Al合金中Mn-Ni-B,Cu-Mn-Ni,Cu-Ni-Si相图研究及Al合金凝固和时效相场模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料显微组织的描述是进行材料设计的重要前提之一。利用相图计算CALPHAD (CALculation of PHAse Diagram)方法建立的热力学和动力学数据库可以为材料显微组织定量模拟提供精确的相图热力学和扩散动力学信息。近年来,建立在精确热力学和扩散动力学基础上的相场模拟成为一种非常有效的显微组织模拟方法。
     Cu、Mn、Ni、Si和B是多元铝合金中重要的合金元素或者添加元素,它们之间的相互作用影响多元A1合金的相平衡关系。采用相场方法模拟Al合金的制备过程可以获得该过程中的显微组织演变信息,但是关于多元多相Al合金的定量模拟目前并不多见。本工作集成实验测定、CALPHAD方法和第一性原理计算对多元A1合金的重要子体系Mn-Ni-B、Cu-Mn-Ni和Cu-Ni-Si进行相图热力学研究,所获得的热力学参数完善了多元Al合金热力学数据库。结合A1合金热力学和动力学数据库,采用多相场方法对五元工业铝合金A1356.1(Al-0.46Fe-0.3Mg-0.32Mn-6.97Si, wt.%)的凝固和Al-Ni合金的时效过程进行模拟。本工作主要研究成果如下:
     (1)XRD分析证实NiB12和NiB2在950℃是非稳定相。测定了Ni-B体系中的零变量反应温度。采用第一性原理计算了所有化合物的生成焓来辅助热力学计算。通过热力学计算获得的Ni-B和Mn-B体系的热力学参数能够描述体系的相图热力学性质。结合Ni-B、Mn-B和Mn-Ni体系的热力学参数,对Mn-Ni-B三元系进行了热力学计算并采用所获得的参数构筑了希尔反应图。
     (2)测定了Cu-Mn-Ni体系600℃的等温截面。观察到了cbcc_A12、 cub_A13和fcc_Al的三相平衡。三个边际二元系中的fcc_Al相在三元体系中形成连续固溶体。Cu在Ll0-MnNi相中的溶解度达到16at.%。通过对该体系实验数据的热力学计算获得了能描述该体系相图热力学性质的一套参数。
     (3)测定了Cu-Ni-Si体系700℃的等温截面。首次发现了新的线性化合物Cu45.8Ni25Si29.2,并且证实了三元化合物Cu56.8-63Ni10.4-16.1Si26.6-27.3的存在。首次精确测定了所有化合物在700℃的固溶度。在Ni-Si二元体系中820℃以上稳定存在的Ni2SiH在三元体系中可以在700℃稳定存在,并且溶解12.7-20.6at.%的Cu。对体系热力学计算得到的参数计算的结果与实验结果符合。所得到的参数不仅可以结合相关体系参数准确计算Al-Cu-Ni-Si四元体系,而且还可以用于Cu基Corson合金在低温时效强化过程中析出相种类和相分数的预测。
     (4)采用多相场方法结合热力学和动力学数据库对多元工业Al合金Al356.1的凝固过程进行了模拟。模拟中涉及到五组元和五个相。定量得到了合金化元素Fe、Mg、Mn和Si的成分分布。模拟结果合理并且优于Scheil非平衡模型模拟。模拟中尝试了2套液相扩散系数数据库,发现液相扩散系数对凝固过程中的显微组织演变模拟结果有显著影响。
     (5)耦合热力学和动力学数据库,采用多相场方法对Al-Ni合金时效过程中,γ相在金属间化合物γ'基体相中析出、长大和熟化过程进行了模拟。界面能和共格弹性应力的作用不仅使γ相析出物由球形变成方块,最后成片状,而且还促使了两个γ相晶粒的分离行为,使体系能量达到最低。
     本论文包含84幅图、21个表和246篇参考文献。
Description of materials microstructure is important for materials design. The thermodynamic and kinetic databases established by CALPHAD method provide accurate thermodynamic and kinetic data for quantitative simulation of microstructure. The phase field method based on accurate thermodynamic and kinetic inputs has been an effective method for simulation of microstructure evolution in recent years.
     Cu, Mn, Ni, Si and B are important alloying elements or additives in Al-based alloys, their phase relationships have influence on the phase equilibria of multicomponent Al alloys. The microstructure evolution of Al alloys in the preparation process can be obtained by phase field simulation. However, quantitative phase field simulation of multi-component Al alloys is rare. In the present work, a hybrid approach of experiments, first-principles calculations and CALPHAD is used to investigate the phase diagrams of Mn-Ni-B, Cu-Mn-Ni and Cu-Ni-Si systems, which are important sub-systems of multi-component Al alloys. The thermodynamic parameters obtained in the present work improve the thermodynamic database of Al alloys. Moreover, by coupling to the thermodynamic and kinetic databases of Al alloys, the multi phase field method is used to simulate the microstructure evolution of A1356.1(Al-0.46Fe-0.3Mg-0.32Mn-6.97Si, wt.%) alloy in the solidification process and the Al-Ni alloy in the aging process. The major research achievements of the present work are:
     (1) The NiB)2and NiB2are demonstrated to be unstable phases at950℃by XRD. The invariant temperatures in the Ni-B system are measured. The enthalpies of formation of all compounds are calculated by first principles calculation to assist the thermodynamic calculation. The thermodynamic parameters of Ni-B and Mn-B system are obtained by thermodynamic calculation and the calculated results agree with the experimental data. By combining the parameters of Ni-B, Mn-B and Mn-Ni systems, the thermodynamic calculation is performed on the Mn-Ni-B system. The liquidus projection and Scheil reaction scheme of Mn-Ni-B system are constructed using the obtained parameters.
     (2) The isothermal section of Cu-Mn-Ni system at600℃is measured. The three-phase equilibrium of cbcc_A12, cub_A13and fcc_Al is observed. The fcc_Al phases in binary systems form continuous solid solution in the ternary system. The solubility of Cu in Ll0-MnNi phase is up to16at.%。 A set of thermodynamic parameters is obtaind and the calculated results generally agree with the experimental data.
     (3) The isothermal section of Cu-Ni-Si system at700℃is measured. The line ternary compound Cu45.8Ni2.5Si29.2is observed for the first time. The ternary compound Cu56.8-63Ni10.4-16.1Si26.6-27.3reported in literature is demonstrated. The solubities of all compounds at700℃are accurately measured. The Ni2SiH phase stable above820℃in the binary Ni-Si system can be stable at700℃and dissolve12.7-20.6at.%Cu in the ternary system. A set of thermodynamic parameters for this system is obtained and the calculated results agree with the experimental data. The current set of parameters can successfully extrapolate to high order Al-Cu-Ni-Si system and predict the phase type and molar fraction of precipitates formed in the aging process of Cu based Corson alloy.
