DOI 10.1007/s10876-014-0696-2.
    [91]S. Yang,W. Cai, H. Zhang,X. Xu, and H. Zeng. Size and Structure Control of Si Nanoparticles by Laser Ablation in Different Liquid Media and Further Centrifugation Classification. J. Phys. Chem. C,2009,113(44):19091-19095.
    [92]A. Menendez-Manjon, and S. Barcikowski. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Appl. Surf. Sci.,2011,257(9):4285-4290.
    [93]M. A. Sobhan, M. Ams, M. J. Withford, and E.M. Goldys. Ultrafast laser ablative generation of gold nanoparticles:the influence of pulse energy, repetition frequency and spot size. J. Nanopart. Res.,2010,12(8):2831-2842.
    [94]A. Santagata, A. De Bonis, A. De Giacomo, M. Dell'Aglio, A. Laurita, G. S. Senesi, R. Gaudiuso, S. Orlando, R. Teghil, G. P. Parisi, Carbon-Based Nanostructures Obtained in Water by Ultrashort Laser Pulses. J. Phys. Chem. C,2011,115 (12):5160-5164.
    [95]R. A. de Matos, T. S. Cordeiro, R. E. Samad, N. D. Vieira Jr., and L. C. Courrol. Green synthesis of gold nanoparticles of different sizes and shapes using agar-agar water solution and femtosecond pulse laser irradiation. Appl. Phys. A,2012,109(3):737-741.
    [96]S. C. Singh, S. K. Mishra, R. K. Srivastava, and R. Gopal. Optical Properties of Selenium Quantum Dots Produced with Laser Irradiation of Water Suspended Se Nanoparticles. J. Phys. Chem. C,2010,114(41):17374-17384.
    [97]H. S. Desarkar, P. Kumbhakar, and A. K. Mitra. Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique. Appl Nanosci.,2012,2(3):285-291.
    [98]H S Desarkar, P Kumbhakar and A K Mitra. One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique. Laser Phys. Lett.,2013,10(5): 055903.
    [99]H. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai. Nanomaterials via Laser Ablation/Irradiation in Liquid:A Review. Adv. Funct. Mater.,2012,22(7): 1333-1353.
    [100]A. Menendez-Manjon, B. N. Chichkov, and S. Barcikowski. Influence of Water Temperature on the Hydrodynamic Diameter of Gold Nanoparticles from Laser Ablation. J. Phys. Chem. C,2010,114(6):2499-2504.
    [101]P. Boyer, and M. Meunier, Modeling Solvent Influence on Growth Mechanism of Nanoparticles (Au, Co) Synthesized by Surfactant Free Laser Processes. J. Phys. Chem. C,2012,116 (14):8014-8019
    [102]R. M. Tilaki, A. Iraji zad, S.M. Mahdavi. Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl. Phys. A,2006, 84(1-2):215-219.
    [103]C. He, T. Sasaki, Y. Zhou, Y. Shimizu, M. Masuda, and N. Koshizaki. Surfactant-Assisted Preparation of Novel Layered Silver Bromide-Based Inorganic/Organic Nanosheets by Pulsed Laser Ablation in Aqueous Media. Adv. Funct. Mater.,2007,17(17):3554-3561.
    [104]C. H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki. Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution. Appl. Phys. A,2005,80(4):819-822.
    [105]B. Kumar, and R. K. Thareja. Laser ablated copper plasmas in liquid and gas ambient. Phys. Plasmas,2013,20(5):053503.
    [106]B. Kumar, D. Yadav, and R. K. Thareja. Growth dynamics of nanoparticles in laser produced plasma in liquid ambient. J. Appl. Phys.,2011,110(7):074903.
    [107]D. N. Patel, R. P. Singh, R. K. Thareja. Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl. Surf. Sci.,2014,288:550-557.
    [108]D. Z. Tan, G. Lin, Y. Liu, Y. Teng, Y. X. Zhuang, B. Zhu, Q. Z. Zhao, and J. R. Qiu. Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation. J. Nanopart. Res.,2011,13(3):1183-1190.
    [109]D. Z. Tan, Y. Teng, Y. Liu, Y. X. Zhuang, and J. R. Qiu, Preparation of zirconia nanoparticles by pulsed laser ablation in liquid. Chem. Lett.,2009,38(11):1102-1103.
    [110]D. Z. Tan, S. F. Zhou, B. B. Xu, P. Chen, Y. Shimotsuma, K. Miura, and J. R. Qiu, Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence. Carbon, 2013,62,374-381.
    [111]D. Z. Tan, Y. Yamada, S. F. Zhou, Y Shimotsuma, K. Miura, and J. R. Qiu. Carbon nanodots with strong nonlinear optical response. Carbon,2014,69:638-640.
