氟溴苯分子和甲基苯甲醚分子的激发态和离子态光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香族化合物的激发态和离子态光谱研究在大气化学、燃烧化学、环境监测以及天体化学等领域有着重要的应用。通过对分子激发态和离子态光谱进行实验研究和理论计算,可以获得分子在激发态和离子态的几何结构、振动频率、激发能、电离能、分子轨道和对称性等多方面的信息,为深入研究分子的化学反应机制提供帮助。本文利用共振增强多光子电离(REMPI)技术和质量分辨阂值电离(MATI)光谱技术对芳香族化合物氟溴苯分子和甲基苯甲醚分子的激发态和离子态光谱进行了研究,得到以下主要结果:
     1.使用单光共振双光子电离(1C-R2PI)技术测量了三种同分异构体邻、间、对氟溴苯分子基态到第一电子激发态(S1←S0)的光谱,得到邻、间、对氟溴苯分子第一电子激发态(S1态)的激发能E1)分别为36987、36961和36223cm-1。结合理论计算,对邻、间、对氟溴苯分子S1态的谱峰进行了标识。研究表明氟溴苯分子S1态的激发能和振动能级结构由其受到的共振效应和诱导效应共同决定。此外,通过比较对氟溴苯分子的REMPI谱和由对氟溴苯分子解离生成的Br原子的REMPI谱,得到对氟溴苯分子在S1态的解离势垒(S1束缚态和排斥态交叉点相对S1态带源的能量差)约为2815cm-1(0.35eV)。
     2.使用1C-R2PI技术和MATI技术测量了间甲基苯甲醚分子顺反异构体的S1←S0的光谱和阈值电离光谱。得到顺式、反式间甲基苯甲醚分子的E1分别为36049±2和36117±2cm-1,绝热电离能(IE)分别为64859±5和65110±5cm-1。结合理论计算,解释了顺式、反式间甲基苯甲醚分子E1和IE存在差异的原因,并对S1态和离子基态D0态的谱峰进行了标识。研究表明间甲基苯甲醚分子顺反异构体在S1态和Do态的活性振动主要是甲基转动、面内环的运动和与取代基相关的弯曲振动。间甲基苯甲醚分子的S1态振动光谱、D0态离子光谱以及理论计算均表明这两个转动异构体在D0态的几何构型与S1态的中性几何构型相比有较大改变,取代基与取代基、取代基与苯环间的相互作用强度高低次序为:S0     3.使用1C-R2PI技术和MATI技术研究了反式邻甲基苯甲醚分子的S1←S0的光谱和阈值电离光谱。得到反式邻甲基苯甲醚分子的E1为36364±2cm-1,绝热IE为64755±5cm-1。结合理论计算对S1态和D0态的谱峰进行了标识。反式邻甲基苯甲醚分子的S1和IE相对苯甲醚分子和甲苯分子的S1和IE有相对红移,表明甲基和甲氧基与苯环的相互作用在S1和D0态时比在基态时强。反式邻甲基苯甲醚分子的S1态和D0态光谱以及理论计算均表明其在D0态的几何构型与S1态的几何构型相比有较大改变。
The research on vibronic and cation spectra of aromatic compounds has very important significance in the field of atmospheric environmental chemistry, combustion chemistry, environment monitoring and astrochemistry. The experimental results and theoretical calculations on the first electronically excited S1state and the cation ground Do state will help us to obtain the information about the geometry structure, vibrational frequency, excited energy, ionization energy, molecular orbital and symmetry of the molecules in the S1state and the Do state, and provide experimental basis for further research on the chemical reaction mechanism. In the present paper, the resonance-enhanced mutiphoton ionization (REMPI) and the mass-analyzed threshold ionization (MATI) techniques have been used to study the excited and ionic spectra of bromofluorobenzene and methylanisole. The following are the main results:
     1. The S1←S0electronic transition of o-, m-, and p-bromofluorobenzene were investigated by using one-color resonant two-photon ionization (1C-R2PI) technique. The first electronic excitation energies of o-, m-, and p-bromofluorobenzene were measured to be36987,36961, and36223cm-1, respectively. The vibrational bands observed in the REMPI spectra were assigned with the help of ab initio and density functional theory (DFT) calculations. The excitation energies and the vibrational bands of these molecules were determined by the combined action of resonant effect and inductive effect. In addition, comparing the REMPI spectrum of p-bromofluorobenzene and the REMPI spectrum of Br atom which come from the photodissociation of p-bromofluorobenzene, the potential barrier height (the energy of the crossing points between the bound S1state and a repulsive state relative to the S1minimum) of p-bromofluorobenzene in the S1state was determined to be lower than2815cm-1(0.35eV).