     (4) The solidification process of A1356.1alloy is simulated by multi phase field method. The simulation involves five components and five phases. The concentration distribution of alloying elements Fe, Mg, Mn and Si in the primary (Al) phase is quantitatively obtained. The simulation result is reasonable and better than the result of Scheil model. Two sets of diffusion databases of liquid phase are used, and it is found that the diffusion coefficients of liquid have significant influence on the simulation of microstructure evolution in the solidification.
     (5) The precipitation, growth and coarsening process of γ precipitate in y1matrix in the Al-Ni system is simulated. Under the effect of interfacial energy and elastic stress, the shape of y precipitate evolves from sphere to cubic and finally plate like shape. In addition, the splitting behavior is observed as to minimize the total energy in the system.
     There are84figures,21tables and246references in this thesis.
引文
[1]Zhang L J, Markstrom A, Mason P, et al. TCAL1 and MOBAL2-The development and validation of new thermodynamic and mobility databases for aluminum alloys [C].13th International Conference on Aluminum Alloys,2012: 305-310.
    [2]Steinbach L Phase-field model for microstructure evolution at the mesoscopic scale [J]. Annu. Rev. Mater. Res.,2013,43:5.1-5.19.
    [3]Steinbach I, Bottger B, Eiken J, et al. CALPHAD and Phase-Field Modeling:A Successful Liaison [J]. J. Phase Equilib. Diff.,2007,28(1):101-106.
    [4]Ansara I. COST 507:Thermochemical Database for Light Metal Alloys [M]. Brussels:Office for Official Publications of the European Communities,1998
    [5]Du Y, Liu S H, Zhang L J, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys:Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system [J]. CALPHAD,2011,35(3):427-445.
    [6]Du Y, Zhang L J, Cui S L, et al. Atomic mobilities and diffusivities in Al alloys [J]. Sci. China Technol. Sci.,2012,55(2):306-328.
    [7]Wang Y, Liu Z K, Chen L Q, et al. First-principles calculations of β"-Mg5Si6/a-Al interfaces [J]. Acta Mater.,2007,55(17):5934-5947.
    [8]Zhang H, Shang S L, Wang Y, et al. First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17[J]. Acta Mater.,2010, 58(11):4012-4018.
    [9]Ganeshan S, Shang S L, Zhang H, et al. Elastic constants of binary Mg compounds from first-principles calculations [J]. Intermetallics,2009,17(5): 313-318.
    [10]陈海林.Al-Cr-Si、Al-Cr-Ti、Al-Cu-Fe、Al-Cu-Ni和Nb-Ni体系的晶体结构与相图测定及热力学模拟[D].长沙:中南大学,2008.
    [11]Jin Z P. A study of the range of stability of sigma phase in some ternary stystem [J]. Scand. J Metall.,1981,10:178-187.
    [12]Xu H H, Hu B, Sun W H, et al. Phase equilibria of the Ni-Si-Zn system at 600℃ [J]. Intermetallics,2011,19(8):1089-1095.
    [13]Stolz U K, Arpshofen I, Sommer F, et al. Determination of the enthalpy of mixing of liquid alloys using a high-temperature mixing calorimeter [J]. J. Phase Equilib.,1993,14(4):473-478.
    [14]Yukinobu M, Ogawa O, Goto S. Activity of boron in Ni-B-C melts saturated with carbon [J]. Metall. Trans. B,1990,21B:791-793.
    [15]Copland E H, Jacobson N S. Thermodynamic activity measurements with Knudsen cell mass spectrometry [J]. J. Electrochem. Soc.,2001,6:28-31.
    [16]Meschel S V, Kleppa O J. Standard enthalpies of formation of some 3d,4d, and 5d transition-metal stannides by direct synthesis calorimetry [J]. Thermochim. Acta,1998,314(1):205-212.
    [17]Meschel S V, Nash P, Chen X Q. The standard enthalpies of formation of binary intermetallic compounds of some late 4d and 5d transition metals by high temperature direct synthesis calorimetry [J]. J. Alloys Compd.,2010,492(1-2): 105-115.
    [18]Sun W H, Du Y, Kong Y, et al. Reassessment of the Ni-B system supported by key experiment and first-principles calculation [J]. Int. J. Mat. Res.,2009, 100(1):59-67.
    [19]Yuan X M, Sun W H, Chung Y S, et al. Heat contents of the intermetallics V3Ge and V5Ge3 and thermodynamic modeling of Ge-V system [J]. Thermochim. Acta, 2011,513(1-2):100-105.
    [20]Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams):A Comprehensive Guide [M]. Pergamon Materials Series,1998,1:7-29.
    [21]Dinsdale A T. SGTE Data for Pure Elements [J]. CALPHAD,1991, 15(4):317-425.
    [22]Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions [J]. Ind. Eng. Chem. Res.,1948,40(2): 345-349.
    [23]Bragg W L, Williams E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proc. Roy. Soc.,1934, A145(855):699-730.
    [24]Bragg W L, Williams E J. The eftect of thermal agitation on atomic arrangement in alloys. Ⅱ [J]. Proc. Roy. Soc.,1935, A151(874):540-566.
    [25]Kaptay G. A new equation for the temperature dependence of the excess Gibbs energy of solution phases [J]. CALPHAD,2004,28(2):115-124.
    [26]徐祖耀.材料热力学[M].北京:高等教育出版社,2009:106-119.
    [27]Inden G. Approximate description of the configurational specific heat during a magnetic order-disorder transformation [C]. Project Meeting CALPHAD V, Duesseldorf,1976.
    [28]Hillert M, Jarl M. A model for alloying effects in perromagnetic metals [J]. CALPHAD,1978,2(3):227-238.
    [29]Ansara I, Sundman B, Willemin P. Thermodynamic modeling of ordered phases in the Ni-Al system [J]. Acta Metall.,1988,36(4):977-982.
    [30]Ansara I, Dupin N, Lukas H L, et al. Thermodynamic assessment of the Al-Ni system [J]. J. Alloys Compd.,1997,247(1-2):20-30.
    [31]Dupin N, Ansara I, Sundman B. Thermodynamic re-assessment of the ternary system Al-Cr-Ni [J]. CALPHAD,2001,25(2):279-298.
    [32]Sundman B, Ohnuma I, Dupin N, et al. An assessment of the entire Al-Fe system including D03 ordering [J]. Acta Mater.,2009,57(10):2896-2908.
