Al-Cu-Fe-Mg-Mn-Si体系的相图热力学研究及凝固过程中相变序列的预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的热力学信息是进行材料动力学计算及微观组织演变模拟的基础,因此CALPHAD (CALculation of PHAse Diagram)技术在材料的设计与开发中发挥着越来越重要的作用。Cu、Fe、Mg、Mn、Si是多元商业铝合金中的主要合金或杂质元素。为了设计并开发新—代高性能铝合金,必须建立精确的热力学数据库。本论文针对商业铝合金中的重要体系Al-Cu-Fe-Mg-Mn-Si展开研究,力求为多组元铝合金的应用开发提供可靠的热力学描述。本工作的主要思路是:首先,基于已经发表的相关二元体系的热力学描述,利用本工作的实验结果,并结合文献数据,分别对Cu-Fe-Si、Cu-Mg-Si、Fe-Mg-Si、Cu-Fe-Mg三元系进行热力学计算,得到一套可以合理描述Cu-Fe-Mg-Si体系的热力学参数;之后,结合本研究室已完成的其它相关二元系、三元系、四元系的热力学参数,构建Al-Cu-Fe-Mg-Mn-Si六元系热力学数据库。最后,利用该数据库对商业铝合金的重要体系进行热力学计算,并用希尔凝固模型预测一系列商业铝合金在凝固过程中的相变序列。
     本工作取得的主要成果由以下六部分组成:
     (1)在对文献报道的相图和热力学数据严格评估的基础上,综合利用X射线分析法(XRD)、扫描电镜(SEM/EDX)、电子探针显微分析(EPMA)和差热分析(DTA)对Cu-Fe-Si体系整个成分范围内的相平衡关系进行了研究。测定了Cu-Fe-Si体系在750℃的等温截面,获得了该体系在30和70at.%Cu的垂直截面上的相转变温度。基于本次实验结果,并结合文献数据,对Cu-Fe-Si体系进行了热力学优化计算,得到了该体系一套比文献报道更为合理的热力学参数。此外,将所获得的热力学参数应用到对抑制钢铁“表面裂纹”的合金元素选择和“核-壳材料”的形成成分范围预测中。本工作中还对三元体系的液相溶解度间隙的形成判据进行了详细分析及归纳。
     (2)通过粉末冶金方法制备了Cu-Mg-Si三元合金样品,利用X射线分析法测定了该三元系在500℃和700℃的相关系,并证明了三元化合物Sigma (Cu16Mg6Si7)、Tau (Cu3Mg2Si)和Laves_C15((Cu0.8Si0.2)2(Mg0.88Cu0.12))相的存在。通过严格评估文献中的相图和热力学性质数据,并结合本次实验结果,对Cu-Mg-Si体系进行了热力学优化计算,成功地对有复杂相关系的Laves相进行了热力学模拟。
     (3)在对文献中Fe-Mg-Si体系的相图数据和热力学数据进行严格评估的基础上,对该体系进行热力学优化,得到了一套可以合理描述该体系实验数据的热力学参数。基于所获得的热力学参数构筑了Fe-Mg-Si体系的液相面投影图和反应图,并详细描述了在富Mg端和富Fe端的液相溶解度隙的复杂零变量反应。
     (4)采用粉末冶金方法测定了Cu-Fe-Mg三元系在室温、500和700℃的相关系。该体系中未发现三元化合物。通过热力学外推的方法,得到该三元系的热力学参数,并对该体系在室温、500和700℃的等温截面进行计算。计算结果与实验结果对比表明利用热力学外推方法就可以很好地描述该体系。利用外推的结果,本工作还预测了Cu-Fe-Mg体系一系列的等温截面和关键的垂直截面,并构筑了Cu-Fe-Mg体系完整的液相面投影图与反应图。
     (5)将上述工作得到的Cu-Fe-Si、Cu-Mg-Si、Fe-Mg-Si、Cu-Fe-Mg体系的热力学参数与本研究室已完成的其它相关二元系、三元系及四元系参数相结合,建立了Al-Cu-Fe-Mg-Mn-Si六元系热力学数据库。基于所建立的六元系数据库,本工作对Al-Cu-Mg-Mn、Al-Cu-Fe-Mg、 Al-Cu-Fe-Si、Al-Cu-Mg-Si、Al-Fe-Mg-Si四元系和Al-Cu-Fe-Mg-Si、 Al-Cu-Fe-Mg-Mn五元系进行了热力学计算,得到了以上所有体系富Al角含液相的零变量反应温度和成分,并绘制了Al-Cu-Mg-Mn、 Al-Cu-Fe-Mg、Al-Cu-Fe-Si、Al-Cu-Mg-Si、Al-Fe-Mg-Si四元系在富Al角的液相面投影图。计算结果与文献数据取得了良好的一致性。此外,本工作还计算了Al-Cu-Fe-Mg-Si五元系在Al-Cu、Al-Si、Al-Mg边界的液相面投影图,以及Al-Cu-Fe-Mg-Mn五元系在Al-Cu、AI-Mg、 Al-Mn边界的液相面投影图。
     (6)在本工作建立的Al-Cu-Fe-Mg-Mn-Si六元系热力学数据库的基础上,采用杠杆定律和Scheil模型对Al-Cu、Al-Mg、Al-Si系列的17个商业铝合金的凝固过程进行了平衡和非平衡凝固计算。所计算的凝固曲线能够可靠地预测文献中的实验结果。
The phase diagram and thermodynamic information of materials is the basis for kinetic and even microstructure evolution simulation. Cu, Fe, Mg, Mn and Si are the main alloying elements or impurity elements in commercial aluminum alloys. In order to improve the properties of the current Al alloys or even design novel high-performance Al alloys, establishment of a precise thermodynamic database including Al, Cu, Fe, Mg, Mn, Si is the prerequisite.
