桥梁结构非线性地震反应研究(支座摩擦·限位装置·基础非线性)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁非线性地震反应研究对于提高桥梁结构抗震分析、设计水平具有重要的意义。强震作用下,桥梁结构可能发生不同部位的破坏,相应地非线性地震反应分析方法和模型也不同。受各种非线性的影响,精确分析桥梁结构的地震响应是非常复杂的,一般利用合理的简化分析模型进行分析。本文在继承和发展国内外研究成果的基础上,针对强震下桥梁结构中存在的非线性问题、非线性地震反应分析方法、非线性有限单元及非线性有限元模型进行了研究,并对各种非线性特性对桥梁整体抗震性能的影响进行了参数分析,主要研究内容如下:
     (1)总结了桥梁结构的非线性计算模型、材料的常用本构关系、非线性动力方程及其求解方法,介绍了弹塑性梁单元的三种不同模型及考虑塑性铰长度的弹塑性梁单元的单元柔度矩阵,介绍了钢筋混凝土桥墩常用的弯矩-曲率滞回模型。编写了截面弯矩-曲率关系的全过程分析程序,并介绍了弯矩-曲率关系曲线的线性化方法。
     (2)建立了可以考虑支座水平摩擦和竖向地震动作用的接触摩擦单元,并利用接触摩擦单元建立了连续梁全桥模型。分别针对普通固定支座桥梁和滑动隔震支座桥梁,分析了滑动支座摩擦力及竖向地震动对桥梁结构地震反应的影响。并对支座的摩擦系数、初始刚度对不同桥梁结构的地震反应影响进行了参数分析。根据分析结果,给出了需要考虑活动支座摩擦力和竖向地震动影响的建议。
     (3)提出了可以综合考虑活动支座摩擦非线性和限位装置接触及材料非线性的有限单元的刚度及滞回曲线。建立了可以综合考虑支座非线性、限位装置接触及材料非线性、墩身弹塑性的桥梁结构有限元模型。对限位装置的初始刚度及初始间隙对桥梁结构地震反应的影响进行了研究,并对活动支座摩擦力、限位装置、桥墩弹塑性各种非线性之间的相互影响进行了综合分析,探讨了可以降低固定墩地震反应的有效措施。
     (4)改进了无拉力非线性Winkler地基弹簧的有限元模型,给出了其滞回规律,主要改进点为该无拉力土弹簧可以同时考虑桩双侧土的接触及材料非线性,可以模拟地震中往复振动下桩和土之间产生的裂缝。在总结目前桩基础桥梁的抗震计算模型的基础上,提出了改进的桩基础桥梁的非线性抗震分析计算模型,主要改进点是基础部分综合考虑了桩侧土的水平接触及材料非线性作用、土与桩基础间的竖向非线性摩擦作用、桩尖土的非线性压入和提离作用,并可以考虑墩与桩的弹塑性。对该非线性分析模型进行了循环荷载下的静力推倒分析,并通过与静力推倒试验结果的对比验证了此模型的合理性。
     (5)以实际工程为背景,建立了桩基础桥墩分布弹簧非线性分析的有限元模型,探讨了该模型时程反应分析的可行性。根据时程分析结果,分析了地基非线性对桥墩和桩弹塑性地震反应的影响。时程分析结果表明,承台底水平剪力-水平位移、承台底弯矩-转角曲线呈纺锤状。利用实例验证了利用Clough集中支撑弹簧模型来模拟桩-土相互作用对桥梁上部结构地震反应影响的可行性,并建议了利用静力推倒分析骨架曲线进行简化分析模型参数取值的计算方法。
     (6)对于在地震中薄弱环节不明显、各构件均有可能出现破坏的混合破坏型桥梁,提出了考虑桩-土-结构相互作用的桥梁结构整体非线性分析有限元模型,该模型综合考虑了支座、桥墩、桩基础、地基的非线性。通过工程实例,探讨了整体非线性模型时程分析的可行性。根据分析结果初步探讨了桥梁各部分构件之间的非线性地震反应的相互影响,、分析了不同非线性模型的墩底弯矩及曲率、承台底转角及水平位移、梁体位移等结构地震反应。
The research on the nonlinear seismic response is of great significance to the seismic analysis and design of the bridge structures. The bridge structure can be destroyed at different locations under the strong earthquake. Correspondingly, the analysis method and model are also different. Precise analysis of nonlinear seismic response of bridge structure is quite complicated because of various nonlinearities. So, the simplified mathematical model is usually adopted for the nonlinear analysis. Based on the research results obtained by others, some key technical issues on nonlinear analysis of bridge structures under strong motion are comprehensive analyzed. The corresponding finite elements and nonlinear finite model are put forward, which are used in the analysis of the effect of the nonlinearity on the integral seismic-resistant performance of the bridge structure. The studies and results in this dissertation are summarized as follows:
     (1) The nonlinear computing model for the bridge structure, the general constitutive relationship, and the nonlinear dynamic equations and its solutions are summarized. Three models for elastic-plastic beam element are discussed. And the element flexibility matrix considering the length of plastic hinge for the elastic-plastic beam element is also introduced. The moment-curvature hysteretic model for the reinforced concrete pier is presented. A computer program is compiled and a linear method is also introduced to analyze the moment-curvature curve.
     (2) A "friction and contact" element for the support is introduced to take into account the effect of the friction force at movable supports and the influence of the bearing dynamic vertical resistance force on the bearing horizontal friction force. A finite element model for a continuous bridge with "friction and contact" elements is created. With this model, the effects of the friction force at movable supports and vertical excitation on seismic-resistant performance of continuous bridges are analyzed. And the effects of the supports parameters such as friction coefficient and initial stiffness, etc on the seismic response are also discussed according to the finite element analysis results. It shows that the friction force at the movable supports and vertical excitation needs to be taken into account for the study of the seismic-resistance performance of continuous bridges in some cases.
     (3) The finite element that considering the friction nonlinearity at the movable support and the contact and material nonlinearity at the restrainer is put forward. And its stiffness and hysteretic curve are also derived. The finite element model considering the nonlinearity of the supports and restrainer and pier is established to study the nonlinear seismic response of the bridge structure. The study on the interaction among the friction force at movable supports and contact and material nonlinearity at restrainer, and elasto-plasticity at pier is performed. The effect of initial gap and stiffness of the restrainer on the nonlinear seismic response is also discussed. And the effective methods to reduce the seismic response of the fixed pier are discussed.
     (4) The nonlinear Winkler soil spring model is improved and the hysteretic features for the nonlinear compression soil spring are presented. The improved model takes into account the contact and material nonlinearity of soil around piles. Based on the current finite element models for the pile foundation bridges, an improved nonlinear finite model for the seismic analysis of pile foundation bridges is put forward, which include the horizontal contact and material nonlinearity of the soil on each side of the pile, the vertical friction nonlinearity between the soil and piles, and the nonlinear compression and uplift features of the soil at pile bottom. This model also takes the elasto-plastic characteristics of piers and piles into account. The static pushover experiment under cyclic loads for a pile foundation pier approved that results of this model match that of the experiment.
