大型复杂结构-桩-土振动台模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天津站交通枢纽工程作为北京奥运的配套项目,天津市“十一五”规划重点工程,需要对工程结构的各方面进行深入研究。作为生命线工程的重要组成部分,交通枢纽抗震问题已经成为城市工程抗震和防灾减灾研究的重要课题,因此以天津站交通枢纽工程为背景,选取天津站整体结构有代表性的一部分按照比尺缩小制作成模型,考虑其与土相互作用,首次开展了大型复杂结构-桩-土体系振动台模型试验研究,与国内外已有的土-结构相互作用振动台模型试验相比,该试验模型由土、群桩、地下结构、地上结构多个部分组成,具有尺寸大、体系复杂的特点,更具有代表性,其主要工作和结论如下:
     1.通过推导动力模型试验的相似关系,着重指出结构-桩-土体系模型与原型各物理量难以做到完全相似,于是本文提出了用土的卓越周期相似比来设计模型土,使结构-桩-土体系模型与原型之间做到部分相似,振动台试验结果证明这种方法是合理的。
     2.给出求解土卓越周期的有限元数值模型,指出波动理论公式( T = 4H/v_s)求卓越周期的适用范围及存在偏差,通过模型土模态分析研究了模型土卓越周期随土体性质、土域范围及边界条件的变化规律,得出通过适当提高模型土的宽高比和合理选择边界条件及模型土材料配合比均可以减小边界对模型土的影响。利用动三轴试验数据拟合,求出模型土的动剪切模量和阻尼比计算公式中需要的参数,提出用数值拟合来求模型土的最大动剪切模量的方法;求出模型土的动C、φ值并与其静C、φ值相比较,结果表明:动力加载中,土的C值明显降低,φ值有所增长,有限元数值计算动力模型中,推荐使用动C、φ值。
     3.完成模型制作,主要采用以下做法:结构分两部分制作、后组装;桩做成空心内部填充铁砂作为配重;用铜管微粒混凝土模拟钢管混凝土;为减小刚度影响,采用泡沫塑料对地下结构开口两端封口;用玻璃板替代原屋面钢网架。试验表明这些措施行之有效。
     制作土箱并通过试验数据和数值分析对其进行检验,研究表明:在土箱底部,通过设置分割条嵌入模型土中做成的摩擦边界效果较好;在土箱垂直于地震动两侧壁上,聚苯乙烯泡沫塑料做成的柔性边界对Taft波和人工波加载的效果较好,而对天津波加载效果略差;在土箱平行于地震动两侧壁上,通过侧壁内表面贴聚氯乙烯薄膜并涂抹润滑油做成的滑动边界起到一定的效果。
     4.完成测点布置、模型土装填、模型组装及确定试验加载制度等试验准备工作,提出一些有效的新做法,如加速度计的埋设采用挖埋而不是填埋的方法,现场材料含水率的测定中采用双锅加热法烘干土和锯末。
     5.试验结果整理从分析大型复杂结构-桩-土振动台模型试验数据入手,用加速度、变形、正应变、动土压力等指标全面分析结构的地震响应,并比较桩、地下结构、地上结构的不同响应。研究发现:
     1)结构不同部分最大地震响应发生的频率不尽相同,且受地震波频谱特性及自身频率影响,天津波加载时结构的地震响应较大;
     2)地震波向上传播过程中,土与结构对地震波均有过滤作用,地表以下,当震级较小时,土-结构对地震波起放大作用,随着震级的增加,对地震波放大作用减缓甚至减小;
     3)最大变形随结构高度增加逐渐增大,在桩与地下结构交界处和地表处,位移改变较大;
     4)地下结构柱、桩最大正应变呈中间大、两头小分布,残余正应变对结构正应变影响比较大,影响呈桩、地下结构、地上结构递减;
     5)残余动土压力对动土压力分布有一定影响,土越深,影响越大,最大动土压力随着深度增加呈两头大、中间小分布,且地表处最大,总的土压力受最大动土压力影响较大,随深度增加有先降低后增大的趋势。
     6.加载过程中,结构最大层间位移角基本满足规范限值,并且从正应变看,只是部分结构达到极限应变,从动土压力看,只有部分土进入塑性,直至试验加载结束,结构整体并未倒塌,表明结构满足抗震设计的要求。
As a supporting project of the Beijing Olympics and key project of Tianjin Eleventh Five-Year Plan, the engineering and construction of Tianjin Station transportation junction requires deep study on all aspects of the structures. As an important component of the lifeline engineering, the seismic performance of the transportation junction has become an important issue of the city earthquake disaster prevention and mitigation engineering. And therefore, a shaking table test studying large-scale complex structure -pile- soil interaction is carried out on the transportation hub of Tianjin station. In the test the scaled down model was established based on a typical section of Tianjin Station. The model is large and multiplex which is made of piles, underground structure and groung structure. The major work and conclusions are as follows.