    [112]D. Z. Tan, Y. Yamada, S. F. Zhou, Y. Shimotsuma, K. Miura, and J. R. Qiu Photoinduced luminescent carbon nanostructures with ultra-broadly tailored size ranges. Nanoscale,2013, 5(24):12092-12097.
    [113]D. Perez, L. K. Beland, D. Deryng, L. J. Lewis, and M. Meunier. Numerical study of the thermal ablation of wet solids by ultrashort laser pulses. Phys. Rev. B,2008,77:014108
    [114]S. B. Ogale, A. P. Malshe, S. M. Kanetkar, S. T. Kshirsagar. Formation of diamond particulates by pulsed ruby laser irradiation of graphite immersed in benzene. Solid. State. Comm.,1992,84(4):371-373.
    [115]Y. H. Wang, R. Q. Yu, Z. Y. Liu, R. B. Huang, L. S. Zheng, X. F. Zhang, G. H, and Z. Zhang. Production of diamond nanospherulite at carbon-water interface by laser ablation and its characterization by TEM. Chem. J. Chin. U.,1997,18(1):124-126.
    [116]G. W. Yang, J. B. Wang, and Q. X. Liu. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys-Condens. Mater.,1998,10(35):7923-7927.
    [117]J. B. Wang, C. Y. Zhang, X. L. Zhong, and G. W. Yang. Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction. Chem. Phys. Lett.2002;361(1):86-90.
    [118]S. R. J. Pearce, S. J. Henley, F. Claeyssens, P. W. May, K. R. Hallam, J. A. Smith, and K. N. Rosser. Production of nanocrystalline diamond by laser ablation at the solidy liquid interface. Diam. Relat. Mater.,2004,13(4-8):661-665.
    [119]L. Yang, P. W. May, L. Yin, J.A. Smith, and K.N. Rosser. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater.,2007,16(4-7):725-729.
    [120]D. Amans, A. C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, and O. Guillois. Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater.,2009,18(2-3):177-180.
    [121]P. Liu, H. Cui, and G. W. Yang. Synthesis of Body-Centered Cubic Carbon Nanocrystals. Crayst. Growth Des.,.2008,8(2):581-586.
    [122]P. Liu, Y. L. Cao, C. X. Wang, X.Y. Chen, and G.W. Yang. Micro-and Nanocubes of Carbon with C8-like and Blue Luminescence. Nano Lett.,2008,8(8):2570-2575.
    [123]P. Liu, Y.L. Cao, X.Y. Chen, and G.W. Yang. Trapping High-Pressure Nanophase of Ge upon Laser Ablation in Liquid. Crayst. Growth Des.,2008;9(3):1390-1393.
    [124]P. Liu, Y.L. Cao, H. Cui, X.Y. Chen, and G.W. Yang. Micro- and Nanocubes of Silicon with Zinc-Blende Structure. Chem Mater.,2008,20(2):494-502.
    [125]P. Liu,a Y. Liang, H. B. Li, J. Xiao, T. He, and G. W. Yang. Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesized by laser ablation in liquids. AIP Adv.,2013,3(2):022127.
    [126]X. Y. Chen, H. Cui, P. Liu, and G. W. Yang. Double-Layer Hexagonal Fe Nanocrystals and Magnetism. Chem Mater.,2008,20(5):2035-2038.
    [127]P. Liu, W. P. Cai, and H. B. Zeng. Fabrication and Size-Dependent Optical Properties of FeO Nanoparticles Induced by Laser Ablation in a Liquid Medium. J. Phys. Chem. C,2008, 112(9):3261-3266.
    [128]F. Mafune, J. Kohno, Y. Takeda, T Kondow, and H Sawabe. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. J. Phys. Chem. B,2001, 105(22),5114-5120.
    [129]F. Mafune, J. Kohno, Y. Takeda, and T. Kondow. Formation of Stable Platinum Nanoparticles by Laser Ablation in Water. J.Phys. Chem B,2003,107 (18):4218-4223.
    [130]A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong. Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins. J. Phys. Chem. B,2003,107 (19):4527-4531.
    [131]J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong. Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins. J. Am. Chem. Soc.,2004,126(23):7176-7177.
    [132]T. Tsuji, D. H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, and M. Tsuji. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci., 2008,254(16):5224-5230.
    [133]M. Chandra, S. S. Indi, and P. K. Das. First hyperpolarizabilities of unprotected and polymer protected copper nanoparticles prepared by laser ablation. Chem. Phys. Lett.,2006, 422(1-3):262-266.
    [134]J. Zhang, and C. Q. Lan. Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mater. Lett.,2008,62(10-11):1521-1524.