    [33]Lu X G, Selleby M, Sungman B. Theroretical modeling of molar volume and thermal expansion [J]. Acta Mater.,2005,53(8):2259-2272.
    [34]Lu X G. Theoretical Modeling of Molar Volume and Thermal Expansion [D]. Sweden:Royal Institute of Technology,2005.
    [35]Liu Z K, Zhang H, Ganeshan S, et al. Computational modeling of effects of alloying elements on elastic coefficients [J]. Scripta Mater.,2010,63(7): 686-691.
    [36]Zivkovic D, Manasijevic D. An optimal method to calculate the viscosity of simple liquid ternary alloys from the measured binary data [J]. CALPHAD, 2005,29(4):312-316.
    [37]Rabe K M. First-principles calculations of complex metal-oxide materials [J]. Annu. Rev. Conden. Ma. P.,2010,1:211-235.
    [38]Ganeshan S, Shang S L, Wang Y, et al. Effect of alloying elements on the elastic properties of Mg from first-principles calculations [J]. Acta Mater.,2009,57(13): 3876-3884.
    [39]Ganeshan S, Hector Jr. L G, Liu Z K. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model [J]. Acta Mater.,2011,59(8):3214-3228.
    [40]Kim D E, Shang S L, Liu Z K. Effects of alloying elements on thermal expansions of y-Ni and y'-Ni3Al by first-principles calculations [J]. Acta Mater., 2012,60(4):1846-1856.
    [41]Saengdeejing A, Saal J E, Manga V R, et al. Defects in boron carbide: First-principles calculation and CALPHAD modeling [J]. Acta Mater., 2012,60(20):7207-7215.
    [42]Zhang H, Wang Y, Shang S L, et al. Solvus boundaries of (meta) stable phases in the Al-Mg-Si system. First principles phonon calculations and thermodynamic modeling [J]. CALPHAD,2010,34(1):20-25.
    [43]Chen L Q. Phase-field models for microstructure evolution [J]. Annu. Rev. Mater. Res.,2002,32:113-140.
    [44]Boettinger W J, Warren J A, Beckermann C, et al. Phase-Field Simulation of Solidification [J]. Annu. Rev. Mater. Res.,2002,32:163-194.
    [45]Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. CALPHAD,2008,32(2):268-294.
    [46]Steinbach I. Phase-field models in materials science [J]. Modell. Simul. Mater. Sci. Eng.,2009,17(7):073001-073031.
    [47]张利军Al-Cu-Fe-Mn-Ni体系的合金的相图热力学、扩散及微观结构演变模拟研究[D].长沙:中南大学,2010.
    [48]Ginzburg V L, Landau L D. On the theory of superconductivity [M]. Oxford: Pergamon Press,1950,1:1064-1082.
    [49]Cahn J W, Hilliard J. Free energy of a nonuniform system. I. Interfacial Free Energy [J]. J. Chem. Phys.,1958,28:258-268.
    [50]Khachatuyran A G. Theory of structural transformations in solids [M]. New York: Wiley,1983:1-29.
    [51]Chen L Q, Wang Y Z, Khachaturyan A G. Transformation-induced elastic strain effect on the precipitation kinetics of ordered intermetallics [J]. Phil. Mag. Lett., 1991,64(5):241-251.
    [52]Wang Y, Khachaturyan A G. Three-dimensional field model and computer modeling of martensitic transformations [J]. Acta Mater.,1997,45(2):759-773.
    [53]Wen Y H, Wang Y, Chen L Q. Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation [J]. Acta Mater.,1999,47(17):4375-4386.
    [54]Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model for isothermal phase transitions in binary alloys [J]. Phys. Rev. A,1992,45(10):7424-7439.
    [55]Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev. E,1999,60(6):7186-7197.
    [56]Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems [J]. Physica D,1996,94(3):135-147.
    [57]Tiaden J, Nestler B, Diepers H J, et al. The multiphase-field model with an integrated concept for modeling solute diffusion [J]. Physica D,1998,115(1-2): 73-86.
    [58]Steinbach I, Pezzolla F. A generalized field method for multiphase transformations using interface fields [J]. Physica D,1999,134(4):385-393.
    [59]Steinbach I, Apel M. Multi phase field model for solid state transformation with elastic strain [J]. Physica D,2006,217(2):153-160.
    [60]Eiken J, Bottger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev. E, 2006,73(6):066122-066131.
    [61]Steinbach I, Zhang L J, Plapp M. Phase-field model with finite interface dissipation [J]. Acta Mater.,2012,60(6-7):2689-2701.
    [62]Zhang L J, Steinbach I. Phase-field model with finite interface dissipation: extension to multi-component multi-phase alloys [J]. Acta Mater.,2012,60(6-7): 2702-2710.
    [63]Ramazani A, Li Y, Mukherjee K, et al. Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding [J]. Comp. Mater. Sci.,2013, 68:107-116.
    [64]Grafe U, Bottger B, Tiaden J, et al. Coupling of multicomponent thermodynamic databases to a phase field model:application to solidification and solid state transformations of superalloys [J]. Scripta Mater.,2000,42(12):1179-1186.
    [65]Militzer M, Mecozzi M G, Sietsma J, et al. Three-dimensional phase field modelling of the austenite-to-ferrite transformation [J]. Acta Mater., 2006,54(15):3961-3972.
    [66]Steinbach I, Apel M. Phase-field simulation of rapid crystallization of silicon on substrate [J]. Mater. Sci. Eng. A,2007,449-451:95-98.
    [67]Schaffnit P, Apel M, Steinbach I. Simulation of ideal grain growth using the multi-phase-field model [J]. Mater. Sci. Forum,2007,558-559:1177-1181.
    [68]Apel M, Bottger B, Rudnizki J, et al. Grain growth simulations including particle pinning using the multi-phasefield concept [J]. ISIJ Int.,2009,49(7): 1024-1029.
    [69]Lopez-Galilea I, Huth S, Fries S G, et al. Microsegregation and secondary phase formation during directional solidification of the single-crystal Ni-based superalloy LEK94 [J]. Metall. Mater. Trans. A,2012,43(3):5153-5164.
    [70]方世杰,赵玉谦,刘耀辉等.铸造Al-Si合金中主要合金元素的物性及作用[OL].中国科技论文在线[2005-12-09]. http://www.paper.edu.cn/ releasepaper/content/200512-219.
    [71]王金国,周宏等.镍和锰对Al-Si-Cu-Mg合金凝固组织及时效硬化的影响[J].中国有色金属学报,2000,10(s1):170-172.
    [72]王丽,边秀房,孙益民.硼对亚共晶Al-Si合金的细化作用[J].中国有色金属学报,1999,9(4):714-719.