     1. In developing the similarity ratio of the dynamic model test, it is found that it is hard to make the model’s physical parameters completely similar to the prototype’s of the complex structure -pile- soil interaction system. Hence, the similarity ratio based on soil’s predominant period is adopted in the shaking table test to design the model soil, which enables partial similarity between the physical model and the prototype of soli-pile-structure interaction system. It is proven that the method is reasonable by the test resutls.
     2. The finite element numerical model to get the soil’s predominant period is established, through which it is found that the traditional fluctuation theory formula ( T = 4H/v_s) solving soil’s predominant period shows a certain amount of error with its scope of applicability. The effects of the soil property, size of soil domain and boundary conditions on the model soil’s predominant period are studied though a series of soil modal analyses. It is found that the soil would be affected less by increasing model soil’s ratio of the width and height, selecting reasonable boundary conditions and model soil’s mixing proportion.
     The parameters needed in the formulas solving model soil’s dynamic shear modulus and damping are obtained through data fitting of the model soil’s dynamic triaxial tests. The method solving model soil’s maximum dynamic shear modulus by data fitting is proposed. At the same time, by comparing dynamic C &φwith static C &φ, it shows that the model soil’s value of C reduces obviously and value ofφ increases a little during dynamic loading. Thus, it is recommended that parameters of dynamic C &φbe used in the finite element numerical model.
     3. The following measures are adopted in setting up the model, which include the model being divided into two parts, fabricated separately and assembled together finally; the piles being made of hollow pipes filled with iron ore to balance the weight; the micro concrete-filled brass tubes being used to simulate the concrete-filled steel tubes; using foam plastic to seal both opening ends of underground structure to reduce the stiffness effect; replacing the original steel truss roof with glass plate, etc. It is proven by the test results that these measures are effective.
     The soil box is fabricated and verified though both test data and numerical analysis. Research shows that the frictional boundary applied at the bottom of the soil chamber using dividing strip embedded inside of the model soil works very well. It is also proven that the flexible boundary made of foamed polystyrene applied at the side walls perpendicular to the seismic direction works well to Taft seismic wave and artificial seismic wave but doesn’t work so well to Tianjin seismic wave. The sliding boundary using oil lubricated polyvinyl chloride film attached onto the longitudinal inner side surface of the soil chamber works to a certain extent although with relatively large deviation.
     4. The other test preparation work includes the measuring points arrangement, the model soil filling, model assembling and loading steps determining etc. Some new practices are adopted. For examples, accelerometers in the soil are buried after digging a little well inside the filled soil rather than being buried when filling the soil and double oven heating is used to dry the soil and sawdust in their moisture measurement.
     5. During the data analysis of the shaking table test studying complex structure-pile-soil interaction, the structure’s earthquake response is fully studied based on the acceleration, maximum deformation, maximum normal strain and maximum dynamic soil pressure etc. The findings are summarized as follows:
     1) It is found that the frequencies inducing the maximum earthquake response on different parts of the structure are different. The response is also influenced by spectral characteristics of seismic waves and its vibration frequency. The earthquake response is drastic when the Tianjin seismic wave is applied.
     2) The seismic waves are filtered a bit when spreading upward. The amplification for the seismic waves by soil-structure is big when the magnitude is small, while it slows down and even reduces when the magnitude increases underground.
     3) The maximum deformation becomes bigger while the structure’s height increases, and it changes obviously at the interface between the pile and the underground structure and at the soil’s surface.
     4) The maximum normal strain of the underground structure’s column is big in the middle but is small at both the ends. Structure’s normal strain is affected a lot by the residual normal strain, and this effect attenuates from piles, underground structure to ground structure.