     2. The S1←S0electronic transition and threshold ionization of the cis and trans rotamers of m-methylanisole were investigated by using1C-R2PI and MATI techniques. The first electronic excitation energies were measured to be36049±2and36117±2cm-1, and the adiabatic ionization energies were determined to be64859±5and65110±5cm-1for cis-and trans-m-methylanisole, respectively. Results from the ab initio and DFT calculations provide satisfactory interpretation for our experimental findings on the difference of the transitional energies of the cis and trans rotamers and help us assign the vibronic and cation spectra obtained in the present experiments. The observed active vibrations of both rotamers of m-methylanisole in the electronically excited S1and cationic ground Do states mainly involve the methyl torsion, in-plane ring deformation, and substituent-sensitive bending vibrations. The present experimental and theoretical results show that the geometry of the cation in the Do state is somewhat different from that of the neutral in the S1state for cis-and trans-m-methylanisole. In addition, the strengths of the through-space substituent-substituent and substituent-ring interactions are found to follow the order:S0     3. The S1←S0electronic transition and threshold ionization of trans-o-methylanisole were investigated by using1C-R2PI and MATI techniques. The excitation energy of the S1←S0transition and the adiabatic ionization energy of this molecule were measured to be36364±2and64755±5cm-1, respectively. The vibronic and cation spectra of trans-o-methylanisole were assigned with the help of ab initio and DFT calculations. The red-shift of excitation energy and ionization energy with respect to those of anisole and toluene indicates that the interaction of the CH3and OCH3group with the ring is stronger in S1and Do states than that in the So state. Results from the calculations and the observed vibronic and cation spectra implies that the molecular geometry, symmetry, and vibrational coordinates of the cation changed too much during the D0←S1ionization process.
引文
[1]T. G. Chasteen. Relaxation mechanism for excited state molecules [EB]. http://www.shsu.edu/chm_tgc/chemilumdir/JABLONSKI.html.
    [2]马兴孝,孔繁敖.激光化学[M].合肥:中国科学技术大学出版社,1990.
    [3]邢其毅,裴伟伟,徐睿秋,裴坚.基础有机化学(上册,第三版)[M].北京:高等教育出版社,2005:170-171.
    [4]G. Varsanyi, S. Szoke. Vibrational spectra of benzene derivatives [M]. Academic Press, New York and London,1969.
    [5]徐克尊.高等原子分子物理学(第2版)[M].北京:科学出版社,2006:191-194.
    [6]W. Radloff, P. Farmanara, V. Stert, E. Schreiber, J. R. Huber. Ultrafast photodissociation dynamics of electronically excited CF2I2 molecules [J]. Chem. Phys. Lett.,1998 (291):173-178.
    [7]P. M. Johnson, C. E. Otis. Molecular multiphoton spectroscopy with ionization detection [J]. Annu. Rev. Phys. Chem.,1981 (32):139-157. [8] M. N. R. Asjfold. Multiphoton probing of molecular Rydberg states [J]. Mol. Phys.,1986 (58):1-20.
    [9]M. N. R. Ashfold, J. D. J. Howe. Multiphoton spectroscopy of molecular species [J]. Annu. Rev. Phys. Chem.,1994 (45):57-82
    [10]傅院霞,吕思斌,崔执凤.共振增强多光子电离技术及应用研究[J].蚌埠学院学报,2012,1(1),37-42.
    [11]夏慧荣,王祖庚.分子光谱学和激光光谱学导论(第1版)[M].上海:华东师范大学出版社,1989,156-201.
    [12]张国威,王兆民.激光光谱学原理与技术(第1版)[M].北京:北京理工大学出版社,1989,250-256.
    [13]F. Renth, M. Foca, A. Petter, F. Temps. Ultrafast transient absorption spectroscopy of the photo-induced Z-E isomerization of a photochromic furylfulgide [J]. Chem. Phys. Lett.,2006 (428):62-67.
    [14]N. K. Schwalb, F. Temps. Ultrafast electronic excitation in guanosine is promoted by hydrogen bonding with cytidine [J]. J. Am. Chem. Soc.,2007 (129):9272-9273.
    [15]C. Reichardt, R. A. Vogt, C. E. Crespo-Hernandez. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons:Excited-state dynamics in 1-nitronaphthalene [J]. J. Chem. Phys.,2009 (131):22451-22453.
    [16]K. Kleinermanns, D. Nachtigallova, M. S. de Vries. Excited state dynamic of DNA bases [J]. Int. Rev. Phys. Chem.,2013 (32):308-342.
    [17]H. Yasushi, Y. Hiroharu, S.Tsuguo. Effect of potential energy gap between the n-π* and the π-π* state on ultrafast photoisomerization dynamics of an azobenzene derivative [J]. J. Phys. Chem. A,2002 (106):3067-3071.
    [18]I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, J. N. Moore. Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene:dependence on excitation wavelength [J]. Chem. Phys. Lett.,1998 (290): 68-74.
    [19]S. G. Mayer, C. L. Thomsen, M. P. Philpott, P. J. Reid. The solvent-dependent isomerization dynamics of 4-(dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy [J]. Chem. Phys. Lett.,1999 (314):246-254.