     The overall idea of this thesis is as follows:First, based on well-established thermodynamic descriptions of the constituent binary systems, as well as the experimental data of the ternary systems obtained in the present work and available in the literature, thermodynamic parameters for the four constituent ternary systems, i.e., Cu-Fe-Si, Cu-Mg-Si, Fe-Mg-Si and Cu-Fe-Mg, were optimized using the CALPHAD method, from which the Cu-Fe-Mg-Si thermodynamic database can be preliminarily obtained. After that, the Cu-Fe-Mg-Si thermodynamic database was combined with thermodynamic parameters of other relevant binary, ternary and quaternary systems published in our research group to establish the Al-Cu-Fe-Mg-Mn-Si thermodynamic database. Later, based on this6-component thermodynamic database, phase diagram calculations in a series of important systems in commercial aluminum alloys was conducted and compared with the experimental data. Finally, the phase transition sequence in a series of commercial aluminum alloys during solidification was predicted using Scheil-Gulliver model.
     The main work in this thesis consists of six parts and is concisely described in the following:
     (1) Based on a critical assessment of the literature data, the phase equilibria of the Cu-Fe-Si system over the whole composition range was investigated by using a combination of X-ray analysis (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), electro probe microanalysis (EPMA) and differential thermal analysis (DTA). The isothermal section at750℃of the Cu-Fe-Si system was determined, and new phase transition temperatures along vertical sections at30and70at.%Cu were measured. A thermodynamic modeling for the Cu-Fe-Si system was then conducted by considering the reliable experimental data from the literature and the present work. A set of self-consistent thermodynamic parameters which is found to be more reasonable than the previous assessments was obtained. The assessed thermodynamic parameters were also successfully applied to two technical cases in material design:the selection of alloying elements for the control of the formation of surface fissures in iron, and the prediction of the formation of Core/Shell type alloys. The criterion for the formation of the liquid miscibility gap in the ternary system was also summarized in this work.
     (2)13ternary Cu-Mg-Si alloys system were prepared by means of the powder metallurgy method. Phase equilibria at500and700℃of Cu-Mg-Si system were determined using XRD analysis. The existence of3ternary compounds in this system was verified:Sigma (Cu16Mg6Si7), Tau (Cu3Mg2Si) and Laves_C15((Cu0.8Si0.2)2(Mg0.88Cu0.12)). A thermodynamic modeling for the Cu-Mg-Si system was conducted on the basis of the experimental data obtained in this work and those critically reviewed from the literature. The complex phase relationship between Laves phase and other phases has been successfully modeled in this work. In addition, most of the experimental data can be reproduced by the presently obtained thermodynamic parameters.
     (3) All of the phase diagram and thermodynamic data of the Fe-Mg-Si system available in the literature were critically reviewed and assessed using thermodynamic models for the Gibbs energies of individual phases. A set of self-consistent thermodynamic description for the Fe-Mg-Si system was thus obtained. The liquidus projection and reaction scheme for the entire Fe-Mg-Si system are calculated using the thermodynamic parameters obtained in this work. The monotectic invariant equilibira related to the liquid miscibility gap in the Fe-rich corner and Mg-rich corner is also described in detail.
     (4) The phase equilibria of Cu-Fe-Mg system at room temperature,500℃and700℃were determined with powder metallurgy method. No ternary compound was observed in this ternary system. The thermodynamic description of the Cu-Fe-Mg ternary system was obtained via direct extrapolation from the three boundary binary Cu-Fe, Cu-Mg and Fe-Mg systems. The calculated isothermal sections at room temperature,500℃and700℃are consistent with the experimental results, indicating that there is no need to introduce any ternary interactive parameters. A series of isothermal sections and several typical vertical sections were then model-predicted. The projection of the liquidus surface and the reaction scheme were also constructed.