     5) Also, the soil’s dynamic pressure is affected by soil’s residual dynamic pressure and the effect increases with the soil depth. The profile of the maximum dynamic soil pressure indicates bigger value at both the ends but smaller in the middle when the soil’s depth increases. The maximum dynamic soil pressure occurs at the soil surface. The total soil pressure is affected obviously by the maximum dynamic pressure and it reduces first and then increases when the depth goes down.
     During the process of loading, the maximum story drift angles on the ground structure meet the Code requirement on the whole. Only a part of the whole structure’s normal strains go beyond the limit strain and only part of the foundation soil enters plasticity. Besides, even at the end of test, the structure doesn’t collapse. It shows that the structure design is in accordance with the principle of seismic structure design.
引文
[1]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社, 1997
    [2] Youssef MA Hashash, Jerffay J Hook Blrger Sehmldt, John I-ChlangYao. Selsmle design and analysis of underground structures [J].Tunneling and Underground Space Teehnology, 2001, 16(4): 247- 29
    [3]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震, 1999(4): 23- 28.
    [4]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学, 1998, 13(2): 63- 66
    [5] Senzal Samata, Ohuehl HaJlme, Matsuda Takashl . A study of the damage of subway struetures during the 1995 Hanshin- Awaji earthquake [J]. Cementand Conerete Composites.1997, 19(3): 223- 239
    [6] An Xuehui, Shawky Ashraf A, Maekawa Koiehi.The Collapse Mechanism of a Subway Station during the Great Hanshin Earthquake [J].Cementand Conerete Composites. 1997, 19(3): 241- 257
    [7]曹炳政,罗奇峰,马硕,刘晶波.神户大开地铁车站的地震反应分析[J].地震工程与工程震动, 2002, 22(4): 102- 107
    [8]阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学, 1998, 13(2): 63- 66.
    [9] Lessons from the Hanshin-Awaji Great Earthquake Disaster, The Kansai Chapter of JapanSociety of Civil Engineers, VolⅡ, June, 1998.
    [10] Hiroomit Iida etc. Damage to Daikai Subway Station, Special Issue of Soilsand Foundations, Japanese Geotechnical Society, Jan, 1996
    [11] Thomas R. K. Earthquake design criteria for subways, Journal of the Structural Division, Procreedings of ASCE, 1969.
    [12]郑永来,杨林德,李文艺等.地下结构抗震[J].上海:同济大学出版社, 2005.
    [13]林皋.地下结构抗震分析综述(上) [J].世界地震工程, 1990(2): 1- 10
    [14]林皋.地下结构抗震分析综述(下) [J].世界地震工程, 1990(3): 1- 10.
    [15] T. Kagawa, M. Sato, C. Minowa etc. Centrifuge Simulations of Large-Scale Shaking Table Tests: Case Studies [J]. Journal of Geotechnical andGeo-environmental Engineering, 2004, 663- 672.
    [16] Lenart Gonzalez, Tarek Abdoun, Ricardo Dobry. Effect of Soil Permeability on Centrifuge Modeling of Pile Response to Lateral Spreading [J]. ASCE, 2006, 50- 60.
    [17]陈跃庆,吕西林,李培振等.不同土性的地基-结构动力相互作用振动台模型试验对比研究[J].土木工程学报, 2006, 39(5) : 57- 64.
    [18]杨林德,季倩倩,郑永来等.软土地铁车站结构的振动台模型试验[J] .现代隧道技术, 2003, 40(1) : 7- l1.
    [19]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报, 2006, 32(9): 798- 801.
    [20]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间, 2002, 22(4) : 320- 324.
    [21]陈国兴,庄海洋,杜修力等.液化场地土-地铁车站结构大型振动台模型试验研究[J].地震工程与工程震动, 2007, 27(3): 163- 170.
    [22] Hoe I. Ling, Huabei Liu, Victor N. Kaliakin, Dov Leshchinsky. Analyzing Dynamic Behavior of Geosynthetic-Reinforced Soil Retaining Walls [J]. Journal of Engineering Mechanics, 2004, 130(8): 911-920.
    [23] Chandra S. Desai, Naresh C. Samtani, Laurent Vulliet. Constitutive Modeling and Analysis of Creeping Slopes [J]. Journal of Engineering Mechanics, 1995, 121(1): 43-56.