    [20]K. Watanabe. Photoionization and total absorption cross section of gases.1. Ionization potentials of several molecules-cross sections of NH3 and NO [J]. J. Chem. Phys.,1954 (22): 1564-1570.
    [21]C. C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Selected cis- and trans-p-methoxystyrene rotamers studied by mass-analyzed threshold ionization spectroscopy [J]. Chem. Phys. Lett.,2011 (503):23-28.
    [22]D. W. Turner, M. I. Al Jobory. Determination of ionization potentials by photoelectron energy measurement [J]. J. Chem. Phys.,1962 (37):3007-3008.
    [23]D. W. Turner, A. D. Baker, C. Barker, C. R. Brundle. Molecular photoelectron spectroscopy: A hand book of He 584 A spectra [M]. Interscience, London,1970.
    [24]M. I. Aljoboury, D. W. Turner. Molecular photoelectron spectroscopy.1. Hydrogen and nitrogen molecules [J]. J. Chem. Soc,1963:5141-5147.
    [25]R. R. Herm, M. G. Inghram. Measurement of threshold electrons in photoionization of Ar Kr and Xe [J]. J. Chem. Phys.,1967 (46):4995-4996.
    [26]T. Baer, W. B. Peatman, E. W. Schlag. Photoionization resonance studies with a steradiancy analyzer. Ⅱ. The Photoionization of CH3I [J]. Chem. Phys. Lett.,1969 (4):243-247.
    [27]W. B. Peatman, T. B. Borne, E. W. Schlag. Photoionization resonance spectra I. Nitric oxide and benzene [J]. Chem. Phys. Lett.,1969 (3):492-497.
    [28]R. Spohr, P. M. Guyon, W. A. Chupka, J. Berkowit. Threshold photoelectron detector for sse in vacuum ultraviolet [J]. Rev. Sci. Instrum.,1971 (42):1872-1879.
    [29]P. M. Guyon, R. Spohr, W. A. Chupka, J. Berkowitz. Threshold photoelectron-spectra of H2, D2, and F2 [J]. J. Chem. Phys.,1976 (65):1650-1658.
    [30]K. Mullerdethlefs, M. Sander, E. W. Schlag. A novel method capable of resolving rotational ionic states by the detection of threshold photoelectrons with a resolution of 1.2 cm-1 [J]. Z. Naturforsch.A.,1984(39):1089-1091.
    [31]C. Linton, B. Simard, H. P. Loock, S. Wallin, G. K. Rothschopf, R. F. Gunion, M. D. Morse, P. B. Armentrout. Rydberg and pulsed field ionization-zero electron kinetic energy spectra of YO [J]. J. Chem. Phys.,1999 (111):5017-5026.
    [32]L. C. Zhu, P. Johnson. Mass analyzed threshold ionization spectroscopy [J]. J. Chem. Phys., 1991 (94):5769-5771.
    [33]W. B. Tzeng, J. L. Lin. Ionization energy of p-fluoroaniline and vibrational levels of p-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy [J]. J. Phys. Chem. A.,1999 (103):8612-8619.
    [34]C. E. H. Dessent, S. R. Haines, K. Muller-Dethlefs. A new detection scheme for synchronous, high resolution ZEKE and MATI spectroscopy demonstrated on the Phenol center dot Ar complex [J]. Chem. Phys. Lett.,1999 (315):103-108.
    [35]姚关心.CH3COCH3和CH3SCH3分子共振增强多光子电离解离动力学的实验研究[D].芜湖:安徽师范大学,2005:5-20.
    [36]F. V. Bunkin, A. M. Prokhorov. The excitation and ionization of atoms in a strong radiation field [J]. Sov. Phys. JETP.,1964 (19):739-743.
    [37]L. V. Keldysh. Ionization in the field of high-intensity electromagnetic wave [J]. Zh. Eksp. Teor. Fiz.,1964 (47):1945-1957.
    [38]P. D. Maker, R. W. Terhune, C. W. Savage. Quantum Electronics [M]. Columbia Univ. Press, New York,1964:1559.
    [39]S. V. Andreyev, V. S. Antonov, I. N. Knyazev, V. S. Letokhov. Two-step photoionization of H2CO by radiation of N2- and H2- lasers and measurement of the lifetime of its 1A2 state [J]. Chem. Phys. Lett.,1977 (45):166-168.
    [40]U. Boesl, H. J. Neusser, E. W. Schlag. Two-photon ionization of polyatomic molecules in a mass spectrometer [J]. Z. Naturforsch.,1978 (33A):1546-1548.
    [41]L. Zandee, R. B. Bernstein, D. A. Lichtin. Vibronic/mass spectroscopy via multiphoton ionization of a molecular beam:the I2 molecule [J]. J. Chem. Phys.,1978 (69):3427-3429.