     (5) The improved distributed spring finite element model of the pile foundation pier is used in a bridge project. The feasibility of the time-history analysis is discussed. And the nonlinear effect of pile foundation on the seismic response of the pier and pile is analyzed. The hysteric curves of the horizontal shear force-linear displacement and that of the moment-angular displacement at the bottom of pile cap are summarized. The results show that the curve is spindle-shaped or pinched spindle-shaped. The simplified centralized spring model is put forward in which the Clough spring model is used to simulate the influence of the soil-pile interaction on the superstructure. The comparison results indicate that the results of the simplified centralized Clough spring model and the distributed spring model are similar.
     (6) For bridges whose weak points are not apparent and every part can be destroyed in the strong earthquake, an integral nonlinear finite element model, which takes the nonlinear pile-soil-structure interaction into account, is put forward. The model includes the nonlinearity of the supports, piers, piles and soil. The nonlinear interaction among different parts is discussed based on the results. The nonlinear seismic response of the moment-curvatures at the pier bottom and the linear and angular displacement at the bottom of the pile cap, and beam displacement are also studied.
引文
[1]刘恢先.唐山大地震震害[M].北京:地震出版社,1986.
    [2]胡聿贤,谢礼立,赵振东.城市与工程减灾基础研究报告[R].哈尔滨:中国地震局工程力学研究所,1998.
    [3]谢礼立,罗学海.“国际减轻自然灾害十年”和地震工程研究的任务[J],地震工程与工程振动,1990,10(4):101-108.
    [4]鹿岛尚武,潘元振.日本和世界地震防灾的推进及“国际减灾十年”.地震科技情报,1993(2):9-10.
    [5]袁一凡,陈永.日本阪神大震灾在应急救灾上的几点教训.自然灾害学报,1995,4(4):53-61.
    [6]范立础.桥梁抗震.上海:同济大学出版社,1997.
    [7]EERI. Loma Prieta Earthquake Reconnaissance Report. Earthquake Spectra,1990, Supplement to Vol.6: 1-280
    [8]NZNSEE. The Loma Prieta, California, Earthquake of October 17,1989. Report of the NZNSEE Reconnaissance Team. Bull. New Zealand Nat. Soc. Earthquake Eng.,1990, Vol.23(1):1-98.
    [9]Housner, G.W., Thiel, C.C. Competing against Time:Report of the GovernOr's Inquiry on the Loma Prieta Earthquake. Earthquake Spectra,1990, Vol.6(4):681-711.
    [10]Mitchell, D., Tinawi, R., Sexsmith, R.G. Performance of Bridges in the 1989 Loma Prieta Earthquake-Lessons for Canadian Designers. Can. J. Civil Eng.,1991,18:711-734.
    [11]NZNSEE. The Hyogo-ken Nanbu Earthquake (The Great Hansin Earthquake) of 17 January 1995. Report of the NZNSEE Reconnaissance Team. Bull. New Zealand Nat. Soc. Earthquake Eng.,1995, Vol.28(1):1-98.
    [12]Anderson, D. L., Mitchell, D. and Tinawi, R. G. Performance of Concrete Bridges during the Hyogo-ken Nanbu (Kobe) Earthquake on January 17,1995. Can. J. Civil Eng.,1996,23:741-726
    [13]Rourke, T.D.O. Lessons Learned for Lifeline Engineering from Major Urban Earthquake. In:Proc. 11th Word Conf. Earthquake Eng. Acapulco, Mexico:Elsevier Science Ltd,1996, Paper No.2172.
    [14]Earthquake Engineering Research Institute (EERI),'Northridge Earthquake of January 17 1994 Reconnaissance Report Volume 1', Rep. No.95-03,6. Highway bridge and traffic management, Earthquake Spectra,287-372,1995.
    [15]NZNSEE. Northbridge Earthquake Reconnaissance Report. Report of the NZNSEE Reconnaissance Team on the 17 January 1994 Northridge, Los Angeles Earthquake. Bull. New Zealand Nat. Soc. Earthquake Eng.,1994, Vol.27(4):235-356.
    [16]Housner, G.W., Thiel, C.C. The Continuing Challenge:Report on the Performance of State Bridges in the Northbridge Earthquake. Earthquake Spectra,1995, Vol.11(4):607-636.
    [17]Mitchell, D., Bruneau, M. and Williams, M. et al. Performance of Bridges in the 1994 Northbridge Earthquake. Can. J. Civil Eng.,1995,22:415-427.
    [18]Eguchi, R.T., Goltz, J.D. and Taylor, C.E. et al. Direct Economic Losses in the Northridge Earthquake: A Three-year Post-event Perspective. Earthquake Spectra,1998, Vol.14(2):245-264.
    [20]The 1999 Ji-ji Earthquake, Taiwan-Investigation Into the Damage to Civil Engineering Structures, Japan Society of Civil Engineers (JSCE),1999.
    [21]川岛一彦,家村浩和,庄思学,岩田秀治.1999年集集地震(台湾)におけゐ道路桥の被害.Proc. of the 3rd Symposium on Ductility Design Method for Bridges. JSCE,433-440,1999.
    [22]国家地震局地质研究所.中国八大地震震害摄影图集.北京:地震出版社,1983.
    [23]黄勇.汶川地震中梁式桥的震害和预防震害的新方法[J].地震工程与工程振动.2008,28(5):20-26.
    [24]杜修力,韩强,李忠献等.5.12汶川地震中山区公路桥梁震害及启示[J].北京工业大学学报.2008,34(12):1270-1279.
    [25]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展.力学进展,2001,31(3):350-360.
    [26]况勇,刘伊生,陈忠林.铁路客运专线建设的投融资改革思路[J].中国国情国力.2009(3):10-13.
    [27]GB50111-2006.铁路工程抗震设计规范[S].
    [28]前川宏一.新潟県中越地震災害第二次调查団速报-交通基盤设の被害.日本土木学会誌,Vol.90(1),2005.
    [29]Kawashima K.. Did the 18-spam Hanshin Expressway Viaduct Collapse by an Aftershock in the 1995 Kobe Earthquake,4001(1):41-47, Bridge and Foundation Engineering (in Japanese).
    [30]日本铁道综合技术研究所.铁道构造物设计标准及解说[S].1999.
    [31]谢旭.桥梁结构地震响应分析[M].北京:人民交通出版社,2006.
    [32]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [33]范立础,李建中.汶川桥梁震害分析与抗震设计对策[M].公路,2009(5):122-128.
    [34]日本铁道综合技术研究所.新渴地震调查报告,铁道技术研究报告,No.448,1964.11.
    [35]姜辉.近场地震下桥梁结构基于性能抗震设计的能量方法[D].北京交通大学,2007.
    [36]王丰.基于性能的结构多维抗震设计方法研究[D].大连理工大学,2007.
    [37]Porter K.A. An Overview of PEER's Performance-Based Earthquake Engineering Methodology. Proceeding of the Ninth International Coference on Applications of Statistics and Probability in Civil Engineering (ICASP9), San Francisco,2003.
    [38]Kyung-Sik Lee, James Ricles, Richard Sause. Performance-Based Seismic Design of Steel MRFs with Elastomeric Dampers. JOURNAL OF STRUCTURAL ENGINEERING.2009,135(5):489-498.
    [39]Beile Yin. Performance Based Seismic Design for Movable Bridges. ASCE, Structures 2008:Crossing Borders.
    [40]申选召,林均岐,李谊瑞等.桥梁易损性研究述评[J].世界地震工程,2006,22(2):98-103.