    [135]V. Amendola, S. Polizzi, and M. Meneghetti. Laser Ablation Synthesis of Gold Nanoparticles in Organic Solvents. J. Phys. Chem. B,2006,110 (14):7232-7237.
    [136]S. Petersen, and S. Barcikowski. In Situ Bioconjugation:Single Step Approach to Tailored Nanoparticle-Bioconjugates by Ultrashort Pulsed Laser Ablation. Adv. Funct. Mater.,2009, 19(8):1167-1172.
    [137]S. Petersen, and S. Barcikowski. Conjugation Efficiency of Laser-Based Bioconjugation of Gold Nanoparticles with Nucleic Acids. J. Phys. Chem. C,2009,113(46):19830-19835.
    [138]C. L. Sajti, S. Petersen, A. Menendez-Manjon, and S. Barcikowski. In-situ bioconjugation in stationary media and in liquid flow by femtosecond laser ablation. Appl. Phys. A,2010, 101(2):259-264.
    [139]S. H Choi, T. Sasaki, Y. Shimizu, J. W. Yoon, W. T. Nichols, Y. E. Sung, and N. Koshizaki. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions. J. Phys.:Conf. Ser.,2007,59(59):388-391.
    [140]Y. Zakharko, D. Rioux, S. Patskovsky, V. Lysenko, O. Marty, J. M. Bluet, M. Meunier, Direct synthesis of luminescent SiC quantum dots in water by laser ablation. Phys. Status Solidi RRL,2011,5(8):292-294.
    [141]R. Intartaglia, A. Barchanski, K. Bagga, A. Genovese, G. Das, P. Wagener, E. D. Fabrizio, A. Diaspro, F. Brandi, and S. Barcikowski. Bioconjugated silicon quantum dots from one-step green synthesis. Nanoscale,2012,4(4):1271-1274.
    [142]K Bagga, A Barchanski, R Intartaglia, S Dante, R Marotta, A Diaspro, C L Sajti, and F Brandi. Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes. Laser Phys. Lett.,2013,10(6):065603.
    [143]N. Shirahata, M. R. Linford, S. Furumi, L. Pei, Y. Sakka, R. Gates, and M. C. Asplund. Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolayers. Chem. Commun.,2009,21(21):4684-4686.
    [144]N. Shirahata, D. Hirakawa, and Y. Sakka. Interfacial-related color tuning of colloidal Si nanocrystals. Green Chem.,2010,12(12):2139-2141.
    [145]B. Ghosh, Y. Sakka, and N. Shirahata. Effcient green-luminescent germanium nanocrystals. J. Mater. Chem A,2013,1(11):3747-3751.
    [146]H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu. Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media. J. Phys. Chem. B,2005,109 (39):18260-18266.
    [147]H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W.Cai. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls. Adv. Funct. Mater.,2010,20(4):561-572.
    [148]H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki. Photoluminescence of ZnO Nanoparticles Prepared by Laser Ablation in Different Surfactant Solutions. J. Phys. Chem. B,2005,109(1):120-124.
    [149]C. He, T. Sasaki, Y. Shimizu, and N. Koshizaki. Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates. Appl. Surf. Sci.,2008,254(7):2196-2202.
    [150]C. Liang, Y. Shimizu, M. Masuda, T. Sasaki, and N. Koshizaki. Preparation of Layered Zinc Hydroxide/Surfactant Nanocomposite by Pulsed-Laser Ablation in a Liquid Medium. Chem. Mater.,2004,16(6):963-965.
    [151]T. Sasaki, C. Liang, W.T. Nichols, Y. Shimizu, and N. Koshizaki. Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A,2004, 79(4-6),1489-1492.
    [152]D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C.Dujardin, K. Masenelli-Varlot, and P. Perriat. Synthesis of Oxide Nanoparticles by Pulsed Laser Ablation in Liquids Containing a Complexing Molecule:Impact on Size Distributions and Prepared Phases. J. Phys. Chem. C,2011,115 (12):5131-5139.
    [153]T. Salminen, M. Honkanen, and T. Niemi. Coating of gold nanoparticles made by pulsed laser ablation in liquids with silica shells by simultaneous chemical synthesis. Phys. Chem. Chem. Phys.,2013,15(9):3047-3051.
    [154]E. Jimenez, K. Abderrafi, R. Abargues, J. L. Valdes, and J. P. Martinez-Pastor. Laser-Ablation-Induced Synthesis of SiO2-Capped Noble Metal Nanoparticles in a Single Step. Langmuir,2010,26(10):7458-7463.
    [155]F. Mafune, T. Okamoto, and M. Ito. Surfactant-free small Ni nanoparticles trapped on silica nanoparticles prepared by pulsed laser ablation in liquid. Chem. Phys. Lett.2014,591: 193-196.