    [42]姚关心,汪小丽,杜传梅,李慧敏,张先鼓,郑贤锋,季学韩,崔执凤.二甲基硫分子的共振增强多光子电离解离过程的实验研究[J].原子与分子物理学报,2006(6):78-82.
    [43]张瑾.CH3Br和CH2C12分子紫外激光光解离动力学的实验研究[D].芜湖:安徽师范大学,2004.
    [44]汪小丽,姚关心,张先燚,许新胜,凤尔银,季学韩,崔执凤.二能级系统共振增强多光子电离过程的理论研究[J].中国激光,2005,32(9):1211-1216.
    [45]冉琴,陈旸,张立敏,戴静华,马兴孝.多光子过程光强指数的新应用—激发截面估计[J].化学物理学报,1996,9(2):104-112.
    [46]M. N. R. Ashfold, J. D. Howe. Multiphoton spectroscopy of molecular species [J]. Annu. Rev. Phys. Chem.,1994 (45):57-82.
    [47]M. N. R. Ashfold, S. G. Clement, J. D. Howe, C. M. Western. Multiphoton ionisation spectroscopy of free radical species [J]. J. Chem. Soc. Faraday Trans.,1993 (89):1153-1172.
    [48]J. Eberlein, M. Creuzburg. Dissociation of CH4 in a krypton matrix:VUV spectra of atomic C and of the radical CH [J]. Molecular Physics,1999,96 (3):451-456.
    [49]L. Santos, E. Martinez, B. Ballesteros, J. Sanchez. Molecular structures and vibrations of m-methylaniline in the So and S1 states studied by laser induced fluorescence spectroscopy and ab initio calculations [J]. Spectrochim. Acta.,2000,56A (10):1905-1915.
    [50]S. Yan, L. H. Spangler. Ring mediated coupling of the internal motions of the amine and methyl groups in p-methylaniline [J]. J. Chem. Phys.,1992 (96):4106-4117.
    [51]X.-Q. Tan, D. W. Pratt. High resolution electronic spectroscopy ofp-toluidine. A precessing rotor model for G12 molecules [J]. J. Chem. Phys.,1994 (100):7061-7067.
    [52]K. Muller-Dethlefs, M. Sander, E. W. Schlag. Two-colour photoionization resonance spectroscopy of NO:Complete separation of rotational levels of NO+ at the ionization threshold [J]. Chem. Phys. Lett.,1984 (112):291-294.
    [53]E. W. Schlag. ZEKE spectroscopy [M]. Cambridge University press, Cambridge,1998.
    [54]K. Muller-Dethlefs, M. Sander, E. W.Schlag. Two-colour photoionization resonance spectroscopy of NO:Complete separation of rotational levels of NO+at the ionization threshold [J]. Chem. Phys. Lett.,1984 (112):291-294.
    [55]K. Muller-Dethlefs, E. W. Schlag. High-resolution zero kinetic energy (ZEKE) photoelectron spectroscopy of molecular systems [J]. Annu. Rev. Phys. Chem.,1991 (42): 109-136.
    [56]G. Reiser, W. Habenicht, K. Muller-Dethlefs, E. W. Schlag. The ionization energy of nitric oxide [J]. Chem. Phys. Lett.,1988 (152):119-123.
    [57]J. E. Braun, T. Mehnert, H. J. Neusser. Binding energy of van der Waals- and hydrogen-bonded clusters by threshold ionization techniques [J]. Int. J. Mass Spectrom.,2000 (203):1-18.
    [58]K. Muller-Dethlefs, E.W. Schlag. Chemical applications of zero kinetic energy (ZEKE) photoelectron spectroscopy [J]. Angew. Chem. Int. Ed.,1998 (37):1346-1374.
    [59]I. Powis, T. Bear. High resolution laser photoionization and photoelectron studies [M]. Wiley, Chichester,1995.
    [60]F. Merkt, R. N. Zare. On the lifetimes of Rydberg states probed by delayed pulsed field ionization [J]. J. Chem. Phys.,1994 (101):3495-3505.
    [61]J. Jortner, M. Bixon. On the dynamics of high Rydberg states of large molecules [J]. J. Chem. Phys.,1995 (102):5636-5646.
    [62]J. W. Hepburn. Photoelectron spectroscopy in a new light:zero kinetic energy (ZEKE) photoelectron spectrosocopy with coherent vacuum ultraviolet light [J]. Chem. Soc. Rev.,1996 (25):281-287.
    [63]H. J. Dietrich, K. Muller-Dethlefs. Fractional stark state selective electric field ionization of very high-n Rydberg states of molecules [J]. Phys. Rev. Lett.,1996 (76):3530-3533.
    [64]石顺祥,陈国夫,赵卫,刘继芳.非线性光学[M].西安:西安电子科技大学出版社,2003.
    [65]马礼敦,杨福家.同步辐射应用概论[M].上海:复旦大学出版社,2001.