    [24] Janise E. Rodgers, Stephen A. Mahin. Effects of Connection Fractures on Global Behavior of Steel Moment Frames Subjected to Earthquakes [J]. Journal of Structural Engineering, 2006, 132(1): 78-88.
    [25] Xiu Ling Li, Hong Nan Li. Experimental Study on Torsional Response Control of Frame-shearWall Eccentric Structure Using MR Dampers [C]. Earth & Space, 2006:1-8.
    [26] M. K. Yegian, U. Kadakal. Foundation Isolation for Seismic Protection Using a Smooth Synthetic Liner [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11): 1121-1130.
    [27] Stefan Holler, Konstantin Meskouris. Granular Material Silos under Dynamic Excitation: Numerical Simulation and Experimental Validation [J]. Journal of Structural Engineering, 2006, 132(10): 1573-1579.
    [28] Jiro Takemura, Jun Izawa. Horizontal-vertical Two Dimensional Shakers in a Centrifuge [C]. Seismic Performance and Simulation of Pile Foundations inLiquefied and Laterally Spreading Ground, 2006,145: 268-281.
    [29] Hoe I. Ling, Yoshiyuki Mohri, Dov Leshchinsky, etc. Large-Scale Shaking Table Tests on Modular-Block Reinforced Soil Retaining Walls [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(4): 465-476.
    [30] Areti Kiara, Constantine Memos, Alexandros Tsiachris. Some Practical Aspects on the Seismic Behavior of Rubble-Mound Breakwaters [C]. Ports 2001, 16(4):1-10.
    [31] Rowland Richards Jr., Kenneth L. Fishman, Randall C. Divito. Threshold Accelerations for rotation or Sliding of Bridge Abutments [J]. Journal of Geotechnical Engineering, 1996, 122(9): 752-759.
    [32]陈跃庆,吕西林,侯建国,李培振.不同土性地基中地震波传递的振动台模型试验研究[J].武汉大学学报(工学版), 2005, 38(2): 2005-2009.
    [33]孟海陈隽李杰.地下管线-土非一致激励振动台试验研究[J].地下空间与工程学报, 2008, 4(5): 852-858.
    [34]景立平,崔杰,李立云,郑志华.粉土液化的小型振动台试验研究[J].地震工程与工程振动, 2004, 24(3): 145-151.
    [35]杨超,杨林德,季倩倩.软黏土在循环荷载作用下动力本构模型的研究[J].岩土力学, 2006, 27(4): 609-614.
    [36]史晓军,岳庆霞,李杰.土-结构动力相互作用振动台试验中模型地基影响因素分析[J].建筑科学与工程学报, 2007, 24(4): 50-54.
    [37]凌贤长,王东升,王志强等.液化场地桩-土-桥梁结构动力相互作用打响振动台模型试验研究[J].土木工程学报, 2004, 37(11): 67-73.
    [38]凌贤长,王臣,王成.液化场地桩-土-桥梁结构动力相互作用振动台试验模型相似设计方法[J].岩石力学与工程学报, 2004(3): 450-456.
    [39]李培振,任红梅,吕西林,程磊.液化地基自由振动抬模型试验研究[J].地震工程与工程振动, 2008, 28(2): 171-177.
    [40]楼梦麟,王文剑,马恒春,朱彤.土-桩-结构相互作用体系的振动台模型试验[J].同济大学学报, 2001, 29(7): 763-768.
    [41]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报, 1993, 15(4): 1-7.
    [42]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动, 1995, 15(1): 73- 84.
    [43]陈国兴,庄海洋,杜修力等.土-地铁车站结构大型振动台模型试验研究[J].地震工程与工程震动, 2007, 27(2): 171- 176.
    [44]武思宇,宋二祥,刘华北等.刚性桩复合地基抗震性能的振动台试验研究[J].岩土力学, 2007, 28(1): 77- 82.
    [45]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程, 2004, 20(4): 11- 20.
    [46]庄海洋.土-地下结构非线性动力相互作用及其大型振动台试验研究[博士学位论文].南京:南京工业大学, 2006.
    [47]季倩倩.地铁车站结构振动台模型试验研究[博士学位论文].上海:同济大学, 2002.
    [48]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社, 2003.
    [49]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社, 1994.
    [50]程国勇,张立,王建华.用扭剪波测试土样剪切波速的新技术[J].岩土工程学报, 2005, 27(3): 358- 359.