    [73]Krishnaveni K, Sankara Narayanan T S N, Seshadri S K. Electrodeposited Ni-B coatings:Formation and evaluation of hardness and wear resistance [J]. Mater. Chem. Phys.,2006,99(2-3):300-308.
    [74]Kaya B, Gulmez T, Demirkol M. Preparation and properties of electroless Ni-B and Ni-B nanocompotite coatings [C]. Proceedings of the World Congress on Engineering and Computer Science(WCECS), San Francisco, USA,2008.
    [75]Shi Z Y, Wang D Q, Ding Z M. Surface strengthening pure copper by Ni-B coating [J]. Appl. Surf. Sci.,2004,221(1-4):62-68.
    [76]Wang B, Li X, Wang Y X, et al. Phase stability and physical properties of manganese borides:a first-principle study [J]. J. Phys. Chem. C,2011,115: 21429-21435.
    [77]Fan J, Bao K, Jin X L, et al. How to get superhard MnB2:a first-principles study [J]. J. Mater. Chem.,2012,22:17630-17635.
    [78]Liao P K, Spear K E. Phase diagrams of binary nickel alloys [M]. OH, USA: ASM International,1991:31-36.
    [79]Teppo O, Taskinen P. Thermodynamic assessment of nickel-boron phase diagram [J]. Mater. Sci. Technol.,1993,9(3):205-212.
    [80]Hack K, Chart T G. Critical assessment of thermodynamic data for the nickel-boron system [R]. Comm. Comm. Eur., CECA No 7210-CA/3/303,1981.
    [81]Kaufman L, Uhrenius B, Birnie D, et al. Coupled Pair Potential, Thermochemical and Phase Diagram Data for Transition Metal Binary Systems [J]. CALPHAD,1984,8(1):25-66.
    [82]Jansson B, Agren J. A thermochemical assessment of liquid-solid equilibria in nickel-rich, nickel-silicon-boron alloys [J]. Mater. Sci. Eng.,1984,63(1):51-60.
    [83]Campbell C E, Kattner U R. A thermodynamic assessment of the Ni-Al-B system [J]. J. Phase Equilib.,1999,20(5):485-496.
    [84]Morishita M, Koyama K, Maeda K, et al. Calculated phase diagram of the Ni-B ternary system [J]. Mater. Trans., JIM,1999,40(7):600-605.
    [85]Tokunaga T, Nishio K, Ohtani H, et al. Phase equilibria in the Ni-Si-B system [J]. Mater. Trans.,2003,44(9):1651-1654.
    [86]Vitusevith V T. Heats of formation of nickel-boron-carbon-system melts [J]. Rasplavy,1992,4:83-85.
    [87]熊伟.Ni合金相图、相平衡及相变的热力学研究[D].长沙:中南大学,2010.
    [88]Schobel J D, Stadelmaier H H. The binary system nickel-boron [J]. Z. Metallkd., 1965,56(12):856-859.
    [89]Omori S, Hashimoto Y, Nakamura S, et al. Experimental investigation of Ni-B binary system [J]. J. Jpn. Soc. Powder and Powder Metall.,1971,18(4): 132-135.
    [90]Lugscheider E, Knotek O, Reimann H. Nickel-chromium-boron ternary system [J]. Monatsh. Chem.,1974,105(1):80-90.
    [91]Hoppin G S. A new nickel-boron phase diagram for brazing alloy development [J]. Weld. J.1957,36:528-530.
    [92]Kolomytsev P T. Phase diagram of the nickel-nickel subboride system [J]. Izv. Akad. Nauk SSSR, Metall. Topl.,1960,3:83-85.
    [93]Portnoi K I, Chubarov V M, Romashov V M, et al. Phase diagram of the nickel-boron system [J]. Dokl. Akad. Nauk SSSR,1966,169(5):1104-1106.
    [94]Portnoi K I, Romashov V M, Chubarov V M, et al. Phase diagram of the nickel-boron system [J]. Porosh. Metall. (Kiev),1967,7(2):15-21.
    [95]Sobolev A S and Fedorov T F. Phase diagram of the nickel-boron system [J]. Izv. Akad. Nauk SSSR, Met.,1967,3(4):723-726.
    [96]Esin Y O, Baev V M, Gel'd P V, et al. Enthalpies of formation of nickel-boron melts [J]. Izv. Akad. Nauk SSSR, Met.,1974,4:73-76.
    [97]Esin Y O, Baev V M, Gel'd P V. Enthalpies of formation of nickel, cobalt, iron, and manganese alloys with boron [J]. Pr-vo Ferrosplavov, Moskva,1980,8: 32-34.
    [98]Witusiewicz V T. Thermodynamic properties of liquid alloys of 3d transition metals with metalloids (silicon, carbon and boron) [J]. J. Alloys Compd.,1994, 203(1-2):103-110.
    [99]Witusiewicz V T. Thermodynamics of binary and ternary melts of the 3d transition metals (Cr, Mn, Fe, Co and Ni) with boron [J]. Thermochimi. Acta, 1995,264:41-58.
    [100]Witusiewicz V T. Thermodynamics of liquid binary alloys of the 3d transition metals with metalloids:generalization [J]. J. Alloys Compd.,1995,221(1-2): 74-85.
    [101]Gorelkin O S, Dubrovin A S, Kolesnikova O D, et al. Determination of the heats of formation of intermetallic compounds in an isothermal calorimeter by a sintering method [J]. Zh. Fiz. Khim.,1972,46(3):754-755.
    [102]Omori S, Hashimoto Y. Thermodynamic properties of Ni3B and Ni2B by E.M.F measurements [J]. J. Jpn. Soc. Powder and Powder Metall.,1973,20(3):80-86.
    [103]Sato S, Kleppa O J. Enthalpies of formation of borides of iron, cobalt, and nickel by solution calorimetry in liquid copper [J]. Metall. Trans. B,1982, 13B(2):251-257.
    [104]Meschel S V, Kleppa O J. Standard enthalpies of formation of some refractory borides of 4d and 5d elements from high-temperature direct synthesis calorimetry [J]. J. Chim. Phys.,1993,90(2):349-354.
    [105]Storms E K, Szklarz E G. Vaporization thermodynamics of nickel-boron(liquid) and nickel-boron-carbon(liquid) [J]. J. Less-Common Met.,1987,135(2): 229-237.
    [106]Ushio R, Ogawa O. Activities of boron in the binary nickel-boron and the ternary cobalt-iron-boron melts [J]. Metall. Trans. B,1991,22B(1):47-52.
    [107]Masago A, Shirai K, Katayama H. Crystal stability of α-and (β-boron [J]. Phys. Rev. B,2006,73(10):104102.1-10.