    [66]M. Lee, M. S. Kim. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of vinyl bromide:Franck-Condon analysis and vibrational assignment [J]. J. Chem. Phys.,2003 (119):5085-5093. [67] M. Lee, M. S. Kim. One-photon mass-analyzed threshold ionization spectroscopy of trans-and cis-1-C3H5Br:Ionization energies and vibrational assignments for the cations [J]. J. Phys. Chem. A,2003,107(51):11401-11408.
    [68]C. Linton, B. Simard, H. P. Loock, S. Wallin, G. K. Rothschopf, R. F. Gunion, M. D. Morse, P. B. Armentrout. Rydberg and pulsed field ionization zero electron kinetic energy spectra of YO [J]. J. Chem. Phys.,1999 (111):5017-5026.
    [69]R. Lindner,. H. Sekiya, B. Beyl, K. Muller-Dethlefs. Structure and symmetry of the benzene cation [J]. Angew. Chem. Int. Ed. Engl,1993 (32):603-606.
    [70]R. Lindner, H. Sekiya, K. Muller-Dethlefs, The dynamic Jahn-Teller effect in the benzene cation-rotationally resolved zeke photoelectron spectra of the Nu-6(E2g) Mode [J]. Angew. Chem. Int. Ed. Engl,1993 (32):1364-1366.
    [71]J. Manz, L. Woests. Femtosecond Chemistry [M]. VGH Weinheim, New York,1995.
    [72]I. Fisch, M. J. J. Vrakking, D. M. Villeneuve, A. Stolow. Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics [J]. Chem. Phys.,1996 (207):331-354.
    [73]A. Zavriyev, I. Fisch, D. M. Villeneuve, A. Stolow. Ponderomotive effects in zero kinetic energy photoelectron spectroscopy with intense femtosecond pulses [J]. Chem. Phys. Lett.,1995 (234):281-288.
    [74]A. J. Dobbyn, J. M. Hutson. The influence of the ionization potential on the simulated ion signal from femtosecond pump-probe experiments [J]. Chem. Phys. Lett.,1995 (236):547-552.
    [75]I. Fisch, D. M. Villeneuve, M. J. J. Vrakking, A. Stolow. Femtosecond wave-packet dynamics studied by time-resolved zero-kinetic energy photoelectron spectroscopy [J]. J. Chem. Phys.,1995 (102):5566-5569.
    [76]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. GAUSSIAN 09 (Revision A.01)[CP]. Gaussian Inc., Wallingford CT, 2009.
    [77]Y. T. Lee. J. D. McDonald, P. R. LeBreton, D. R. Herschbach. Molecular beam reactive scattering apparatus with electron bombardment detector [J]. Rev. Sci. Instrum.,1969,40 (11): 1402-1408.
    [78]Z. Karny, R. N. Zare. Effect of vibrational excitation on the molecular beam reactions of Ca and Sr with HF and DF [J]. J. Chem. Phys.,1978,68 (8):3360-3365.
    [79]D. A. Dahl, J. E. Delmore, A. D. Appelhans. SIMION PC/PS2 electrostatic lens design program [J]. Rev. Sci. Instrum.,1990,61 (1):607-609.
    [80]C. R. C. Wang, C. C. Hsu, W. Y. Liu, W. C. Tsai, W. B. Tzeng. Determination of laser beam waist using photoionization time-of-flight mass spectrometer [J]. Rev. Sci. Instrum.,1994,65 (9): 2776-2780.
    [81]W. C. Wiley, I. H. Mclaren. Time-of-flight mass spectrometers (TOFMS) can detect ions over a wide mass range simultaneously [J]. Rev. Sci. Instrum.,1955,26 (12):1150-1157.
    [82]I. Pugliesi, N. M. Tonge, M. C. R. Cockett. An excited state ab initio and multidimensional Franck-Condon analysis of the AIB2←X1A1 band system of fluorobenzene [J]. J. Chem. Phys., 2008 (129):104303.
    [83]J.-I. Murakami, K. Kaya, M. Ito. Multiphoton ionization spectra of benzene, fluorobenzene, and chlorobenzene resonant with S0-S1 transitions by use of nozzle beam method [J]. J. Chem. Phys.,1980 (72):3263-3270.
    [84]S. Calvo, F. Castano, F. J. Basterretxea. Infrared laser absorption spectroscopy of the 2v10b band of chlorobenzene [J]. J. Mol. Struc.,2010 (975):190-193.
    [85]S. Calvo, M. N. Sanchez, F. Castano, F. J. Basterretxea. Diode laser spectroscopy of the v7a band of fluorobenzene [J]. J. Mol. Spectrosc.,2010,261 (2):124-128.
    [86]E. D. Lipp, C. J. Seliskar. The vibrational spectrum of fluorobenzene [J]. J. Mol. Spectrosc., 1978,73 (2):290-304.
    [87]P. A. Graham, S. H. Kable. The electronic spectroscopy of jet-cooled m-difluorobenzene [J]. J. Chem. Phys.,1995 (103):6426-6439.