    [41]Bryant G. Nielson and Reginald DesRoches. Seismic fragility methodology for hignway bridges using a component level approach [J]. EATHQUAKE ENGINEERING AND STRUCRURAL DYNAMICS. 2006.
    [42]王东升,冯启民.活动支座摩擦力对简支梁桥地震反应的影响[J].地震工程与工程振动,1998,18(4):30-39.
    [43]范立础,聂利英,李建中.地震作用下板式橡胶支座滑动的动力性能分析[J].中国公路学报,2003,16(4):30-35.
    [44]聂利英,李建中,胡世德等.地震作用下板式橡胶支座滑动引起的城市立交中的动力耦合作用[J].工程力学,2006,23(11):14-20.
    [45]Sang-Hyo Kim, Ho-Seong Mha, Sang-Woo Lee. Effects of bearing damage upon seismic behaviors of a multi-span girder bridge. Engineering Structures,2006(28):1071-1080.
    [46]YEN-PO WANG, LAP-LOI CHUNG, WEI-HSIN LIAO. SEISMIC RESPONSE ANALYSIS OF BRIDGES ISOLATED WITH FRICTION PENDULUM BEARINGS. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,1998(27):1068-1093.
    [47]AASHTO LRFD bridge specification:si Units, First Edition (1994). Am. Assn. of State Hwy. And TransP. officials, Washington,D.C.
    [48]Seismic design referenees. (1990). Califonia DePt. of TransP., Sacramento, Calif.
    [49]日本道路协会,道路桥示方书·同解说,V耐震设计编,2002,3.
    [50]Saiidi.M; Randall M.; Maragakis E. and Isakovie, T. Seismic restrainers design methods for simply supported bridges, J. Bridge Eng.2001,6(5):307-315.
    [51]Vlassis, Anastasios G; Update on analytical and experimental research on bridge restrainers, Transp Res Rec,n1770.p132-138.
    [52]朱文正.公路桥梁减抗震防落梁系统研究[D].长安大学,2004.
    [53]王克海,陈茜.桥梁抗震的研究进展[J].工程力学,2007,24卷增刊,75-82.
    [54]Caltrans seismic design criteria version 1.4[S],2006.
    [55]Eurocode 8-Design provisions for earthquake resistance of Structures-Part 2:Bridges[S],1998-2005.
    [56]邱俊翔,隙正具,杨鹤雄.樁基礎非線性侧推分析之樁材塑性铰设定方法[R].报告编号:NCREE-08-012,国家地震工程研究中心,2008.
    [57]西村昭彦,王海波.设计地震动扫および表层地盤の评価[R].铁道总研报告(RTRI REPORT),1999,13(2):7-10.
    [58]室野刚隆,西村昭彦.地盤と构造物の动的相互作用を考虑したた応答变位法[R].铁道总研报告(RTRI REPORT),1999,13(2):41-46.
    [59]西村昭彦,羽矢洋.塑性域を考虑した直接基礎の设计法の研究[R].铁道总研报告(RTRIREPORT),1992,Vol.6(3):57-64.
    [60]西村昭彦,羽矢洋,久樂博,棚村史郎.模型ケ一ソン基礎の大变水平準载荷试验位[R].铁道总研报告(RTRI REPORT),1993,Vol.7(2):35-42.
    [61]羽矢洋,西村昭彦.直接基礎の耐震设计[R].铁道总研报告(RTRI REPORT),1999,Vol.13(3):13-18.
    [62]高濑直辉,池鬼真树,西村昭彦.杭基礎の耐震设计[R].铁道总研报告(RTRI
    REPORT),1999,Vol.13(3):25-30.
    [63]小林雅彦,齊藤正人,棚村史郎.大型基礎の耐震設計[R].鐵道總研報告(RTRI
    REPORT),1999,Vol.13(3):31-36.
    [64]馆山勝,堀井克己, 小岛谦一.盛土の耐震性能と耐震设计[R].鐵道總研報告(RTRI
    REPORT),1999,Vol.13(3):43-48.
    [66]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟[D].大连理工大学,2003.
    [67]潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计[D].同济大学,2001.
    [68]邹立华.工程结构减震控制中若干问题的研究[D].西南交通大学,2004.
    [69]George Mylonakis, Dimitri Papastamatiou, John Psycharis et al. SIMPLIFIED MODELING OF BRIDGE RESPONSE ON SOFT SOIL TO NONUNIFORM SEISMIC EXCITATION [J]. JOURNAL OF BRIDGE ENGINEERING,2001,6(6):587-597.
    [70]Marcello Ciampoli, Paolo E. Pinto. Effects on Soil-Structures Interaction on Inelastic Seismic Response of Bridge Piers [J]. Journal of Structural Engineering.1995, Vol.121(5):806-814.
    [71]Alex Harrison, MS, PE, CH2M HILL. Non-Linear Soil and Structure Bridge Foundation Seismic Analysis from Design Through Construction using FBPier [J].17th ANALYSIS AND COMPUTATION SPECIALTY CONFERENCE,2006.
    [72]Michael C. McVay, Scott J. Wasman, Gary R. Consolazio. Dynamic Soil-Structure Interaction of Bridge Substructure Subject to Vessel Impact [J]. Journal of Bridge Engineering,2004,Vol.14(1):7-16.
    [73]M. Dicleli, S. Albhaisi, M.Y. Mansour, Static Soil-Structure Interaction Effects in Seismic-Isolated Bridges [J]. Practice Periodical on Structural Design and Construction,2005, Vol.10(1):22-33.
    [74]Andreas J. Kappos, Anastasios G. Sextos. EFFECT OF FOUNDATION TYPE AND COMPLIANCE ON SEISMIC RESPONSE OF RC BRIDGES[J]. Journal of Bridge Engineering,2001,Vol.6(2):120-130.
    [75]Ishizaki, H. et al., Inspection and restoration of damaged foundations due to the Great Hanshin Earthquake 1995, Proceedings, Third U.S.-Japan Workshop on Seismic Retrofit of Bridges[R], Tsukuba,Japan,1996,327-341.
    [1]谢旭.桥梁结构地震响应分析[M].北京:人民交通出版社,2006.
    [2]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [3]Hognestad E. A Study of Combined Bending and Axial Load in Reinforced Concrete Members.Report No.185, University of Illinois Engineering Experiment Station; Urbana,Ill.,1951.
    [4]Richart F.E. An Investigation of Web Stresses in Reinforced Concrete Beams. EngineeringExpriment Station Bulletin No.166, University of Illinois, Urbana,1927.
    [5]Richart F.E., Brandtzaeg A., Brown R.L. A Study of the Failure of Concrete Under Combined Compressive Stresses. Engineering Expriment Station Bulletin No.185, University of Illinois, Urbana, 1928.
    [6]Richart F.E., Brandtzaeg A., Brown R.L. The Failure of Plain and Spirally Reinforced Concrete in Compression. Engineering Expriment Station Bulletin No.190, University of Illinois, Urbana,1929.
    [7]Richart F.E., Brown R.L. An Investigation of Reinforced Concrete Columns. Engineering Expriment Station Bulletin No.267, University of Illinois, Urbana,1934.
    [8]Kent D., Park R. Flexural Members with Confined Concrete. Journal of Structural Engineering, ASCE, 1971,97(ST7):1969-1990.