    [156]H. W. Chang, Y. C. Tsaia, C. W. Cheng, C. Y. Lin, and P. H. Wu. Preparation of platinum/carbon nanotube in aqueous solution by femtosecond laser for non-enzymatic glucose determination. Sensor. Actuat. B,2013,183:34-39.
    [157]V. Amendola, M. Meneghetti, O. M. Bakr, P. Riello, S. Polizzi, D. H. Anjum, S. Fiameni, P. Arosio, T. Orlando, C. de J. Fernandez, F. Pineider, C. Sangregorio, and A. Lascialfari.. Coexistence of plasmonic and magnetic properties in Au89Fe11 Nanoalloys. Nanoscale,2013, 5(12):5611-5619.
    [158]V Amendola, S. Scaramuzza, S. Agnoli, S. Polizzi, and M. Meneghetti. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys. Nanoscale,2014,6(3):1423-1433.
    [159]Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey. Hollow Particles Formed on Laser-Induced Bubbles by Excimer Laser Ablation of Al in Liquid. J. Phys. Chem. C,2010,114(26): 11370-11374.
    [160]Z. Yan, G. Compagnini, and D. B. Chrisey. Generation of AgCl Cubes by Excimer Laser Ablation of Bulk Ag in Aqueous NaCl Solutions. J. Phys. Chem. C,2011,115(12): 5058-5062.
    [161]Y. Liang, P. Liu, H. B. Li, and G. W. Yang. Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. Cryst. Eng. Comm.,2012,14(9):3291-3296.
    [162]R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt. Mater. Express,2012,2(5):510-518.
    [163]G. Lin, D. Z. Tan, F. F. Luo, D. P. Chen, Q. Z. Zhao, J. R. Qiu, and Z. Z. Xu. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquidJ. Alloy. Compd.,2010,507(2):L43-L46.
    [164]曲远方.现代陶瓷材料及技术.上海:华东理工大学出版社,2008.
    [165]S. B. Xie, K. Chen, A. T. Bell, and E. Iglesia. Structural characterization of molybdenum oxide supported on zirconia. J. Phys. Chem. B.2000,104(43):10059-10068.
    [166]K. Chen, S.B. Xie, E. Iglesia, and A. T. Bell. Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane. J. Catal.,2000, 189(2):421-430.
    [167]李美俊.氧化锆和掺杂氧化锆物相及其变化的紫外拉曼光谱研究.中国科学院研究生院博士生论文.2002.10.
    [168]Y. Cong, B. Li, S. M. Yue, D. Fan D, and X. J. Wang. Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction. J. Phys. Chem. C,2009,113(31):13974-13978
    [169]C. G Kontoyannis, and M. Orkoula. Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy. J. Mater. Sci., 1994,29(20):5316-5320.
    [170]D. Gazzoli, G. Mattei, and M. Valigi. Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure. J. Raman. Spectrosc.,2007,38(7):824-831.
    [171]M. Yashima, K. Ohtake, M. Kakihana, H. Arashis, and M. Yoshimura. Determination of tetragonal-cubic phase boundary of Zr(1-X)R(X)O(2-x/2) (R=Nd, Sm, Y, Er and Yb) by Raman scattering. J. Phys. Chem. Solids,1996,57(1):17-24.
    [172]P. G. Kuzmina, G. A. Shafeeva, G. Viaub, B. Warot-Fonrosec, M. Barberogloud, E. Stratakisd, and C. Fotakis. Porous nanoparticles of Al and Ti generated by laser ablation in liquids. Appl. Surf. Sci.,2012,258(23):9283-9387.
    [173]M. M. Rashad, and H. M. Baioumya. Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes. J. Mater. Process. Technol.,2008,195(1-3):178-185.
    [174]S. G. Botta, J. A. Navio, M. C. Hidalgo, G. M. Restrepo, and M. I. Litter. Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a sol-gel technique. J. Photochem. Photobiol. A Chem.,1999,129(1-2):89-99.
    [175]R. C. Garvie. The Occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem.,1965,69(4):1238-1243.
    [176]R. Nitsche, M. Rodewald, G. Skandan, H. Fuess, and H.Hahn. HRTEM study of nanocrystalline zirconia powders. Nanostruct. Mater.,1996,7(5):535-546.
    [177]R. Nitsche, M. Winterer, and H. Hahn. Structure of nanocrystalline zirconia and yttria. Nanostruct. Mater.,1995,6(5):679-682.
    [178]S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay. Effect of nanocrystallite morphology on the metastable tetragonal phase stabilization in zirconia. Nano Lett.,2002,2(9):989-993.