    [51]楼梦麟,王文剑,朱彤等.土-结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程震动, 2000, 20(4): 30- 36.
    [52]尚守平,刘方成,卢华喜等.振动台试验模型地基土的设计与试验研究[J].地震工程与工程震动, 2006, 26(4): 199- 204.
    [53]程国勇,张立,王建华.两种土样剪切波速测试方法的对比试验研究[J].岩石力学与工程学报, 2005, 24(23): 4368-4372.
    [54]王建华,张立,程国勇.取样扰动引起土层剪切波速变化的试验研究[J].岩石力学与工程学报, 2004, 23(15): 2604-2608.
    [55]王建华,张立,程国勇.一种在三轴压力室内测试土样剪切波速的新装置[J].天津大学学报, 2004, 37(2): 152-156.
    [56]窦立军,杨柏坡.场地分类新方法的研究[J].地震工程与工程振动, 2001, 21(4): 10-17.
    [57]吴健,高孟潭.场地相关设计反应谱特征周期的统计分析[J].中国地震2004, 20(3): 263-268.
    [58]蔡元奇,韩芳,朱以文.场地卓越周期与结构基本周期关系研究[J].地震工程与工程振动, 2004, 24(4): 70-74.
    [59]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响[J].工程力学200623(11): 33-37.
    [60]余建星,石江水,邓凯.基于灰色理论的场地卓越周期的计算[J].地震工程与工程振动, 2001, 21(3): 17-21.
    [61]薄景山,翟庆生,吴兆营,齐文浩.基于土层结构的场地分类方法[J].地震工程与工程振动, 2004, 24(4): 46-49.
    [62]尚守平,李刚,任慧.剪切模量按指数规律增大的场地土的地震放大效应[J].工程力学, 2005, 22(5): 153-157.
    [63]赵永峰,童根树.双折线弹塑性滞会模型的结构影响系数[J].工程力学, 2008, 25(1): 61-70.
    [64]彭艳菊,唐荣余,吕悦军,沙海军.天津滨海场地土类别特征及其对地震动的影响[J].地震工程与工程振动, 2004, 24(2): 46-52.
    [65]薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱特征周期的影响[J].地震工程与工程震动, 2003, 23(5): 42-45.
    [66]唐益群,王艳玲,黄雨,周载阳.地铁行车荷载下土体动强度和动应力-应变关系[J].同济大学学报(自然科学版), 2004, 32(6): 701-704.
    [67]王建华,要明伦.利用应变控制动三轴研究饱和软粘土的动强度[J].岩土工程学报, 1991, 14(3): 66-70.
    [68]刘保健,张晓荣,程海涛.应变控制下压实黄土的动三轴实验研究[J].岩土力学, 2007, 28(6): 1073-1076.
    [69]朱占元,凌贤长,胡庆立等.中国青藏铁路北麓河路基冻土动应变速率试验研究[J].岩土工程学报, 2007, 29(10): 1472-1476.
    [70]林志,朱合华,杨超,杨林德.盾构区间隧道衬砌结构的抗震计算[J].同济大学学报, 2004, 32(5): 607-612.
    [71]陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报, 2005,27(8): 861-865.
    [72]杨政,廖红建,楼康禺.微粒混凝土受压应力应变全曲线试验研究[J].工程力学, 2002, 12(2): 91-94.
    [73]沈朝勇,周福霖,黄襄云.动力试验模型用微粒混凝土的初步试验研究[J].广州大学学报(自然科学版), 2005, 4(3): 249-253.
    [74] C. S. Li, S. S. E. Lam, M. Z. Zhang. Shaking Table Test of a 1:20 Scale High-Rise Building with a Transfer Plate System [J]. Journal of Structural Engineering , 2006, 132(11): 1732-1744.
    [75] D. Su, Li X. S. Effect of Shaking Intensity on Seismic Response of Single-Pile Foundation in Liquefiable Soil [C]. Ground Modiofication and Seismic Mitigation, ASCE, 2006, 152: 379-386.
    [76] Hiroko Suzuki, Kohji Tokimatsu, M.ASCE, Masayoshi Sato, and Akio Abe. Factor Affecting Horizontal Subgrade Reaction of Piles during Soil Liquefaction and Lateral Spreading [C]. Seismic Performance and Simulation of Pile Foundations, ASCE, 2006, 145: 1-10.