    [88]A. K. Swinn, S. H. Kable. The S1(IA1)-S0(1A1) electronic transition of jet-cooledo-difluorobenzene [J]. J. Mol. Spectrosc.,1998,191 (1):49-67.
    [89]E. A. Rohlfing. Resonant two-photon ionization spectroscopy of jet-cooled p-dichlorobenzene [J]. J. Phys. Chem.,1989,93 (1):94-101.
    [90]A. Gaber, M. Riese, J. Grotemeyer. Mass analyzed threshold ionization spectroscopy of o-, m-, and p-dichlorobenzenes. Influence of the chlorine position on vibrational spectra and ionization energy [J]. J. Phys. Chem. A,2008,112 (3):425-434.
    [91]A. Gaber, M. Riese, F. Witte, J. Grotemeyer. REMPI and MATI spectroscopic investigation of dichlorobenzene-argon complexes:determination of the binding energies [J]. Phys. Chem. Chem. Phys.,2009 (11):1628-1635.
    [92]N. A. Narasimham, M. Z. E1-Sabban, J. R. Nielsen. Vibrational spectra of fluorinated aromatics. X. p-fluorochloro-, p-fluorobromo-, and p-fluoroiodobenzene [J]. J. Chem. Phys., 1956,24(2):420-432.
    [93]N. Sundaraganesan, C. Meganathan, B. D. Joshua, P. Mani, A. Jayaprakash. Molecular structure and vibrational spectra of 3-chloro-4-fluoro benzonitrile by ab initio HF and density functional method [J]. SpectrochimicaActaA,2008,71 (3):1134-1139.
    [94]Y.-J. Liu, P. Persson, H. O. Karlsson, S. Lunell. Photodissociation of bromobenzene, dibromobenzene, and 1,3,5-tribromobenzene [J]. J. Chem. Phys.,2004 (120):6502-6509.
    [95]G. Varsanyi, S. Holly, T. Farago. Vibrational spectra and normal vibrations of bromofluorobenzene isomers-Ⅲ o-bromofluorobenzene [J]. Spectrochim. Acta,1963 (19): 683-689.
    [96]G. Varsanyi, S. Holly, T. Farago. Vibrational spectra and normal vibrations of bromofluorobenzene isomers-Ⅱ m-bromofluorobenzene [J]. Spectrochim. Acta,1963 (19): 675-681.
    [97]G. Varsanyi, S. Holly, T. Farago. Vibrational spectra and normal vibrations of bromofluorobenzene isomers-Ⅰ p-bromofluorobenzene [J]. Spectrochim. Acta,1963 (19): 669-674.
    [98]O. A. Borg, Y.-J. Liu, P. Persson, S. Lunell, D. Karlsson, M. Kadi, J. Davidsson. Photochemistry of bromofluorobenzenes [J]. J. Phys. Chem. A,2006 (110):7045-7056.
    [99]Y. Tang, W.-B. Lee, B. Zhang, K.-C. Lin. Photodissociation dynamics of bromofluorobenzenes using velocity imaging technique [J]. J. Phys. Chem. A,2008 (112): 1421-1429.
    [100]W.-Z. Li, Sh.-F. Chen, Y.-J.Liu. Relativistic multireference calculation of photodissociation of o-, m-, and p-bromofluorobenzene [J]. J. Chem. Phys.,2011 (134):114303.
    [101]B. F. Tang, R. S. Zhu, Y. Tang, L. Ji, B. Zhang. Photodissociation of bromobenzene at 267 and 234nm:experimental and theoretical investigation of the photodissociation mechanism [J]. Chem. Phys. Lett.,2003 (381),617-622.
    [102]W. C. Wiley, I. H. Mclaren. Time-of-flight mass spectrometer with improved resolution [J]. Rev. Sci. Instrum.,1955,26 (12):1150-1157.
    [103]B. C. Dian, A. Longarte, P. R. Winter, T. S. Zwier. The dynamics of conformational isomerization in flexible biomolecules. I. Hole-filling spectroscopy of N-acetyl tryptophan methyl amide and N-acetyl tryptophan amide [J]. J. Chem. Phys.,2004 (120):133-147.
    [104]C. P. Pan, M. D. Barkley. Conformational effects on tryptophan fluorescence in cyclic hexapeptides [J]. Biophys. J.,2004 (86):3828-3835.
    [105]A. Oikawa, H. Abe, N. Mikami, M. Ito. Electronic spectra and ionization potentials of rotational isomers of several disubstituted benzenes [J]. Chem. Phys. Lett.,1985,116 (1):50-54.
    [106]T. Ichimura, T. Suzuki. Photophysics and photochemical dynamics of methylanisole molecules in a supersonic jet [J]. J. Photochem. Photobio. C:Photochem. Rev.,2000 (1): 79-107.