     (5) The thermodynamic parameters obtained in the above ternary systems were combined with those in other constituent binary, ternary and quaternary systems published in our research group to establish a thermodynamic database for the Al-Cu-Fe-Mg-Mn-Si system. Based on this newly established Al-Cu-Fe-Mg-Mn-Si thermodynamic database, thermodynamic calculations were performed in the Al-Cu-Mg-Mn, Al-Cu-Fe-Mg, Al-Cu-Fe-Si, Al-Cu-Mg-Si, Al-Fe-Mg-Si quaternary systems and the Al-Cu-Fe-Mg-Si, Al-Cu-Fe-Mg-Mn quinary systems. The temperatures and compositions of liquidus invariant reactions in Al-rich corner for all the above systems were calculated and compared with the experimental data. The liquidus surfaces in Al-rich corner for Al-Cu-Mg-Mn, Al-Cu-Fe-Mg, Al-Cu-Fe-Si, Al-Cu-Mg-Si and Al-Fe-Mg-Si quaternary systems were constructed. The calculated results are in good agreement with the literature data. The liquidus surfaces for the Al-Cu-Fe-Mg-Si quinary system in Al-Cu, Al-Si and Al-Mg sides, as well as those for Al-Cu-Fe-Mg-Mn quinary system in Al-Cu, Al-Mg, Al-Mn side, were also presented.
     (6) The thermodynamic description for Al-Cu-Fe-Mg-Mn-Si system was then employed to analyze the phase transition sequence of17commercial aluminum alloys of Al-Cu, Al-Mg and Al-Si series during solidification. Solidification paths of those aluminum alloys were simulated using the lever rule and the Scheil-Gulliver model. The simulation provides a good prediction for the experimental data available in the literature.
引文
[1]Kaufman J G, Rooy E L. Aluminum Alloy Castings:Properties, Processes And Applications [M]. ASM International,2004.
    [2]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
    [3]Kammer C.铝手册[M].卢惠民等,译.北京:化学工业出版社,2009.
    [4]梁敬魁.相图与相结构,上册“相图的理论、实验和应用”[M].科学出版社,1993.
    [5]陆学善.相图与相变[M].合肥:中国科技大学出版社,1990.
    [6]Zhao J C. Methods for Phase Diagram Determination[M]. Elsevier Science,2007.
    [7]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.
    [8]West D R F. Ternary Equilibrium Diagrams[M].2nd Edn. Chapman and Hall, 1982.
    [9]汪守朴.金相分析基础[M].北京:机械工业出版社,1990.
    [10]梁敬魁.相图与相结构,下册“多晶X射线衍射和结构测定”[M].科学出版社,1993.
    [11]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学出版社,2003.
    [12]Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams [M]. New York-San Francisco-London:Academic Press,1970.
    [13]Sundman B, Jansson B, Andersson J. The Thermo-Calc databank system[J]. Calphad,1985,9(2):153-190.
    [14]Chen S L, Daniel S, Zhang F, et al. The PANDAT software package and its applications[J]. Calphad,2002,26(2):175-188.
    [15]Bale C W, Chartrand P, Degterov S A, et al. FactSage thermochemical software and databases[J]. Calphad,2002,26(2):189-228.
    [16]Lukas H L, Weiss J, Henig E T. Straegies for the calculation of phase diagrams[J]. Calphad,1982,6(3):229-251.
    [17]Davies R H. Applications of Thermodynamics in the Synthesis and Processing of Materials, Warrendale, PA,1995[C]. TMS.
    [18]Konigsberger E, Eriksson G. A new optimization routine for chemsage[J]. Calphad,1995,19(2):207-214.
    [19]Gurvi L V. IVTANTHERMO data bank[J]. Vestnik AN SSSR,1983(3):54-58.
    [20]Kubaschewski O, Alcock C B. Metallurgical Thermochemistry [M].5th Edn. Oxford, New York:Pergamon Press,1979.
    [21]Hari Kumar K C, Wollants P. Some guidelines for thermodynamic optimisation of phase diagrams[J]. J. Alloys Compd.,2001,320(2):189-198.
    [22]Phragmen G. On the Phases Occurring in Alloys of Al with Cu, Mg, Mn, Fe and Si[J]. J. Inst. Met.,1950,77:489-552.
    [23]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学[M].北京:冶金工业出版社,1999.
    [24]郝士明.材料热力学[M].北京:化学工业出版社,2004.
    [25]Hillert M. Some viewpoints on the use of a computer for calculating phase diagrams[J]. Physica B+C,1981,103(1):31-40.
    [26]Dinsdale A T. SGTE data for pure elements[J]. Calphad,1991,15(4):317-425.
    [27]Redlich O, Kister A T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions[J]. Ind. Eng. Chem.,1948,40(2):345-348.