    [179]S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay. Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Lett.,2003,3(3):397-401.
    [180]M. N. Tahir, L. Gorgishvili, J. X. Li, T. Gorelik, U. Kolb, L. Nasdala, and W. Tremel. Facile synthesis and characterization of monocrystalline cubic ZKO2 nanoparticles. Solid. State. Sci.,2007,9(12):1105-1109.
    [181]X. Y. Lu, K. M. Liang, S. R. Gu, Y. K. Zheng, and H. S. Fang. Effect of oxygen vacancies on transformation of zirconia at low temperatures. J. Mater. Sci.,1997,32(24):6653-6656.
    [182]S. Shukla, and S. Seal, Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev.,2005,50(1):1-20.
    [183]A.V. Kabashina, and M. Meunier. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys.,2003,94(12):7941-7943.
    [184]Ⅰ. L. Liu, B. C. Lin, S. Y. Chen, and P. Shen. NaAlO2 and y-Al2O3 nanoparticles by pulsed laser ablation in aqueous solution. J. Phys. Chem. C,2011,115(12):4994-5002.
    [185]L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett.,1990,57(10):1046-1048.
    [186]A. G. Cullis, and L. T. Canham. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature,1991,353,335-338.
    [187]J. H. Warner, A. Hoshino, K. Yamamoto, and R. D. Tilley. Water-Soluble Photoluminescent Silicon Quantum Dots. Angew. Chem.,2005,117(29):4626-4630.
    [188]K. Y. Cheng, R. Anthony, U. R. Kortsnagen, and R. J. Holmes. High-Efficiency Silicon Nanocrystal Light-Emitting Devices. Nano Lett.,2011,11(5):1952-1956.
    [189]M. L. Masironardi, E. J. Henderson, D. P. Puzzo, and G. A. Ozin. Small Silicon, Big Opportunities:The Development and Future of Colloidally-Stable Monodisperse Silicon Nanocrystals. Adv. Mater.,2012,24(43):5890-5898.
    [190]F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kubel, A. K. Powell, G. A. Ozin, and U. Lemmer. Multicolor Silicon Light-Emitting Diodes (SiLEDs). Nano Lett.,2013,13 (2):475-480.
    [191]R. D. Tilley, and K. Yamamoto. The Microemulsion Synthesis of Hydrophobic and Hydrophilic Silicon Nanocrystals. Adv. Mater.,2006,18(15):2053-2056.
    [192]A. S. Heintz, M. J. Fink, and B. S. Mitchell. Mechanochemical Synthesis of Blue Luminescent Alkyl/Alkenyl-Passivated Silicon Nanoparticles. Adv. Mater.,2007,19(22): 3984-3988.
    [193]X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding. Colloidal silicon quantum dots:from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev.,2014,43(8):2680-2700.
    [194]M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, and J. G. C. Veinot. Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals. ACS Nano,2013,7(3):2676-2685.
    [195]D. Z. Tan, Z. J. Ma, B. B Xu, Y. Dai, G. H. Ma, M. He, Z. M. Jin, and J. R. Qiu. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys.,2011,13(45):20255-20261.
    [196]D. Z. Tan, B. B. Xu, P. Chen, Y. Dai, S. F. Zhou, G. H. Ma, and J. R. Qiu. One-pot synthesis of luminescent hydrophilic silicon nanocrystals. RSC Adv.,2012,2(22): 8254-8257.
    [197]M. J. L. Portoles, F. R. Nieto, D. B. Soria, J. I. Amalvy, P. J. Peruzzo, D. O. Martire, M. Kotler, O. Holub, and M. C. Gonzalez. Photophysical Properties of Blue-Emitting Silicon Nanoparticles. J. Phys. Chem. C,2009,113 (31):13694-13702
    [198]M. A. Jum, Q. Y. Feng, L. H. Shi, and J. Xu. Preliminary study on pyrolysis of polymethylsilsesquioxane by FT-IR and XPS. Chin. Chem. Lett.,2002,13(1):75-78.
    [199]Z. Y. Zhou, L. Brus, and R. Friesner, Electronic Structure and Luminescence of 1.1- and 1.4-nm Silicon Nanocrystals:Oxide Shell versus Hydrogen Passivation. Nano Lett.,2003, 3(2):163-167.
    [200]K. Saitow, and T. Yamamura. Effective Cooling Generates Efficient Emission:Blue, Green, and Red Light-Emitting Si Nanocrystals. J. Phys. Chem. C,2009,113(19):8465-8470.
    [201]J. Martin, F. Cichos, F. Huisken, and C. V. Borczyskowski, Electron-Phonon Coupling and Localization of Excitons in Single Silicon Nanocrystals. Nano Lett.,2008,8(2):656-660.