    [9]Park R., Priestley M.J.N., Gill W.D. Ductility of Square-Confined Concrete Columns. Journal of Structural Division, ASCE,1982,108(ST4):929-951.
    [10]Scott B.D., Park R., Priestley M.J.N. Stress-Strain Behavior of Confined Concrete Columns. ACI Journal,1982,79(1):13-27.
    [11]Sheikh S.A., Uzumeri S.M. Strength and Ductility of Tied Concrete Columns. Journal of Structural Division, ASCE,1980,106(ST5):1079-1102.
    [12]Sheikh S.A., Uzumeri S.M. Analytical Model for Concrete Confinement in Tied Columns. Journal of Structural Division, ASCE,1982,108(ST12):2703-2722.
    [13]Mander J.B. Observed Stress Strain Behavior of Confined Concrete. Journal of Structural Engineering, ASCE,1988,114(8):1827-1849.
    [14]Mander J.B., Priestley M.J.N., Park R. Theoretical Stress Strain Model for Confined Concrete. Journal of Structural Engineering, ASCE,1988,114(8):1804-1825.
    [15]Saatcioglu M., Razvi S. Strength and Ductility of Confined Concrete. Journal of Structural Engineering, ASCE,1992,118(6):1590-1607.
    [16]Hoshikuma J., Kawashima K., Nagaya K., Taylor A.W. Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers. Journal of Structural Engineering, ASCE.
    [17]卓卫东.桥梁延性抗震设计研究[D].上海:同济大学,2000.
    [18]刘庆华.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249.
    [19]朱东生.桥梁抗震设计中几个问题的研究(输入地震动·曲线桥地震反应·梁桥隔震)[D].西南交通大学,1999.
    [1]谢旭,桥梁结构地震响应分析与抗震设计[M],2006.
    [2]王东升、冯启民、凌贤长等.桥梁非线性地震反应分析若干问题研究现状[J].地震工程与工程振动.2002,Vol.22(1):61-63.
    [3]Clough R.W., Benuska K.L., Wilson E.L.. Inelastic earthquake response of tall buildings [A]. Proc.3rd Word Conf. on Earthquake Engineering. New Zealand.1965.
    [4]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005,25(1):43-48.
    [5]夏修身.桥墩的弹塑性地震反应分析[D].兰州:兰州交通大学,2004.
    [6]ID ARC 2D Version4.0:A Program for Inelastic Damage Analysis of Building Technical Report.
    [7]聂利英.桥梁抗震非线性分析理论研究[D].上海:同济大学,2002.
    [8]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2005.
    [9]Filip C. Filippou, Angelo D'Ambrisi and Ahmad Issa, Nonlinear static and dynamic analysis of reinforced concrete subassemblages [D]. NO.UCB/EERC-92/08.
    [9]北方交通大学铁道建筑系.结构矩阵分析.北京:中国建筑工业出版社,1974.
    [10]徐伟良、吴德伦.钢筋混凝土框架全过程分析的非线性简化单元及其应用[J].建筑结构学报,1995,(3).
    [11]李杰,李国强,地震工程学导论[M],北京:地震出版社,1992.
    [12]叶爱君,范立础.桥梁抗震[M].北京:人民交通出版社,2002.
    [13]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [14]卓卫东.桥梁延性抗震设计研究[D].上海:同济大学,2000.
    [15]赵冠远,阎贵平,钟铁毅.欧洲规范关于延性桥梁抗震设计方法的安全性评价[J].中国安全科学学报,2003,13(11).
    [16]李子奇.钢筋混凝土桥墩延性性能研究[D].兰州交通大学,2005.
    [17]Eurocode 8-Design provisions for earthquake resistance of Structures-Part 2:Bridges[S].
    [18]Design specifications of highway bridges Part V. Seismic design[S].
    [19]Caltrans seismic design criteria version 1.2[s].
    [20]刘庆华.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249
    [21]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报,2002,35(5).
    [22]黄建文,朱晞.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计[J].土木工程学报,2005,38(4).
    [23]Standard Specifications for Highway bridges[M].16th Edition, Division I-A:Seismic Design. Washington:American Association of State Highway and Transportation officials (AASHTO), Inc.,1995.
    [24]Bridge Design Specifications Manual [M]. Sacramento, California Department of Transportation (CALTRANS), Division of Structure8,1998.
    [25]Bridge Manuel[M]. Wellington:Transit New Zeal and (TNZ),1994.
    [26]日本铁道综合技术研究所,铁道构造物等设计标准及解说V抗震设计[S],2000.
    [27]Watson S, Zahn S A and Park R. Confining Reinforcement for Concrete Columns[J]. J.Structural Eng. ASCE,1994,120(6):1798-1824.
    [28]Mander J B, Priestley M J N and Park R. Theoretical Stress Strain Model for Confined Concrete[J]. J.Structural Eng. ASCE,1988,114(8):1804-1826.
    [29]Paulay T, Priestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York:John Wiley& Sons,1992.
    [1]王东升,冯启民.活动支座摩擦力对简支梁桥地震反应的影响[J].地震工程与工程振动,1998,18(4):30-39.
    [2]聂利英.桥梁抗震非线性分析理论研究[D].同济大学,2002.
    [3]范立础,王志强著.桥梁减隔震设计[M].人民交通出版社,北京,2001.
    [4]龚一琼,胡勃,袁万城.连续梁桥的减隔震设计[J].同济大学学报,2001,29(1):94-98.
    [5]R.M. Mutobe, T.R. Cooper. Nonlinear analysis of a large bridge with isolation bearings[J]. Computers and Structures 1999 (72):279-292.
    [6]AASHTO (1999):Guide specifications for seismic isolation design. American Association of State Highway Officials, Washington, D.C.
    [7]AASHTO (1996):Standard specifications for highway bridges. (16th Edition). American Association of State Highway Officials, Washington, D.C.
    [8]Huang WH, Fenves GL, Whittaker AS, Mahin SA (2000):Characterization of seismic isolation bearings for bridges from bi-directional testing. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, p.2047-2048.
    [9]Blakeley, R.W.G., Analysis and Design of Bridges Incorporating Mechanical Energy Dissipating Devices for Earthquake Resistance, In:Proc. of A Workshop on Earthquake Resistance of Highway Bridges, Applied Technology Council (ATC),1979.
    [10]Lin, B.C., Tadjbakhsh, I.G., Papageorgiou, A.S., and Ahmadi, G., Performance of Earthquake Isolation Systems, J. of Engineering Mechanics,1990, Vol.116(2):446-461.
    [11]图解隔震结构入门,日本免震构造协会,北京:科学出版社及OHM社,1998.
    [12]Buckle, I.G., and Mayes, R.L., Seismic Isolation-History, Application and Performance-A World View, Earthquake Spectra,1990, Vol.6(2):161-201.
    [13]McKay, G.R., Chapman, H.E., and Kirkcaldie, D.K., Seismic Isolation:New Zealand Applications, Earthquake Spectra,1990, Vol.6(2):203-221.
    [14]Robinson, W.H., Recent Research and Applications of Seismic Isolation in New Zealand, Bulletin of the New Zealand National Society for Earthquake Engineering,1995, Vol.28(4):253-263.
    [15]铁路工程抗震设计规范(GB50111-2006),北京:中国计划出版社,2006.