    [77] Shuji Tamura , Kohji Tokimatsu. Seismic Earth Pressure Acting on Embedded Footing Based on Large-Scale Shaking Table Tests[C]. Seismic Performance and Simulation of Pile Foundations, 2006, 145: 83-96.
    [78]冯士仑,王建华.饱和砂土中桩基的振动台试验[J].天津大学学报, 2006, 39(8): 951-956.
    [79]陈国兴,庄海洋,程绍革等.土-地铁隧道动力相互作用的大型振动台模型试验:试验方案设计[J].地震工程与工程震动, 2006, 26(6): 178-183.
    [80]杨林德,季倩倩,郑永来等.地铁车站结构的振动台模型试验中模型箱设计的研究[J] .岩土工程学报, 2004, 26(1) : 75-78.
    [81]杨林德,季倩倩,杨超.地铁车站结构振动台试验中传感器位置的优选[J].岩土力学, 2004, 25(4): 619-623.
    [82]楼梦麟,宗刚,牛伟星.土-桩-钢结构相互作用体系的振动台模型试验[J].地震工程与工程震动, 2006, 26(5): 226-230.
    [83]陈国兴,庄海洋,杜修力等.土-地铁隧道动力相互作用的大型振动台试验—试验结果分析[J].地震工程与工程震动, 2007, 27(1): 164-170.
    [84]姜忻良,徐余,郑刚.地下隧道—土体系地震反应分析的有限元与无限元耦合法[J].地震工程与工程振动, 1999, 19(3): 22- 26.
    [85]林皋,栾茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报, 1993, 26(4): 1- 13.
    [86]姜忻良,丁学成.液体-结构-桩基-土体系相互作用动力分析[J].天津大学学报[J]. 1992(1): 62- 70.
    [87]李培振,吕西林.考虑土-结构相互作用的高层建筑抗震分析[J].地震工程与工程振动, 2004, 24(3): 130- 138.
    [88]陈跃庆,吕西林,李培振.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动, 2001, 21(3): 104-112.
    [89]吕西林,陈跃庆.高层建筑结构-地基动力相互作用效果的振动台试验对比研究[J].地震工程与工程震动, 2002, 22(2): 42-48.
    [90]吕西林,陈跃庆,陈波等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动, 2000, 20(4): 20-29.
    [91]陈国兴,左熹,庄海洋,杜修力.地铁车站结构大型振动台试验与数值模拟的比较研究[J].地震工程与工程振动, 2008, 28(1): 157-164.
    [92]沈朝勇,周福林,黄襄云等.高层结构考虑土与地下室相互作用的振动台试验与理论分析[J].地震工程与工程振动, 2007, 27(6): 148-153.
    [93]杨林德,王国波,郑永来等.地铁车站结构振动台试验及地震响应的三维数值模拟[J].岩石力学与工程学报, 2007, 26(8): 1538-1545.
    [94]杨超.饱和软土地铁结构地震响应计算方法的研究[博士学位论文].上海:同济大学, 2003.
    [95]陈跃庆.结构-地基动力相互作用体系振动台试验研究[博士学位论文].上海:同济大学, 2001.
    [96] Tomaso Trombetti. Experimental and Analytical Approaches to Modeling, Calibrating and Optimizing Shaking Table Dynamics for Structural Dynamic Applications [PhD thesis]. Houston: Rice University.
    [97] Christopher Brian Burke. Full-scale Shaking Table Tests and Finite Element Analysis of Reinforced Soil Retaining Walls [PhD thesis]. New York: Columbia university, 2004.
    [98] Man Hoi Lok. Numerical Modeling of Seismic Soil-Pile-Superstructure Interaction in Soft Clay [PhD thesis]. Berkeley: University of California, Berkeley, 1999.
    [99] Juan M Mayoral. Two-directional Effects in Seismic Soil-Pile-Structure Interaction in Soft Clay [PhD thesis]. Berkeley: University of California, Berkeley, 2002.
    [100] Warrasak Jakraphyanun. Physical Modeling of Dynamics Soil-Foundation-Structure-Interaction Using a Laminar Container [J].San Diego: University of California, 2002.
    [101] R.W.克拉夫, J.彭津著.结构动力学[M].北京:科学出版社, 2007.
    [102]朱伯龙,张琨联.建筑结构抗震设计原理[M].上海:同济大学出版社, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700