    [108]Du Y, Schuster J C, Chang Y A, et al. A Thermodynamic description of the B-Co system:modeling and experiment [J]. Z. Metallkd.,2002,93(11): 1157-1163.
    [109]Hack K, Chart T G. Critical assessment and estimation of thermodynamic data for the manganese-boron system [R]. Comm. Eur. Communities,1982,7(EUR 7820, Pt.2):1-15.
    [110]Liao P K, Spear K E. The B-Mn (boron-manganese) system [J]. Bull. Alloy Phase Diag.,1986,7(6):543-549,585-586.
    [111]Okamoto H. B-Mn (boron-manganese) [J]. J. Phase Equilib.,1993,14(1): 121-122.
    [112]Vitusevich V T. Enthalpy of formation of manganese-boron-carbon melts [J]. Metally,1993,4:38-41.
    [113]Markovskii L Y, Bezruk E T. Melting diagram and some properties of borides in the manganese-boron system [J]. Zh. Prikl. Khim.,1965,38(8):1677-1682.
    [114]Markovskii L Y, Bezruk E T. System manganese-boron [J]. Vysokotemp. Neorgan. Soedin., Akad. Nauk Ukr. SSR Inst. Probl. Materialoved,1965: 433-436.
    [115]Markovskii L Y, Bezruk E T. Phase composition of compounds forming in the manganese-boron systems rich in boron [J]. Zh. Prikl. Khim.,1967,40(6): 1199-1203.
    [116]Bezruk E T, Markovskii L Y. Lower manganese borides [J]. Zh. Prikl. Khim., 1967,40(4):908-911.
    [117]Markovskii L Y, Bezruk E T. Phase diagram of the manganese-boron system [J]. Izv. Akad. Nauk SSSR, Neorg. Mater.,1967,3(12):2165-2169.
    [118]Kiessling R. The borides of some transition elements [J]. Acta Chem. Scand., 1950,4:209-227.
    [119]Fruchart R, Michel A. A new boride of manganese, MnB4 [J]. Compt. Rend., 1960,251:2953-2954.
    [120]Binder I, Post B. Manganese diboride [J]. Acta Cryst.,1960,13:356-357.
    [121]Aronsson B. A note on the compositions and crystal structures of MnB2, Mn3Si, Mn5Si3, and FeSi2[J]. Acta Chem. Scand.,1960,14(6):1414-1418.
    [122]Andersson S. A note on the crystal structure of MnB4[J]. Acta Chem. Scand., 1969,23(2):687-688.
    [123]Andersson S, Carlsson J O. The crystal structure of MnB4 [J]. Acta Chem. Scand.,1970,24(5):1791-1799.
    [124]Andersson S, Callmer B. The solubilities of copper and manganese in β-rhombohedral boron as determined in CuB28 and MnB23 by single-crystal diffractometry [J]. J. Solid State Chem.,1974,10:219-231.
    [125]Pradelli G, Gianoglio C. Manganese-boron system [J]. Metall. Ital,1974, 66(12):659-662.
    [126]Cely A, Tergenius L E, Lundstrom T. Microhardness measurements and phase analytical studies in the Mn-B system [J]. J. Less-Common Met.,1978,61: 193-198.
    [127]Tergenius L E. Refinement of the crystal structure of orthorhombic Mn2B (formerly denoted Mn4B) [J]. J. Less-Common Met.,1981,82:335-340.
    [128]Hoyle S Q. The phase equilibria of the Mn-B system [D]. United States:The Pennsylvania State University,1981.
    [129]Miller R. T. Manganese-boron phase equilibria [D]. United States:The Pennsylvania State University,1982.
    [130]Smid I, Rogl P, Weitzer P. The ternary system:manganese-boron-nitrogen [C]. H. Bildstein and H.M. Ortner Ed., Proceedings of 12th International Plansee Seminar. Austria:Metallwerk Plansee GMBH,1989,2:577-598.
    [131]Chaban N F, Mikhalenko S I, Kernitska Y Z, et al. The equilibrium phase diagram for the Tm-Mn-B system [J]. Powder Metall. Met. Ceram.,2001, 40(5-6):258-261.
    [132]Mikhalenko S I, Babizhets'kii V S, Kuz'ma Y B. The Sc-Mn-B system [J]. Powder Metall. Met. Ceram.,2005,44(11-12):567-572.
    [133]Esin Y O, Baev V M, Gel'd P V. Enthalpies of formation of molten manganese-boron alloys [J]. Zh. Fiz. Khim.,1975,49(11):2966-2967.
    [134]Kleppa O J, Sato S. New applications of high-temperature solution calorimetry. Ⅲ. enthalpies of formation of dimanganese boride, manganese boride, and manganese diboride [J]. J. Chem. Thermodyn.,1982,14(2):133-143.
    [135]Massalski T B. Binary alloy phase diagrams [M]. OH, USA:ASM,1987(1): 347-399.
    [136]Liao P K, Spear K E. The B-Y (boron-yttrium) system [J]. J. Phase Equilib., 1995,16(6):521-524.
    [137]Stadelmaier H H, Miller B E. Die tau-phase im dreistoffsystem Nickel-Mangan-Bor [J]. Metall (Heidelberg),1969,23:11-13.
    [138]Kuz'ma Y B, Kindjibalo V V. Ternary systems hafnium-iron-boron and manganese-nickel-boron [J]. Visn. L'viv. Derzh. Univ., Ser. Khim.1972,12: 25-27.
    [139]刘树红.铝合金有序-无序相变、相图拓扑关系及其在凝固过程的应用[D].长沙:中南大学,2010.
    [140]Wald F V, Cocks F H. Investigation of copper-manganese-nickel alloys for dental purposes [J]. J. Dent. Res.,1971,50(1):48-59.
    [141]Wakasa K, Sosrosoedirdjo B I, Yamaki M. Tarnish in the modified nickel-copper-manganese alloy systems containing additive elements [J]. J. Mater. Sci.,1991,26(16):4273-4280.
    [142]Wakasa K, Yamaki M. Corrosive properties in experimental Ni-Cu-Mn-based alloy systems for dental purposes [J]. J. Mater. Sci.-Mater. M.,1990,1(3): 171-176.
    [143]Yin F X, Nagai K, Watanabe K, et al. The damping behavior of Ni added Mn-Cu Damping alloys [J]. Mater. Trans.,2003,44(9):1671-1674.
    [144]Watson A, Wagner S, Lysova E, et al. Cu-Ni-Si [M]//Effenberg G, Ilyenko S. Lanolt-Bornstein-Group IV Physical Chemistry, Germany:MSIT GmbH,11C3: 274-285.