    [16]刘延芳,叶爱君,王斌斌.现行桥梁抗震设计规范对超长多跨连续梁桥的适用性分析[J].工程抗震与加固改造,2007,29(3):104-108.
    [17]范立础,桥梁抗震[M],上海:同济大学出版社,1997.
    [18]叶爱君,胡世德,范立础.桥梁支座抗震性能的模拟分析[J].同济大学学报,2001,29(1):6-9.
    [19]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].人民交通出版社.2001.
    [20]聂利英,李建中,范立础.滑动支座竖向动反力对桥梁结构动力性能的影响[J].同济大学学报,2002,30(11):1290-1294.
    [21]Constantinou M, Mokha A, Reinhorn A. Teflon Bearings in Base Isolation Ⅱ:Modeling [J]. J. Struct. Engng. ASCE 1990,116 (2):455-474.
    [22]Luciana R. Barroso. Performance Evaluation of Vibration Controlled Steel Structures Under Seismic Loading[D], Stanford University,1999.
    [23]薛素铎,李雄彦,蔡炎城.摩擦滑移水平隔震支座的性能试验[J].北京工业大学学报,2009,35(2):168-173.
    [24]曾聪,陶忠,潘文等.PTFE不锈钢摩擦滑移隔震支座摩擦系数的影响因素研究[J].工程抗震与加固改造,2009,31(1):59-63.
    [25]廖顺痒,吴在辉,金吉寅,桥梁橡胶支座,北京:人民交通出版社,1988.
    [26]庄军生,桥梁支座,北京:铁道出版社,1994.
    [27]李俊,李爱群,程文.基础橡胶垫、滑移和混合隔震房屋的动力特性分析[J].南京航空航天大学学报,2002,34(1):22~26.
    [28]叶爱君等.桥梁支座抗震性能的模拟分析[J].同济大学学报,2001,29(1):6-9.
    [29]范立础等.地震作用下板式橡胶支座滑动的动力性能分析[J].中国公路学报,2003,16(4):30-35.
    [30]范立础,袁万城,桥梁橡胶支座减、隔震性能研究,同济大学学报,1989,Vol.17(4):447-455.
    [31]郝尧生.两种新型橡胶缓冲挡块的研究[D].上海:同济大学桥梁工程系,1997.
    [32]Gael Bondonet, Andre Filiatrault. Frictional response of PTFE sliding bearings at high frequencies[J]. Journal of Bridge Engineering,1997,2 (4):139-148.
    [33]Mokha AS, Constantinou MC, Reinhorn AM (1993):Verification of friction model of Teflon bearings under triaxial load. Journal of Structural Engineering, ASCE,119 (1),240-261.
    [34]谭明哲,朱华民.大吨位抗震盆式橡胶支座设计[J].1992(03).
    [35]高波.65000kN大吨位抗震盆式橡胶支座的应用[J].2002(4):75-77.
    [36]焦驰宇,胡世德管仲国.FPS抗震支座分析模型的比较研究[J].振动与冲击,2007.26(10):113-117.
    [37]杨林,周锡元,苏幼坡,常永平.FPS摩擦摆隔震体系振动台试验研究与理论分析[J].特种结构,2005,22(2):43-46.
    [38]Tsop lelas P, Constantinou M C. Experimental Study of FPS System in Bridge Seismic Isolation [J]. Earthquake Engng. Struct. Dyn.1998,27:65-78.
    [39]王建强,管品武,李大望.摩擦摆基础隔震结构双向地震反应分析[J].世界地震工程,2005,21(3):11-12.
    [40]朱东生.桥梁抗震设计中几个问题的研究(输入地震动·曲线桥地震反应·梁桥隔震)[D],西南交通大学博士学位论文,1999.
    [41]郭磊,李建中,范立础.大跨度连续梁桥减隔震设计研究[J].土木工程学报,2006,39(3):81-85.
    [42]钟栋青,吴发红.滑移支座在连续梁桥中的性能模拟分析[J].盐城工学院学报,2008,21(3):41-44.
    [43]孙黄胜,施卫星.滑移摩擦型隔震结构考虑竖向地震作用影响的分析[J].工程抗震与加固改造,2007,29(4):48-52.
    [44]Anoop S. Mokha, Navinchandra Amin, Michael C. Constantinou, Victor Zayas. Seismic Isolation Retrofit of Large Historic Building[J]. J. Struct. Engng. ASCE,1996,122(3):298-308.
    [45]王建强,管品武,李大望.基础滑移隔震结构双向地震反应分析[J].振动与冲击,2005,24(4):84-88.
    [46]王建强,王利娟.滑移摩擦支座摩擦力模型研究[J].四川建筑科学研究,2005,31(3):51-52.
    [47]朱玉华,吕西林.滑移摩擦隔震系统在多向地面运动作用下的试验研究[J].地震工程与工程振动,2002,22(5):77-84.
    [48]洪峰,王前信.滞变-摩擦基底隔震支座的试验和模型[J].地震工程与工程振动,1997,17(1):1-8.
    [49]Lin Su and Goodarz Ahmadi, A Comparative of Performance of Various Base Isolation Systems, Part Ⅰ:Shear Beam Structures,EESD,VOL 18,11-31,1989.
    [50]Gilberto Mosqueda, Andrew S. Whittaker, Gregory L. Fenves. Characterization and Modeling of Friction Pendulum Bearings Subjected to Multiple Components of Excitation [J]. J. Struct. Engng. ASCE, 2004,130 (3):433-442.
    [51]Sevket Atesa, Alemdar Bayraktar, A. Ay din Dumanoglu. The effect of spatially varying earthquake ground motionson the stochastic response of bridges isolated with friction pendulum systems [J]. Soil Dynamics and Earthquake Engineering.2006(26):31-44.
    [52]A.V. Bhaskararao, R.S. Jangid. Seismic analysis of structures connected with friction dampers [J]. Engineering Structures.2006(28):690-703.
    [53]Constantinou, M.C., Mokha, A.S., and Reinhorn, A.M., Study of Sliding Bearing and Helical-Steel-Spring Isolation System, J. of Structural Eng., ASCE,1991, Vol.117(4):1257-1275.
    [54]郑史雄,奚绍中.简支梁桥的地震反应性能[J].西南交通大学学报,1998,33(2):133-137.
    [55]陈兴冲,朱唏.简支梁桥支座的空间地震反应分析[J].土木工程学报,1994,27(1):11-19.
    [56]周光伟,李建中,范立础.多跨连续梁桥纵桥向动力特性研究及其地震反应谱简化分析[J].交通与计算机,2008,26(5):1-5.
    [57]李加武等.影响桥梁减震性能参数的试验研究[J].郑州大学学报(工学版),2002,23(2):34-36.
    [58]YEN-PO WANG, LAP-LOI CHUNG, WEI-HSIN LIAO. SEISMIC RESPONSE ANALYSIS OF BRIDGES ISOLATED WITH FRICTION PENDULUM BEARINGS[J]. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,1998(27) 1069-1093.
    [59]Kyu-Sik Park, Hyung-Jo Jung, In-Won Lee. A comparative study on aseismic performances of base isolation systems for multi-span continuous bridge[J]. Engineering Structures,2002 (24):1001-1013.
    [60]Satish Nagarajaiah, Andrel M.Rrinhorn, Nonlinear Dynamic Analysis of 3-d-Base-Isolated Structure, Journal of Structural Engineering,Vol 117, NO.7,1991.