    [107]P. J. Breen, E. R. Bernstein, H. V. Secor, J. I. Seeman. Spectroscopic observation and geometry assignment of the minimum energy conformations of methoxy-substituted benzenes [J]. J. Am. Chem. Soc.,1989 (111):1958-1968.
    [108]J. McMurry. Organic Chemistry (7th ed.)[M]. Brooke/Cole Publishing Company, Belmont, California,2007.
    [109]H. Kojima, K. Miyake, K. Sakeda, T. Suzuki, T. Ichimura, N. Tanaka, D. Negishi, M. Takayanagi, I. Hanazaki. Methyl torsional potentials of rotational isomers of m-methylanisole studied by spectral hole-burning spectroscopy [J]. J. Mol. Struct.,2003 (655):185-190.
    [110]S.-i. Kinoshita, H. Kojima, T. Suzuki, T. Ichimura, K. Yoshida, M. Sakai, M. Fujii. Pulsed field ionization zero kinetic energy photoelectron study on methylanisole molecules in a supersonic jet [J]. Phys. Chem. Chem. Phys.,2001 (3):4889-4897.
    [111]M. Pradhan, C. Y. Li, J. L. Lin, W. B. Tzeng. Mass-analyzed threshold ionization spectroscopy of anisole cation and the OCH3 substitution effect [J]. Chem. Phys. Lett.,2005 (407):100-104.
    [112]K.-T. Lu, G. C. Eiden, J. C. Weisshaar. Toluene cation:Nearly free rotation of the methyl group[J]. J. Phys. Chem.,1992 (96):9742-9748.
    [113]K. S. Shiung, D. Yu, H. C. Huang, W. B. Tzeng. Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy [J]. J. Mol. Spectrosc.,2012 (274):43-47.
    [114]S. Ullrich, W. D. Geppert, C. E. H. Dessent, K. Muiller-Dethlefs. Observation of rotational isomers I:A ZEKE and hole-burning spectroscopy study of 3-methoxyphenol [J]. J. Phys. Chem. A,2000 (104):11864-11869.
    [115]S. C. Yang, S. W. Huang, W. B. Tzeng. Rotamers of o- and m-dimethoxybenzenes studied by mass-analyzed threshold ionization spectroscopy and theoretical calculations [J]. J. Phys. Chem. A,2010 (114):11144-11152.
    [116]J. L. Lin, C.-J. Huang, C.-H. Lin, W. B. Tzeng. Resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyanilline [J]. J. Mol. Spectrosc.,2007 (244):1-8.
    [117]S. Zhang, B. F. Tang, Y. M. Wang, B. Zhang. Vibrational spectrum and ab initio calculations of m-xylene [J]. Chem. Phys. Lett.,2004 (397):495-499.
    [118]A. Held, H. L. Selzle, E. W. Schlag. Methyl group rotational dynamics in o-, m-, and p-xylene cations from pulsed field ionization zero-kinetic-energy spectroscopy [J]. J. Phys. Chem. A,1998 (102):9625-9630.
    [119]J. L. Lin, K. C. Lin, W. B. Tzeng. Mass-analyzed threshold ionization spectroscopy of o-, m-, and p-methylaniline cations:Vicinal substitution effects on electronic transition, ionization, and molecular vibration [J]. J. Phys. Chem. A,2002 (106):6462-6468.
    [120]K. Okuyama, N. Mikami, M. Ito. Internal rotation of the methyl group in the electronically excited state:o-and m-toluidine [J]. Laser Chem.,1987 (7):197-211.
    [121]J. H. Huang, K. L. Huang, S. Q. Liu, Q. Luo, W. B. Tzeng. Molecular structures and vibrations of cis and trans m-cresol in the electronically excited S1 and cationic Do states [J]. J. Photochem. and Photobio. A:Chem.,2007 (188):252-259.
    [122]J. G. Huang, J. L. Lin, W. B. Tzeng. Rotamers of m-cresol cation studied by mass-analyzed threshold ionization spectroscopy [J]. Spectrochim. Acta A,2007 (67):989-994.
    [123]W. B. Tzeng, J. L. Lin. Ionization energy of p-fluoroaniline and vibrational levels of p-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy [J]. J. Phys. Chem. A,1999 (103):8612-8619.
    [124]W. A. Chupka. Factors affecting lifetimes and resolution of Rydberg states observed in zero-electron-kinetic-energy spectroscopy [J]. J. Chem. Phys.,1993 (98):4520-4530.
    [125]E. W. Schlag. ZEKE Spectroscopy [M]. Cambridge University Press, Cambridge,1998.
    [126]B. Zhang, C. Li, H. Su, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of p-fluorophenol and the p-fluoro substitution effect [J]. Chem. Phys. Lett.,2004 (390):65-70.
    [127]L. Alvarez-Valtierra, J. T. Yi, D. W. Pratt. Rotationally resolved electronic spectra of 2-and 3-methylanisole in the gas phase:A study of methyl group internal rotation [J]. J. Phys. Chem. B,2006 (110):19914-19922.