    [145]Ding L. Experimental Investigation of Phase Equilibria and Interdiffusion Coefficients in Ni-Mn System [D]. United States:University of Wisconsin-Madison,2001.
    [146]Gokcen N A. The Mn-Ni (manganese-nickel) system [J]. J. Phase Equilib.,1991, 12(3):313-321.
    [147]Tsiuplakis K E, Kneller E. Constitutional diagram Mn-Ni [J]. Z. Metallkd., 1969,60:433-438.
    [148]Coles B R, Hume-Rothery W. The equilibrium diagram of the system nickel-manganese [J]. J. Inst. Met. (London), (1951-1952),80:85-92.
    [149]He C Y, Du Y, Chen H L, et al. Thermodynamic modeling of the Cu-Mn system supported by key experiments [J]. J. Alloys Compd.,2008,457(1-2):233-238.
    [150]Mey S. Thermodynamic re-evaluation of the Cu-Ni system [J]. CALPHAD, 1992,16(3):255-260.
    [151]Parravano N. Ternary alloys of nickel-manganese-copper [J]. Gazz. Chim. Ital., 1913,42(11):385-394.
    [152]Parravano N. Ternary alloys of iron-nickel-manganese, nickel-manganese-copper, and iron-manganese-copper [J]. Intern. Z. Metallog.,1913,4: 171-202.
    [153]Schurmann E, Prinz B. Equilibria in melted nickel rich and copper rich copper-manganese-nickel alloys. Ⅰ [J]. Z. Metallkd.,1974,65(8):535-539.
    [154]Schurmann E, Prinz B. Equilibria in melted nickel rich and copper rich copper-manganese-nickel alloys. Ⅱ [J]. Z. Metallkd.,1974,65(9):593-598.
    [155]Zwicker U. About structure of manganese rich manganese-copper-nickel alloys [J]. Z. Metallkd.,1951,42:331-335.
    [156]Chang B C. The study of ternary copper alloys of copper-nickel-manganese [J]. Izv. Vyss. Uchebn. Zaved. Tsvetn. Metall.,1958,5:107-115.
    [157]Rolland J, Whitwham D. Critical temperatures of copper-nickel-manganese alloys [J]. Mem. Sci. Rev. Met.,1970,67(9):607-614.
    [158]Rolland J, Priester P, Whitwham D. Decomposition of pseudobinary copper-nickel manganese alloys [J]. Compt. Rend. Acad. Sci. Paris, Ser. C, 1970,270(22):1777-1780.
    [159]Udovenko V A, Sanadze V V, Polyakova N A, et al. Equilibrium state diagram of aged alloys of a quasi-binary section of the copper-nickel-manganese system [J]. Soobshch. Akad. Nauk Gruz. SSR,1989,134(1):73-76.
    [160]Miettinen J. Thermodynamic description of the Cu-Mn-Ni system at the Cu-Ni side [J]. CALPHAD,2003,27(2):147-152.
    [161]Zolotorevsky V S, Belov N A, Glazoff M V. Casting Aluminum Alloys [M]. UK: Elesiver,2007:327.
    [162]Belov N A, Eskin D G, Avxentieva N N. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys [J]. Acta Mater.,2005,53(17):4709-4722.
    [163]Corson M G. Copper hardened by a new method [J]. Z. Metallkd.,1927,19: 370-371.
    [164]Corson M G. Copper hardened by a new method [J]. Iron Age,1927,119: 421-424.
    [165]Corson M G. Copper alloy systems with an α-phase having variable limits and their use for the hardening of copper [J]. Rev. Met.,1930,27:194-213.
    [166]Corson M G. Copper alloy systems with an a-phase having variable limits and their use for the hardening of copper [J]. Rev. Met.,1930,27:265-281.
    [167]Teplitskii M D, Nikolaev A K, Revina N I, et al. Study of finely divided particles in aging copper-nickel-silicon and copper-cobalt-silicon alloys [J]. Fiz. Metal. Metalloved.,1975,40:1240-1243.
    [168]Kim Y G, Seong T Y, Han J H. Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy [J]. J. Mater. Sci.,1986,21(4):1357-1362.
    [169]Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. J. Mater. Sci.,1994,29(1):218-226.
    [170]Lei Q, Li Z, Wang M P, et al. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy [J]. J. Alloys Compd.,2011,509(8):3617-3622.
    [171]Lashko N F, Sorokina K P, Gorbunov A N. Strengthening of silicon Monel [J]. Mater. Sci. Heat Treat.,1966,8(6):485-487.
    [172]Hari Kumar K C, Kussmaul A, Lukas H L, et al. Cu-Ni-Si [M]//Effenberg G. Lanolt-Bornstein-Group IV Physical Chemistry, Germany:MSIT GmbH,11C2: 374-381.
    [173]Olesinski R W, Abbaschian G J. The Cu-Si(copper-silicon) system [J]. Bull. Alloy Phase Diag.,1986,7(2):170-178.
    [174]Yan X Y, Chang Y A. A thermodynamic analysis of the Cu-Si system [J]. J. Alloys Compd.,2000,308(1-2):221-229.
    [175]Nash P, Nash A. The Ni-Si (Nickel-Silicon) system [J]. Bull. Alloy Phase Diag., 1987,8(1):6-14.
    [176]Du Y, Schuster Julius C. Experimental investigations and thermodynamic escriptions of the Ni-Si and C-Ni-Si systems [J]. Metall. Mater. Trans A,1999, 30(9):2409-2418.
    [177]Mey S. Thermodynamic re-evaluation of the Cu-Ni system [J]. CALPHAD, 1992,16(3):255-260.
    [178]Jones D G, Pfeil L B, Griffiths W T. Nickel-Copper alloys of high elastic limit [J]. J. Inst. Met.,1931,46:423-442.
    [179]Jenkins C H M, Bucknell E H. The inter-relation of age-hardening and creep performance, part 1:the age hardening of nickel-silicon-copper alloys [J]. J. Inst. Met.,1935,57:141-189.
    [180]Okamoto M. The Cu-Ni-Si diagram, Part 1:A new example of ternary heterogeneous equilibrium [J]. J. Jpn. Inst. Met.,1938,2:211-232.
    [181]Okamoto M. The Cu-Ni-Si diagram, Part 2:Constitution of the precipitant from the Corson alloy by artificial aging [J]. J. Jpn. Inst. Met.,1939,3:336-348.
    [182]Okamoto M. The Cu-Ni-Si diagram, Part 3:Equilibrium diagram of the system Cu-Ni-Si [J]. J. Jpn. Inst. Met.,1939,3:365-402.