    [61]阿肯江·托呼提.竖向地震对建筑结构抗震性能的影响研究[J].新疆大学学报,2005,22(2):237-242.
    [62]谷伟,刘斌.橡胶垫基础隔震结构考虑竖向地震作用高宽比限制研究[J].工业建筑,2004,34(4):17-20.
    [63]Jangid R S. Seismic response of Sliding Structures to bidirectional earthquake excitation [J]. Earthquake Engineering and Structure Dynamics,1996,25:1301-1305.
    [64]Wei-Xin Ren, WaelZatar Issam, E. Harik.Ambient vibration-based seismic evaluation of a continuous girder bridge [J]. Engineer Structures,2004,26:631-640.
    [1]孟宪锋,朱晞.梁式桥防止地震碰撞及落梁装置与措施的研究进展[J].工程抗震与加固改造,2005,27(2):71-75.
    [2]帅纲毅,朱晞.地震作用下简支梁桥碰撞反应分析[A].现代地震工程进展[C].2002.
    [3]王东升,冯启民,凌贤长等.桥梁非线性地震反应分析若干问题研究现状[J].地震工程与工程振动,2002,22(1).
    [4]Kima J M, Fengb M Q, Shinozukac M. Energy dissipating restrainers for highway bridges [J]. Soil Dynamics and Earthquake Engineering,2000,19:65-69.
    [5]Panos Trochalakis, Marc O Eberhard, John F Stanton. Design of Seismic Restrainers for In-Span Hinges[J]. Structural Engineering,1997,123 (4).
    [6]王军文,李建中,范立础.限位装置对连续梁桥地震反应的影响[J].铁道学报,2008,30(3): 71-77.
    [7]Jankowski R, Wilde K, Fuzino Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes [J]. Earthquake Engineering and Structural Dynamics,1998,27(5):487-502.
    [8]Ping Zhu, Masato Abe and Yozo Fujino. Evaluation of pounding countermeasures and serviceability of elevated bridges during seismic excitation using 3D modeling [J]. Earthquake Engng Struct. Dyn.2004,33: 591-609.
    [9]李忠献,岳福青,周莉.地震时桥梁碰撞分析的等效Kelvin撞击模型[J].工程力学,2008,25(4):128-133.
    [10]李忠献,岳福青.城市梁桥地震碰撞反应研究与发展[J].地震工程与工程振动,2005,25(4):91-98.
    [11]范立础,卓卫东著.桥梁延性抗震设计[M].人民交通出版社,2001.
    [12]王克海编著.桥梁抗震研究[M].中国铁道出版社,2007.
    [13]谢旭编著.桥梁结构地震响应分析与抗震设计[M].人民交通出版社,2006.
    [14]聂利英.桥梁抗震非线性分析理论研究[D].同济大学博士学位论文,2003.
    [15]日本铁道综合技术研究所,铁道构造物等设计标准及解说V抗震设计[S],2000.
    [16]Sang-Hyo, Ho-seong Mha, Sang-Woo Lee. Effects of bearing damage upon seismic behaviors of a multi-span girder bridge[J]. Engineering structures.2006(28):1071-1080.
    [17]聂利英,范立础.地震作用下城市立交抗震挡防撞措施分析[J].中国公路学报,2006,19(3):49-53.
    [18]王军文,李建中,范立础.桥梁中抗震限位装置设计方法的研究[J].土木工程学报,2006,39(11):90-95.
    [19]王军文,李建中,范立础.非规则梁桥伸缩缝处的碰撞对地震反应的影响[J].土木工程学报,2006,39(1):54-59.
    [20]王军文,李建中,范立础.连续梁桥纵向地震碰撞反应参数研究[J].中国公路学报2005,18(4):42-47.
    [21]Jankowski R, Wilde K, Fujino Y. Reduction of Pounding Effects in Elevated Bridges during Earthquakes[J]. Earthquake Eng. Stru. Dyn.2000,29 (2):195-212.
    [22]Kawashima K, Shoji G. Effect of restrainers to mitigate pounding between adjacent decks subjected to a strong ground motion [A].12th World Conference on Earthquake Engineering[C]. Auckland, New Zealand,2000.
    [23]邓育林,彭凯,李建中.地震作用下横向碰撞对连续梁桥地震反应的影响[J].结构工程师,2007,23(2):64-68.
    [24]聂利英,李建中,范立础.地震作用下结构碰撞的模型参数及其影响分析[J].工程力学,2005,22(5):142-146.
    [25]Bruce F Maison, Kazuhiko Kasai. Dynamics of pounding when two buildings collide [J]. Earthquake Engineering and Structural Dynamics,1992,21:771-786.
    [26]Ping Zhu, Masato Abe and Yozo Fujino. Modelling three dimensional nonlinear seismic performance of elevated bridges with emphasis on pounding of girders[J]. Earthquake Engng Struct. Dyn.2002,31: 1891-1913.
    [27]Takada S, Hozumi M and Ivanov R. Seismic force acting on bridge restrainers and reliability evaluation [R]. Memoirs of the Construction Engineering Research Institute,2001, No.43-B,69-82.
    [28]Parveen K Malhotra. Dynamics of Seismic Pounding at Expansion Joints of Concrete Bridges[J].Journal of Engi-neering Mechanics.1998,124:794-802.
    [29]Chau K T, Wei X X. Pounding of structures modeled as non-linear impacts of two oscillators [J]. Earthquake Engineering and Structural Dynamics,2001,30(5):633-651.
    [30]Jankowski R. Non-linear viscoelastic modeling of earthquake-induced structural pounding [J]. Earthquake Engineering and Structural Dynamics,2005,34(6):595-611.
    [31]Malhotra P K. Dynamics of seismic pounding at expansion joints of concrete bridges [J]. Journal of Engineering Mechanics,1998,124(7):794-802.
    [32]王东升,王国新,冯启民.桥梁结构地震反应邻梁碰撞分析等效刚体模型[J].工程力学,2004,21(4):81-85.
    [33]Schiehlen W, Seifried R. Three approaches for elastodynamic contact in multibody systems [J]. Multibody System Dynamics,2004,12(1):1-16.
    [34]Anagnostopoulos S A. Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems [J]. Earthquake Engineering and Structural Dynamics,2004,33(8):897-902.
    [35]Kim S-H, Lee S-W, Mha H-S. Dynamic behaviors of bridges considering pounding and friction effects under seismic excitations. Structural Engineering and Mechanics 2000,10(6):621-633.
    [36]Parveen K Malhotra, Moh J Huang, Anthony F Shakal. Seismic interaction at separation joints of an instrumented concrete bridge [J]. Earthquake Engrg. Struct., Dyn.,1995,24:1055-1067.
    [37]于海龙,朱晞.地震作用下梁式桥碰撞反应分析[J].中国铁道科学,2004,25(1):95-99.
    [38]Robert Jamkowski, Kezysztof Wilde, Yozo Fujinl. Pounding of Superstructure Segments in Isolated Elevated Bridge during Earthquakes[J]. Earthquake Engineering and Structural Dynamics,1998,27: 487-502.
    [39]Robert Jamkowski, Kezysztof Wilde, Yozo Fujinl. Reduction of Pounding Effects in Elevated Bridges During Earthquakes [J]. Earthquake Engineering and Structural Dynamics,2000(9):195-212.