    [202]M. Rosso-Vasic, E. Spruijt, B.V. Lagen, L. D. Cola, and H. Zuilhof, Alkyl-Functionalized Oxide-Free Silicon Nanoparticles:Synthesis and Optical Properties. Small,2008,4(10): 1835-1841.
    [203]X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am Chem. Soc.,2004,126 (40):12736-12737.
    [204]Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A.I Harruff, X. Wang, H. F. Wang, P. J. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L. M. Veca, and S. Y. Xie. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc,2006,128 (24):7756-7757.
    [205]S. N. Baker, and G. A. Baker, Luminescent Carbon Nanodots:Emergent Nanolights. Angew. Chem., Int. Ed.,2010,49(38):6726-6744.
    [206]H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, and S. T. Lee. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed,2010,49(26):4430-4434.
    [207]S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, Ho. Sun, H. Wang, and B. Yang. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem. Int. Ed.,2013,52(14):3953-3957.
    [208]W. Wei, C. Xu, L. Wu, J. Wang, J. Ren, and X. Qu. Non-Enzymatic-Browning-Reaction:A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display. Sci. Rep.,2014,4:3564.
    [209]Ha. Li, Z. Kang, Y. Liu, and S. T. Lee. Carbon nanodots:synthesis, properties and applications. J. Mater. Chem.,2012,22(22):24230-24253.
    [210]S. Y. Park, H. U. Lee, E. S. Park, S. C. Lee, J. W. Lee, S. W. Jeong, C. H. Kim, Y. C. Lee, Y. S. Huh, and J. Lee. Photoluminescent Green Carbon Nanodots from Food-Waste-Derived Sources:Large-Scale Synthesis, Properties, and Biomedical Applications. ACS Appl. Mater. Interfaces,2014,6 (5):3365-3370.
    [211]Mochalin VN, Shenderova O, Ho D, and Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol.,2011,7(1):11-23.
    [212]V. Y. Dolmatov. Detonation synthesis ultradispersed diamonds:properties and applications. Russ. Chem. Rev.,2001,70(7):607-26.
    [213]S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc.,2006,128(35):11635-42.
    [214]J. Robertson. Diamond-like amorphous carbon. Mater. Sci. Eng. R,2002,37(4-6): 129-281.
    [215]M. Lenner, A. Kaplan, C. Huchon, R. E. Palmer. Ultrafast laser ablation of graphite. Phys. Rev. B,2009,79:184105.
    [216]W. W. Duley. Refractive indices for amorphous carbon. Astrophys. J.,1984,287(1):694-6.
    [217]T. Yamamoto, Y. Shimotsuma, M. Sakakura, M. Nishi, K. Miura, and K. Hirao. Intermetallic magnetic nanoparticle precipitation by femtosecond laser fragmentation in liquid. Langmuir,2011,27(13):8359-64.
    [218]S. A. Kulinich, T. Kondo, Y, Shimizu, and T. Ito. Pressure effect on ZnO nanoparticles prepared via laser ablation in water. J. Appl. Phys.,2013,113(3):033509.
    [219]F. Mosmer, M. J. Torkamany, J. Sabbaghzadeh, and D. Dorranian. Optical Properties of Pure ZnSe Nanocrystals Synthesized by Laser Ablation in Organic Liquids. J. Clust. Sci., 2013,24(3):905-914.
    [220]J. Qian, D. Wang, F. H. Cai, W. Xi, L. Peng, Z. F. Zhu, H. He, M. L. Hu, and S. L. He, Observation of Multiphoton-Induced Fluorescence from Graphene Oxide Nanoparticles and Applications in In Vivo Functional Bioimaging. Angew. Chem., Int. Ed.,2012,51(42): 10570-10575.
    [221]Z. T. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson. High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc,2009,131(3):898-899.
    [222]G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla. Blue photoluminescence from chemically derived graphene Oxide. Adv. Mater., 2010,22(4):505-509.
    [223]C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C. W. Chen. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed.,2012, 51(27):6662-6666.
    [224]D. Z. Tan, S. F. Zhou, Y Shimotsuma, K. Miura, and J. R. Qiu. Opt. Mater. Express,2014, 4(2):213-219.
    [225]H. J. Sun, L. Wu, N. Gao, J. S. Ren, and X. G. Qu. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl. Mater. Interfaces,2013,5(3):1174-1179.
    [226]H. Z. Zheng, Q. L. Wang, Y. J. Long, H. J. Zhang, X. X. Huang, and R. Zhu. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun.,2011,47(38): 10650-10652.
    [227]V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc, 2011,133(26):9960-9963.