    [128]E. B. Wilson. The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule [J]. Phys. Rev.,1934 (45):706-714.
    [129]G. Varsanyi, S. Szoke. Vibrational Spectra of Benzene Derivatives [M]. Academic Press, New York and London,1969.
    [130]G. Varsanyi. Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives [M]. Wiley, New York,1974.
    [131]J. L. Lin, Y. C. Li, W. B. Tzeng. Mass-analyzed threshold ionization spectroscopy of aza-aromatic bicyclic molecules:Benzimidazole and benzotriazole [J]. Chem. Phys.,2007 (334): 189-195.
    [132]H. C. Huang, K. S. Shiung, B. Y. Jin, W. B. Tzeng. Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy [J]. Chem. Phys.,2013 (425):114-120.
    [133]J. McMurry. Organic Chemistry (7th ed.) [M]. Brooke/Cole Publishing Company, Belmont, California,2007.
    [134]K. Yosida, K. Suzuki, S.-i. Ishiuchi, M. Sakai, M. Fujii, C. E. H. Dessent, K. Mtiller-Dethlefs. The PFI-ZEKE photoelectron spectrum of m-fluorophenol and its aqueous complexes:Comparing intermolecular vibrations in rotational isomers [J]. Phys. Chem. Chem. Phys.,2002 (4):2534-2538.
    [135]E. Fujimaki, A. Fujii, T. Ebata, N. Mikami. Autoionization-detected infrared spectroscopy of intramolecular hydrogen bonds in aromatic cations. I. Principle and application to fluorophenol and methoxyphenol [J]. J. Chem. Phys.,1999 (110):4238-4247.
    [136]M. Shinozaki, M. Sakai, S. Yamaguchi, T. Fujioka, M. Fujii. S1-S0 Electronic spectrum of jet-cooled m-aminophenol [J]. Phys. Chem. Chem. Phys.,2003 (5):5044-5050.
    [137]Y. Xie, H. Su, W. B. Tzeng. Rotamers of m-aminophenol cation studied by mass analyzed threshold ionization spectroscopy and theoretical calculations [J]. Chem. Phys. Lett.,2004 (394): 182-186.
    [138]Y. Xu, S. Y. Tzeng, W. B. Tzeng. Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy [J]. Spectrochim. Acta A, 2013 (102):365-370.
    [139]C. Y. Tsai, W. B. Tzeng. Rotamers of 3,4-difluorophenol studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy [J]. J. Photochem. Photobio. A, 2013 (270):53-58.
    [140]M. Gerhards, S. Schumm, C. Unterberg, K. Kleinermanns. Structure and vibrations of catechol in the S, state and ionic ground state [J]. Chem. Phys. Lett.,1998 (294):65-70.
    [141]J. L. Lin, J. L. Lin, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of N-deuterium substituted indoline cation:Isotope effect on the electronic transition, ionization and molecular vibration [J]. Chem. Phys. Lett.,2003 (371):662-669.
    [142]S. C. Yang, S. W. Huang, W. B. Tzeng. Rotamers of o- and m-dimethoxybenzenes studied by mass-analyzed threshold ionization spectroscopy and theoretical calculations [J]. J. Phys. Chem. A,2010 (114):11144-11152.
    [143]J. H. Huang, W. B. Tzeng, K. L. Huang. Vibrational spectrum of o-dimethoxybenzene in the Si and Do States [J]. Chin. J. Chem.,2008 (26):51-54.
    [144]J. L. Lin, C.-J. Huang, C.-H. Lin, W. B. Tzeng. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyanilline [J]. J. Mol. Spectrosc.,2007 (244):1-8.
    [145]L. W. Yuan, C. Y. Li, J. L. Lin, S. C. Yang, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of o-fluorophenol and o-methoxyphenol cations and influence of the nature and relative location of substituents [J]. Chem. Phys.,2006 (323):429-438.
    [146]H. C. Huang, B. Y. Jin, W. B. Tzeng. Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of o-chloroanisole [J]. J. Photochem. and Photobio. A:Chem.,2012 (243):73-79.
    [147]W. B. Tzeng, K. Narayanan, J. L. Lin, C. C. Tung. Structures and vibrations of o-methylaniline in the S0 and S1 states studied by ab initio calculations and resonant two-photon ionization spectroscopy [J]. Spectrochimica Acta Part A,1999 (55):153-162.
    [148]C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng. Rotamers of m-methylanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy [J].
    [149]J. G. Huang, C. Y. Li, W. B. Tzeng. Mass analyzed threshold ionization spectroscopy of p-methylanisole cation and the substitution effect [J]. Chem. Phys. Lett.,2005 (414):276-281.
    [150]J. G. Huang, W. B. Tzeng. Vibrations and theoretical calculations of p-methylanisole in the first electronically excited S1 and ionic ground Do states [J]. Spectrochimica Acta Part A,2007 (67):824-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700