    [40]李建中,范立础.非规则梁桥纵向地震反应及碰撞效应[J].土木工程学报,2005,38(1):84-90.
    [41]郭维,沈映红.高架简支梁桥非线性碰撞地震反应分析[J].地震工程与工程振动,2002,22(4):108-113.
    [42]李黎,吴璟,叶志雄.隔震曲线桥梁碰撞研究[J].工程抗震与加固改造,2008,30(5):48-54.
    [43]Trochalakis P, Eberhard M O, Stanton J F. Design of seismic restrainers for in-span hinges[J]. Journal of Structural Engineering,1997,123(4):469-478.
    [44]DesRoches R, Fenves G L. Design of seismic cable hinge restrainers for bridges[J]. Journal of Structural Engineering 2000,126(4):500-509.
    [45]Saiidi M, Randall M, Maragakis E, et al. Seismic restrainer design methods for simply supported bridges[J]. Journal of Bridge Engineering,2001,6(5):307-315.
    [46]Dicleli M, Bruneau M. An energy approach to sliding of single-span simply supported slab-on-girder steel highway bridges with damaged bearing[J]. Earthquake Engineering and Structural Dynamics. 1995,24:395-409.
    [47]Saiidi M, Maragakis E, Feng S. Parameters in bridge restrainer design for seismic retrofit [J]. Journal of Structural Engineering,1996,122(1):61-68.
    [48]Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering 1990;2(1):46-49.
    [49]Rabbat BG, Russell HG. Friction coefficient of steel on concrete or grout. Journal of Structural Engineering 1985, 111(3):505-515.
    [50]Watanabe E, Sugiura K, Nagata K, Kitane Y. Performance and damages to steel structures during the 1995 Nanbu earthquake. Engineering Structures 1998,20(2):282-290.
    [51]H Otsuka, S Unjoh, T Terayama, J Hoshikuma, K Kosa. Damage to highway bridges by 1995 Hyogoken Nanbu earthquake and the retrofit of highway bridges in Japan[R].3rd U.S.-Japan Workshop on Seismic Retrofit of Bridges,1996.
    [1]刘惠珊.桩基震害及原因分析—日本阪神大地震的启示[J].工程抗震,2000(3):27-32.
    [2]刘惠珊.桩基抗震设计探讨—日本阪神大地震的启示[J].工程抗震,1999(1):37-43.
    [3]陈国兴,张克绪,谢君裴.桩基抗震性能与震害机制解析[J].岩土工程师,1993,5(4)
    [4]张克绪,谢君裴,陈国兴.桩的震害与破坏机制宏观研究[J].世界地震工程,1991,2.
    [5]郭璇,李亮.1995年日本国兵库县南部地震桩基础典型破坏模式的分析[J].世界地震工程,2004,3.
    [6]陈明山,段绍纬,黄永和,秦中天.地震地区高速铁路桩基础设计考虑[J].岩土工程学报,2004,6.
    [7]中国科学院工程力学所编.海城地震震害[M].地震出版社,1979年.
    [8]刘恢先.唐山大地震震害[M].地震出版社,1986年.
    [9]于浩.阪神大地震对桥梁基础的影响[J].国外公路,2001,1.
    [10]黄雨,舒翔,叶为民等.桩基础抗震研究的现状[J].工业建筑,2002,7.
    [11]高凤昌.桥梁桩基础抗震性能分析及工程设计中的应用[J].山西交通科技,2003,2.
    [12]宋天齐.桩基及有关抗震问题商榷[J]工程抗震与加固改造,2006,2.
    [13]刘西拉.结构工程学科的现状与展望[M].北京:人民交通出版社,1997.
    [14]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题[J].世界地震工程.1999,25(6): 81-85.
    [15]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [16]李永梅,孙国富,王松涛等.桩-土-杆系结构的动力相互作用[J].建筑结构学报.2002,23 (2):75-81.
    [17]刘立平.水平地震作用下桩-土-上部结构弹塑性动力相互作用分析[D].重庆大学,2004.
    [18]罗伯特L.威格尔著,中国科学院工程力学研究所译.地震工程学[M].北京:科学出版社,1978.
    [19]陈仁朋,梁国钱,俞济棠等.考虑桩土相对滑移的单桩和群桩的非线性分析[J].浙江大学学报,2002,36(6):668-673.
    [20]孔德森.桩-土相互作用计算模型及其在桩基结构抗震分析中的应用[D].大连理工大学,2004.
    [21]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟[D].大连理工大学,2003.
    [22]陈兴冲.重力式桥墩-地基的线性及非线性动力性态研究[D].北方交通大学,1996.
    [23]J.Lysmer.土动力学的分析方法[A].地震工程与土动力问题译文集(C],I.M伊德里斯等著,谢君斐译,北京:地震出版社,1985,298-307.
    [24]奕茂田,林皋,杨庆.岩土地震工程与土动力学中若干最新进展评述(A].土动力学理论与实践[C],大连:大连理工大学,1998,20-46.
    [25]林皋.土-结构动力相互作用[J].世界地震工程.1991,7(2):4-21.
    [26]张楚汉.结构-地基动力相互作用问题.结构与介质相互作用理论及其应用[M].南京:河海大学出版社,1993:243-266.
    [27]林皋.岩土地震工程及土动力学新进展[J].世界地工程,1992,5,(2):1-11.
    [28]陈国兴.土体-结构体系的地震性能研究[J].哈尔滨建筑工程学院学报,1994,10,27(5):11-18.
    [29]熊建国.土-结构动力相互作用问题的新进展(Ⅰ)[J].世界地震工程,1992,2:22-29.
    [30]熊建国.土-结构动力相互作用问题的新进展(Ⅱ)[J].世界地震工程,1992,4:17-25.
    [31]李辉,赖明,白绍良.土-结构动力相互作用研究综述(Ⅰ)[J].重庆建筑大学学报,1999.8,21(4):112-116.
    [32]李辉,赖明,白绍良.土-结构动力相互作用研究综述(Ⅱ)[J].重庆建筑大学学报,1999.10,21(5):112-116.
    [33]GB50111-2006.铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [34]J.Peizien. Seismic Analysis of Bridges on Long Piles[J]. J.Engng. Mech. Div. ASCE,1964,90(EM3):223-254.
    [35]J.Peizien. seismieAnalysis of Platform structure Foundation systems[A]. The 7th annual Offshore technology Conference[C],1975,2352.
    [36]矢作枢,和田克哉,五十崴功等。橘棵下部构造物の耐震设计[M].束京:株式会社山海堂,1994,155-158.
    [37]日本道路协会.道桥示方书—耐震设计篇[M].东京:株式会杜丸善.1998.
    [38]孙利民,剂东,潘龙等.桩—土相互作用集中质量模型的土弹簧刚度计算方法.中国土木工程学会桥粱及结构工程学会第十四届年会论文集.2000.
    [39]潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计[D].同济大学,2001.
    [40]孙利民,张晨南,潘龙.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [41]肖晓春,林皋,迟世春.桩-土-结构动力相互作用的分析模型与方法[J].世界地震工程,2002, 18(4):123-130.
    [42]孔德森,栾茂田,杨庆.桩土相互作用分析中的动力Winkler模型研究评述[J].世界地震工程,2005,21(1):12-17.