    [228]S. H. Jin, H. Kim, G. H. Jun, S. H. Hong, and S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups, ACS Nano, 2013,7(2):1239-1245.
    [229]K. M. Lee, W. Y. Cheng, C. Y. Chen, J. J. Shyue, C. C. Nieh, C. F. Chou, J. R. Lee, Y. Y. Lee, C. Y. Cheng, S. Y. Chang, T. C. Yang, M. C. Cheng, and B. Y. Lin. Excitation-dependent visible fluorescence in decameric nanoparticles with monoacylglycerol cluster chromophores. Nat. Commun.,2013,4:1544.
    [230]S. L. Hu, Y. Guo, Y. G. Dong, J. L. Yang, J. Liu, and S. R. Cao. Understanding the effects of the structures on the energy gaps in carbon nanoparticles from laser synthesis. J. Mater. Chem.,2012,22(24):12053-12057.
    [231]Z. S. Qian, J. J. Ma, X. Y. Shan, L. X. Shao, J. Zhou, J. R. Chen, and H. Feng. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications:an experimental and theoretical investigation,. RSC Adv.,2013,3(34):14571-14579.
    [232]Q. L. Song, S. Cao, P. Zavala-Rivera, L. P. Lu, W. Li, Y. Ji, S. A. Al-Muhtaseb, A. K. Cheetham, and E. Sivaniah. Photo-oxidative enhancement of polymeric molecular sieve membranes. Nat. Commun.,2013,4(5):1918.
    [233]P. Blandin, K. A. Maximova, M. B. Gongalsky, J. F. Sanchez-Royo, V. S. Chirvony, M. Sentis, V. Y. Timoshenko, and A. V. Kabashin. Femtosecond laser fragmentation from water-dispersed microcolloids:toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications. J. Mater. Chem. B,2013,1(19):2489-2495.
    [234]L. Yang, P. W. May, L. Yin, J. A. Smith, and K. N. Rosser. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater.,2007, 16(4-7):725-729.
    [235]S. J. Harris, and A. M. Weiner. Effects of oxygen on diamond growth. Appl. Phys. Lett., 1989,55(22):2179-2181.
    [236]R. F. Xiao. Growing diamond films from an organic liquid. Appl. Phys. Lett.,1995,67(21): 3117-3119.
    [237]G. Lin, F. Luo, H. Pan, M. M. Smedskjaer, Y. Teng, D. Chen, J. Qiu, and Q. Zhao. Universal preparation of novel metal and semiconductor nanoparticles-glass composites and their nonlinear optical properties. J. Phys. Chem. C,2011,115(50):24598-24604,.
    [238]K. Wang, J. Wang, J. Fan, M. Lotya, A. O'Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano,2013,7 (10):9260-9267.
    [239]R Tong, H. X.Wu, B. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. H. Liu, and R. F. Cai. Reverse saturable absorption and optical limiting performance of fullerene-functionalized polycarbonates in femtoseond time scale. Phys. B,2005,366(1-4):192-199.
    [240]H. I. Elim, R. Anandakathir, R. Jakubiak, L. Y. Chiang, W. Ji, and L. S. Tan. Large concentration-dependent nonlinear optical responses of starburst diphenylaminofluorenocarbonyl methano [60] fullerene pentads. J. Mater. Chem.,2007, 17(18):1826-1838.
    [241]S. Porel, N. Venkatram, D. N. Rao, and T. P. Radhakrishnan. Optical power limiting in the femtosecond regime by silver nanoparticle-embedded polymer film. J. Appl. Phys.,2007, 102(3):033107.
    [242]L. Polavarapu, N. Venkatram, W. Ji, and Q. H. Xu. Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses. ACS Appl. Mater. Interfaces,2009,1(10):2298-2303.
    [243]G. C. Xing, J. Jiang, J. Y. Ying, and W. Ji. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Opt. Express,2010,18(6):6183-6190.
    [244]X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu. Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses. J. Phys. Chem. Lett.,2012,3(6):785-790.
    [245]B. Anand, A. Kaniyoor, S. S. S. Sai, R. Philip, and S. Ramaprabhu. Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Mater. Chem. C,2013,1(15):2773-2780.
    [246]A. K. Geim, and K. S. Novoselov. The rise of graphene. Nat. Mater.,2007,6:183-191.
    [247]Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H. B. Sun, and F. S. Xiao. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today,2010,5(1):15-20.
    [248]J. S. Qian, M. X. Liu, L. H. Gan, P. K. Tripathi, D. Z. Zhu, Z. J. Xu, Z. X. Hao, L. W. Chen, and D. S. Wright. A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Chem. Commun., 2013,49(29):3043-3045.