    [183]Okamoto M. The Cu-Ni-Si diagram, Part 4:Ternary a-solid solution of Cu-Ni-Si alloys [J]. J. Jpn. Inst. Met.,1939,3:411-420.
    [184]Novikov I I, Dautova L I. Investigation of the copper angle of the copper-nickel-silicon system [J]. Zh. Neorg. Khim.,1957,2:2766-2770.
    [185]Novikov I I, Dautova L I. The system copper-nickel-silicon [J]. Trudy Inst. Yadernoi Fiz., Akad. Nauk Kazakh. SSR.,1958,1:274-281.
    [186]Lashko N F, Sorokina K P. Phase analysis of the copper corner for the copper-nickel-silicon system [J]. Zh. Neorg. Khim.,1959,4:1613-1615.
    [187]Sokolovsakaya E M, Chechernikova O I, Gladyshevskii E I, et al. Physicochemical study of nickel alloys with copper and silicon: nickel-copper-silicon phase diagram for up to 15% silicon [J]. Vestn. Mosk. Univ., Ser.2:Khim.,1971,12:446-449.
    [188]Sokolovsakaya E M, Chechernikova O I, Gladyshevskii E I, et al. The Ni-Cu-Si system [J]. Izv. Akad. Nauk SSSR, Metally,1973,6:192-196.
    [189]Chechernikova O I, Sokolovsakya E M, Guzei L S. A physicochemical study of alloys of Ni with Cu and Si [J]. Vestn. Mosk. Univ., Ser.2:Khim.,1972,13: 486-489.
    [190]Lugscheider E. Differential thermoanalysis of ternary nickel-copper-metalloid alloys [C]. Proc.5th Int. Conf. Therm. Anal. (ICTA 5),1977:98-101.
    [191]Witusiewicz V, Arpshofen I, Siefert H, et al. Enthalpy of mixing of liquid Cu-Ni-Si alloys [J]. Z. Metallkd.,2000,91:128-142.
    [192]Yu Y, Wang C P, Liu X J, et al. Fcc-type miscibility gap in some Cu-Ni base alloy at high temperature [C]. CALPHAD XXXIX, Korea:Jeju,2010:23-28.
    [193]Miettinen J. Thermodynamic description of the Cu-Ni-Si system in the copper-rich corner above 700 ℃ [J]. CALPHAD,2005,29(3):212-221.
    [194]Lu D P, Wang Jun, Atrens A, et al. Calculation of Cu-rich part of Cu-Ni-Si phase diagram [J]. Trans. Nonferrous Met. Soc. China,2007,17:s12-s15.
    [195]Witusiewicz V T, Arpshofen I, Seifert H J, et al. Thermodynamics of liquid and undercooled liquid Al-Cu-Ni-Si alloys [J]. Thermochim. Acta,2000,356(1-2): 39-57.
    [196]Kuznetsov G M, Kalkulova L N, Mamzurin O B. The analysis of Phase Equilibrium in the Al-Cu-Ni, Al-Cu-Si, Al-Ni-Si, and Al-Cu-Ni-Si system alloys [J]. Izv. Vyss. Uchebn. Zaved. Tsvetn. Metall.,1990,2:94-100.
    [197]Bottger B, Carre A, Eiken J, et al. Simulation of microstructure formation in technical aluminum alloys using the multiphase-field method [J].Trans. Indian Inst. Met.,2009,62(4-5):299-304.
    [198]Bottger B, Eiken J, Steinbach I. Phase field simulation of equiaxed solidification in technical alloys [J]. Acta Mater.,2006,54(10):2697-2704.
    [199]Eiken J. Phase-field simulation of microstructure formation in technical magnesium alloys [J]. Inter. J. Mater. Res.,2010,101(4):503-509.
    [200]Minamoto S, Nomoto S, Hamaya A, et al. Microstructure simulation for solidification of magnesium-zinc-yttrium alloy by multi-phase-field method coupled with CALPHAD database [J]. ISIJ Int.,2010,50(12):1914-1919.
    [201]Zhang R J, Jing T, Jie W Q, et al. Phase-field simulation of solidification in multicomponent alloys coupled with thermodynamic and diffusion mobility databases[J]. Acta Mater.,2006,54(8):2235-2239.
    [202]Zhang R J, Li M, Allison J. Phase-field study for the influence of solute interactions on solidification process in multicomponent alloys [J]. Comp. Mater. Sci.,2010,47:832-838.
    [203]Zhang L J, Du Y, Steinbach I, et al. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification [J]. Acta Mater.,2010,58 (10):3664-3675.
    [204]Du Y, Chang Y A, Liu S H, et al. Thermodynamic description of the Al-Fe-Mg-Mn-Si system and investigation of microstructure and microsegregation during directional solidification of an Al-Fe-Mg-Mn-Si alloy [J]. Z. Metallkd.,2005,96(12):1351-1362.
    [205]Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al:critical evaluation and correlation [J]. Mater. Sci. Eng. A, 2003,363(1-2):140-151.
    [206]Wang SQ, Liu D D, Du Y, et al. Development of an atomic mobility database for liquid phase in multicomponent Al alloys:focusing on binary systems [J]. Int. J. Mater. Res.,2013, in press. doi:10.3139/146.110923
    [207]Turnbull D. Isotherm rate of solidification of small droplets of mercury and tin [J]. J. Chem. Phys.,1950,78:768-769.
    [208]Zadumkin S N. Therorectial calculation of interface energy of solid Al and Al melt [J]. Fiz. Met. Metalloved.,1962,13(1):24.
    [209]Kotze I A, Kuhlmann-Wilsdorf D. A theory of the interfacial energy between a crystal and the melt [J]. Appl. Phys. Lett.,1966,9(2):96-98.
    [210]Ewing R H. The free energy of the crystal-melt interface from the radial distribution function-further calculations [J]. Philos. Mag.,1972,25(4): 779-784.
    [211]Waseda Y, Miller W A. Calculation of the crystal-melt interfacial free energy from experimental radial distribution function data [J]. Trans. Jpn. Inst. Met., 1978,19:546-552.
    [212]Morris J R, Lu Z Y. The anisotropic free energy of the solid-liquid phase boundary in Al [J]. Interface Sci.,2002,10(2-3):143-148.
    [213]Gunduz M, Hunt J D. The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems [J]. Acta Metall,1985,33(9):1651-1672.
    [214]Gunduz M, Hunt J D. Solid-liquid surface energy in the Al-Mg system [J]. Acta Metall.,1989,37(7):1839-1845.
    [215]Camel D. Chemical adsorption and temperature dependence of the solid-liquid interfacial tension of metallic binary alloys [J]. Acta Metall.,1980,28(3): 239-247.