    [43]张宁勇,王君杰,陆锐.土-桩-桥相互作用的集中质量模型的比较研究[J].结构工程师,2002(1):43-48.
    [44]黄雨, 舒翔,叶为民.桥梁桩基础研究的现状[J].工业建筑,2002,32(7):50-53.
    [45]Badoni D, Makris N. Nonlinear Response of Single Piles under Lateral Inertial and Seismic Loads. Soil Dynamics and Earthquake Engineering,1996,15(1):29-43
    [46]Novak, M. Dynamic Stiffness and Damping of Piles[J]. Can. Geotech J.,1974,11(4):574-598.
    [47]Novak, M. Grigg, R. Dynamic Experiments with Small Pile Foundations[J]. Can. Geotech.J., 1976,13(4):372-385.
    [48]Novak, M. Nogami, T. Soil-Pile Interaction in Horizontal Vibration[J]. Eathquake and Engineering and structure Dynamics,1977,5(3):263-281.
    [49]Novak, M. Nogami, T. Aboul-Ella, F. Dynamic Soil Reaction for Plane Strain Case[J]. Journal of the Engineering Mehanics Diviston, ASCE,1978,104, EM4:953-959.
    [50]Novak, M. Aboul-Ella, F. Impedance Function of Piles inLayered Media[J]. Journal of the Engineering Mehanics Diviston, ASCE,1978,104(6):643-661.
    [51]Novak,M. Shrnouby, E. Stiffnesse constants of single Piles[J]. Journal of the Engineering Mehanics Division, ASCE,1983,109,GT7:961-974.
    [52]El Naggar M H, Novak M. Nonlinear Analysis for Dynamic Lateral Pile Response. Soil Dynamics and Earthquake Engineering,1996,15:233-244.
    [53]Nogami T. Soil-pile interaction model for earthquake response analysis of offshore pile foundations [A]. Proceedings of 2th international Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic [C]. Vol.3 ST. Louis, Missouri,1991.
    [54]Nogami T, Otani J, Konagai K. Nonlinear soil-pile interaction model for dynamic lateral motion [J]. Journal of Geotechnical Engineering,1992, ASCE,118(1):89-106.
    [55]Cai Y X, Gould P L and Desai C S. Three Dimension Finite Element analysis of Soil-Pile-Structure Systems. In:Proceedings of International Conference on Computational Methods in Structural an d Geotechnical Engineering. Hong Kong,1994:261-266.
    [56]高峰,石玉成,严松宏.隧道的两种减震措施研究[J].岩石力学与工程学报,2005(2):222-229.
    [57]张建民,谢定义.饱和砂土动力本构理论研究进展[J].力学进展,1994,24(2):187-2001.
    [58]吴世明.土动力学[M].北京:中国建筑工业出版社.2000.
    [59]张克旭,谢君斐.土动力学[M].北京:地震出版社.1989.
    [60]杨桂通.土动力学[M].北京:中国建材工业出版社.2000.
    [61]日本铁道综合技术研究所.铁道构造物等设计标准及解说V抗震设计[S],2000.
    [62]陈兴冲,郑越.弹塑性Winkler地基上双柱式桥墩的地震反应[J].工程力学,2005,22(3):112-117.
    [63]Davis TG, Sen R and Banerjee P K. Dynamic Behavior of Pile Groups in inhomogeneous Soil. J.Geotech Eng.1985,111(12):1365-1379.
    [64]日本铁道综合技术研究所.铁道构造物等设计标准及解说(基础构造物·抗土压构造物).2000.
    [65]S.Malhotra. SOIL-PILE STRUCRURE INTERACTION DURING EARTHQUAKES. "GEOTECHNICAL ENGINEERING FOR TRANSPORTATION PROJECTS", ASCE,2004.
    [66]谢耀峰.横向承载群桩性状及承载力研究[J].岩土工程学报,1996,18(6).
    [67]苏静波,邵国建,刘宁.基于P-Y曲线法的水平受荷桩非线性有限元分析[J].土木工程学报,2000,33(4).
    [68]王成华,孙冬梅.横向受荷桩P-Y曲线的研究与应用评述[J].中国港湾建设,2005,8(2).
    [69]尹华伟,易建伟,魏红卫.横向推力单桩的动力非线性分析[J].工程力学,2006,23(7).
    [70]谢耀峰.大变位水平承载高桩性状的研究[J].土木工程学报,2000,33(4).
    [72]JTJ254-2001.港口工程桩基规范[S].北京:人民交通出版社,2001.
    [73]陈兴冲.客运专线桥梁抗震设计关键问题的研究报告[R].铁道部科技研究开发计划项目(2006G014),2008.
    [74]Scott A. Ashford. PUSH-OVER ANALYSIS OF PILES IN LATERALLY SPRESDING SOIL. "Seismic Performance and Simulation of Pile Foundations", ASCE,2006.
    [75]Yong-Seok Kim, M, Jose M. Roesset,, Hon.M. Effect of Nonlinear Soil Behavior on Inelastic Seismic Response of a Structure[J]. International Journal of Geomechanics,2004,Vol.4,(2):104-114.
    [1]杨风利.铁路桥梁减隔震设计方法及设计参数研究[D].同济大学.2007.
    [2]Monique C. Assessment of Seismic Retrofit Measures for Bridge Bearings. ASCE,2008.
    [3]朱文正.公路桥梁减抗震防落梁系统研究[D].长安大学,2004.
    [4]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟[D].大连理工大学,2003.
    [5]潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计[D].同济大学,2001.
    [6]邹立华.工程结构减震控制中若干问题的研究[D].西南交通大学,2004.
    [7]郭磊,李建中,范立础.大跨度连续梁桥减隔震设计研究[J].土木工程学报,2006,39(3):81-85.
    [8]王军文,李建中,范立础.非规则桥梁伸缩缝处的碰撞对地震反应的影响[J].2006,39(]):55-59.
    [9]西村昭彦.耐震設計標準の概要-新しい耐震设计の考ぇ方[R].鐵道總研報告(RTRI REPORT),1999,13(2):1-6.
    [10]西村昭彦,田中俊作, 奥村文直.模型杭の大变位水準载荷試驗とその解析[R].鐵道總研報告(RTRI REPORT),1993,Vol.7(12):41-48.
    [11]棚村史郎,西村昭彦.基础の耐震性能と耐震设计法[R].鐵道總研報告(RTRI REPORT),1999,Vol.13(3):7-12.
    [12]西山誠治,齊藤正人,羽矢洋.ケ一ソン基礎の設計[R].鐵道總研報告(RTRI REPORT),1999,Vol.13(3):19-24.
    [13]泽田亮,西村昭彦.抗土压构造物の耐震设计[R].鐵道總研報告(RTRI REPORT),1999,Vol.13(3):37-42.
    [14]日本铁道综合技术研究所,铁道构造物等设计标准及解说V抗震设计[S],2000.
    [15]Eurocode 8. Design of Structures for Earthquake Resistance Part 2-Bridges, No:pr EN 1998-2:200X, CEN:European Committee for Standardization, January 2004.
    [16]Eurocode 8. Design of Structures for Earthquake Resistance Part 5-Foundations, retaining structures and geotechnical aspects No:pr EN 1998-5:200X, CEN:European Committee for Standardization, January 2004.
    [17]谢旭.桥梁结构地震响应分析[M].北京:人民交通出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700