    [249]F. Lu, S. H. Wu, Y. Hung, and C. Y. Mou. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small,2009,5(12):1408-1415.
    [250]W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol.,2008,3:145-150.
    [251]Y. X Li, Z. Q. Wang, L. Yang, H. Gu, and G. Xue. Efficient coating of polystyrene microspheres with graphene nanosheets. Chem. Commun.,2011,47(38):10722-10724.
    [252]Y. Li, and Y. Wu. Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc,2009,131(16):5851-5857.
    [253]H. Zhang, and Y. Miyamoto. Graphene production by laser shot on graphene oxide:An ab initio prediction. Phys. Rev. B:Condens. Matter Mater. Phys.,2012,85:033402.
    [254]H. W. Chang, Y. C. Tsai, C. W. Cheng, C. Y. Lin, and P. H. Wu. Reduction of graphene oxide in aqueous solution by femtosecond laser and its effect on electroanalysis. Electrochem. Commun.,2012,23:37-40.
    [255]K. J. Ziegler, Z. N. Gu, H. Q. Peng, E. L. Flor, R. H. Hauge, and R. E. Smalley. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc.,2005,127 (5): 1541-1547.
    [256]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004,306:666-669.
    [257]V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal. Graphene based materials:past, present and future. Prog. Mater. Sci.,2011,56(8):1178-1271.
    [258]S. Guo, and S. Dong. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev.,2011,40(5):2644-2672.
    [259]X. Huang, X. Qi, F. Boey, and H. Zhang. Graphene-based composites. Chem. Soc. Rev., 2012,41(2):666-686.
    [260]Q. Xiang, J. Yu, and M. Jaroniec. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev.,2012,41(2):782-796.
    [261]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff. Graphene-based composite materials. Nature,2006,442:282-286.
    [262]Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy,2012,1(1):107-131.
    [263]T. Xu, L. Zhang, H. Cheng, and Y. Zhu. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B:Environm., 2011,101(3-4):382-387.
    [264]W. Ren, Y. Fang, and E. Wang. A Binary functional substrate for enrichment and ultrasensitive sers spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano,2011,5 (8):6425-6433.
    [265]Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regie, and H. Dai. CO3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater.,2011,10: 780-786.
    [266]Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou. Dramatically Enhanced photoresponse of reduced graphene oxide with linker-free anchored cdse nanoparticles. ACS Nano,2010,4 (6):3033-3038.
    [267]A. Prakash, and D. Bahadur. The role of ionic electrolytes on capacitive performance of zno-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces,2014,6(3):1394-1405.
    [268]Y. Li, X. Fan, J. Qi, J. Ji, S. Wang, G. Zhang, and F. Zhang. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res.,2010, 3(6):429-437.
    [269]B. H. Kim, M. J. Hackett, J. Park, and T. Hyeon. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater.2014,26(1):59-71.
    [270]H. Zhang, S. Chen, X. Quan, H. Yu, and H. Zhao. In situ controllable growth of noble metal nanodot on graphene sheet. J. Mater. Chem.,2011,21(34):12986-12990.
    [271]L. Shang, T. Bian, B. Zhang, D. Zhang, L. Z. Wu, C. H. Tung, Y. Yin, and T. Zhang. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica:robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed.,2014,53(1): 250-254.
    [272]S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet:a platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces,2013,5 (17):8724-8732.
    [273]L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O.Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari. Quantifying defects in graphene via raman spectroscopy at different excitation Energies. Nano Lett.,2011,11 (8): 3190-3196.
    [274]A. C. Ferrari, and D. M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech.,2013,8:235-246.
    [275]Q. L. Liu, B. C. Wang, C. G. Wang, Z. J. Tian, W. Qu, H. J. Ma, and R. S. Xu. Basicities and transesterification activities of Zn-Al hydrotalcites-derived solid bases. Green. Chem., 2014,16(5):2604-2613.
    [276]A. Prakash, and D. Bahadur. The role of ionic electrolytes on capacitive performance of zno-reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces.2014,6(3):1394-405.
    [277]T. Nakamura, H. Magara, Y. Herbani, and S. Sato. Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl. Phys. A,2011,104(4): 1021-1024.
    [278]S. Moussa, G. Atkinson, M. S. El-Shall, A. Shehata, K. M. AbouZeid, and M. B. Mohamed. Laser assisted photocatalytic reduction of metal ions by graphene oxide. J. Mater. Chem., 2011,21(26):9608-9619.
    [279]S. Moussa, V. Abdelsayed, and M. S. El-Shall. Laser synthesis of Pt, Pd, CoO and Pd-CoO nanoparticle catalysts supported on graphene. Chem. Phys. Lett.,2011,510(4-6):179-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700