    [216]Marasli N, Hunt J D. Solid-liquid surface energies in the Al-CuAl2, Al-NiAl3 and Al-Ti systems [J]. Acta Mater.,1996,44(3):1085-1096.
    [217]Keslioglu K, Giindiiz M, Kaya H, et al. Solid-liquid interfacial energy in the Al-Ti system [J]. Mater. Lett.,2004,58(24):3067-3073.
    [218]Napolitano R E. Experimental measurement of anisotropy in crystal-melt interfacial energy [J]. Interface Sci.,2002,10(2-3):217-232.
    [219]Liu S, Napolitano R E, Trivedi R. Measurement of anisotropy of crystal-melt interfacial energy for a binary Al-Cu alloy [J]. Acta Mater.2001,49(20): 4271-4276.
    [220]Jian Z Y, Yang X Q, Chang F G, et al. Solid-liquid interface energy between silicon crystal and silicon-aluminum melt [J]. Metall. Mater. Trans. A,2010, 41(7):1826-1835.
    [221]Nemoto M, Takesue H, Horita Z. Strengthening of L12-ordered intermetallics by fine precipitation of coherent disordered phases [J]. Mater. Sci. Eng. A,1997, 234-236:327-330.
    [222]Liu W, Krol T, Nembach E. Precipitation strengthening, yield stress anomaly and strain rate sensitivity of an L12-ordered intermetallic (Ni,Co)3(Al,Ti) alloy [J]. Scripta Mater.,1998,39(10):1419-1425.
    [223]Cornwell L R, Purdy G R. Precipitation of gamma in gamma' particles in a nickel-aluminum alloy [J]. Met. Trans.,1974,5(3):780-781.
    [224]Ma Y, Joshi J, Ardell A J. Coarsening of gamma-(Ni-Al solid solution) precipitates in a gamma'-(Ni3Al) matrix:preliminary results [J]. Mater. Sci. Forum,2003,442:1-6.
    [225]Ma Y, Ardell A J. Coarsening of gamma (Ni-Al solid solution) precipitates in a gamma'(Ni3Al) matrix; a striking contrast in behavior from normal gamma/gamma' alloys [J]. Scripta Mater.,2005,52(12):1335-1340.
    [226]Ma Y, Ardell A J. Coarsening of gamma-(Ni-Al solid solution) precipitates in a gamma'-(Ni3Al) matrix. Acta Mater.,2007,55(13):4419-4427.
    [227]Oblak J M, Kear B H, Leverant G R. Precipitation within a precipitate. nickel-rich alloys of nickel, aluminum and titanium [J]. Proc. Electron Microsc. Soc. Am.,1971,29:202-203.
    [228]Ham R K, Cook R H, Purdy G R. Solidification behavior and gamma precipitation in nickel-rich gamma'(Ni3(Al, Ti)) [J]. Metal. Sci. J.,1972,6: 73-77.
    [229]Ham R K, Cook R H, Purdy G R, et al. Influence of gamma precipitation upon the creep of gamma'(Ni3(Al, Ti)) single crystals [J]. Metal Sci. J.,1972,6: 205-210.
    [230]Kear B H, Oblak J M, Doherty J E, et al. Precipitation of gamma in the gamma' of nickel-base superalloys [J]. Met. Trans.,1974,5(5):1252-1255.
    [231]Tian W H, Sano T, Nemoto M. Hardening of ordered nickel-aluminum-titanium, gamma'-Ni3(Al,Ti), by precipitation of disordered gamma [J]. Scripta Metall., 1986,20(6):933-936.
    [232]Gehanno V, Turi M L, Weatherly G C. Grain boundary-precipitate interactions in gamma'-Ni3(Al,Ti)[J]. Scripta Metall. Mater.,1995,33(1):1-6.
    [233]Merabtine R, Devaud-Rzepski J, Bertrand C, et al. Ductile phase precipitation in the L12 ternary intermetallic alloy Ni3(Al,Si) [J]. Intermetallics,1998,6(1): 75-77.
    [234]Liu W, Rosner H, Nembach E. Search for gamma-precipitate hardenable quaternary L12-ordered gamma'-intermetallics with compositions around Ni3(Al,Si,Ti), (Ni,Co)3(Al,Ti), and (Ni,Co)3(Si,Ti) [J]. Z. Metallkd.,1997,88(8): 648-651.
    [235]Wang Y, Banerjee D, Su C C, et al. Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from F.C.C. solid solution [J]. Acta Mater.,1998,46(9):2983-3001.
    [236]Vaithyanathan V, Chen L Q. Coarsening of ordered intermetallic precipitates with coherency stress [J]. Acta Mater.,2002,50(16):4061-4073.
    [237]Zhu J Z, Wang T, Ardell A J, et al. Three-dimensional phase-field simulations of coarsening kinetics of gamma' particles in binary Ni-Al alloys [J]. Acta Mater., 2004,52(9):2837-2845.
    [238]Wen Y H, Wang B, Simmons J P, et al. A phase-field model for heat treatment applications in Ni-based alloys [J]. Acta Mater.,2006,54(8):2087-2099.
    [239]Boisse J, Lecoq N, Patte R, et al. Phase-field simulation of coarsening of y precipitates in an ordered γ' matrix [J]. Acta Mater.,2007,55(18):6151-6158.
    [240]Du Y, Clavaguera N. Thermodynamic assessment of the Al-Ni system [J]. J. Alloys Compd.,1996,237(1):20-32.
    [241]Zhang L J, Steinbach I, Du Y. Phase-field simulation of diffusion couples in the Ni-Al system [J]. Int. J. Mater. Res.,2011,102(4):371-380.
    [242]Kamara A B, Ardell A J, Wagner C N J. Lattice misfits in four binary Ni-base gamma/gamma' alloys at ambient and elevated temperatures [J]. Metall. Mater. Trans. A,1996,27A(10):2888-2896.
    [243]Prikhodko S V, Carnes J D, Ardell A J, et al. Elastic constants of a Ni-12.69 at.% Al alloy from 295 to 1300 K [J]. Scr. Mater.,1997,38(1):67-72.
    [244]Prikhodko S V, Yang H, Ardell A J, et al. Temperature and composition dependence of the elastic constants of Ni3Al [J]. Metall. Mater. Trans. A,1999, 30A(9):2403-2408.
    [245]Li D Y, Chen L Q. Shape evolution and splitting of coherent particles under applied stresses [J]. Acta Mater.,1998,47(1):247-257.
    [246]Zhang Y X, Wang J C, Yang Y J, et al. Phase-field study for the splitting behavior of precipitate under applied stress [J]. Chin. Phys. B,2008,17(9): 3523-3530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700