    [28]Hillert M, Jarl M. A model for alloying in ferromagnetic metals[J]. Calphad, 1978,2(3):227-238.
    [29]Inden G. The role of magnetism in the calculation of phase diagrams[J]. Physica B+C,1981,103(1):82-100.
    [30]Hillert M, Staffansson L I. The Regular Solution Model for Stoichiometric Phases and Ionic Melts[J]. Acta Chem. Scand.,1970,24(10):3618-3626.
    [31]Sundman B, Agren J. A regular solution model for phases with several components and sublattices, suitable for computer applications[J]. J. Phys. Chem. Solids.,1981,42(4):297-301.
    [32]Ansara I, Sundman B, Willemin P. Thermodynamic modeling of ordered phases in the Ni-Al system[J]. Acta Metall.,1988,36(4):977-982.
    [33]Ansara I, Dupin N, Lukas H L, et al. Thermodynamic assessment of the Al-Ni system[J]. J. Alloys Compd.,1997,247(1-2):20-30.
    [34]Hillert M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases[J]. Calphad,1980,4(1):1-12.
    [35]Muggianu Y M, Gambino M, Bros J P. Enthalpies of formation of liquid alloys[J]. J. Chim. Phys.,1975,72(1):83-88.
    [36]Kattner U. The thermodynamic modeling of multicomponent phase equilibria[J]. JOM,1997,49(12):14-19.
    [37]Xiong M, Kuznetsov A V. Comparison between Lever and Scheil Rules for Modeling of Microporosity Formation during Solidification[J]. Flow Turbul Combust,2001,67(4):305-323.
    [38]Gulliver G H. The Quantitative Effect of Rapid Cooling Upon the Constitution of Binary Alloys[J]. J. Inst. Metals,1913,9:120-154.
    [39]Kou S. Welding Metallurgy[M].2nd Edn. Wiley-Interscience,2003.
    [40]Porter D A, Easterling K E. Phase transformations in metals and alloys[M].2nd Edn. London, New York:Chapman & Hall,1992.
    [41]Scheil E. Bemerkungen zur Schichtkristallbildung[J]. Z. Metallkd,1942,34 (3): 70-72.
    [42]Chen Q, Sundman B. Computation of Partial Equilibrium Solidification with Complete Interstitial and Negligible Substitutional Solute Back Diffusion[J]. Mater. Trans.,2002,43(3):551-559.
    [43]Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations-Their thermodynamic basis[M]. New York:Cambridge university press,1998.
    [44]Du Y, Liu S, Zhang L, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys:Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system[J]. Calphad,2011,35(3):427-445.
    [45]Davis F A, Eyre T S. The effect of silicon content and morphology on the wear of aluminium-silicon alloys under dry and lubricated sliding conditions [J]. Tribol. Int.,1994,27(3):171-181.
    [46]Lasa L, Rodriguez-Ibabe J M. Effect of composition and processing route on the wear behaviour of Al-Si alloys[J]. Scripta Mater.,2002,46(6):477-481.
    [47]Lee K, Kwon Y N, Lee S. Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting processes[J]. J. Alloys Compd.,2008,461(1-2):532-541.
    [48]Kral M V. A crystallographic identification of intermetallic phases in Al-Si alloys[J]. Mater. Lett.,2005,59(18):2271-2276.
    [49]Kobayashi T. Strength and fracture of aluminum alloys[J]. Mater. Sci. Eng. A, 2000,286(2):333-341.
    [50]Tash M, Samuel F H, Mucciardi F, et al. Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys[J]. Mater. Sci. Eng. A,2007,443(1-2):185-201.
    [51]Caceres C H, Svensson IL, Taylor J A. Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper[J]. Int. J Cast Metal. Res.,2003,15(5): 531-543.
    [52]Wang E R, Hui X D, Wang S S, et al. Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu[J]. Mater. Sci. Eng. A,2010, 527(29-30):7878-7884.
    [53]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002.
    [54]Hino M, Nagasaka T, Washizu T. Phase diagram of Fe-Cu-Si ternary system above 1523 K[J]. J. Phase Equilib.,1999,20(3):179-186.
    [55]Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure[J]. Science,2002,297(5583):990-993.
    [56]Jaenecke E. Kurzgefasstes Handbuch aller Legierungen[M]. Heidelberg:Winter Verlag Heidelberg,1949.
    [57]Chang Y A, Neumann J P, Mikula A, et al. Phase Diagrams and Thermodynamic Properties of Ternary Copper-Metal Systems, INCRA Monograph VI [M]. New York:The International Copper Research Association,1979.
    [58]Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams[M]. Materials Park, OH:ASM International,1995.
    [59]Raghavan V. Phase Diagrams of Ternary Iron Alloys,6B[M]. Calcutta:Indian Inst. Metals,1992.
    [60]Raghavan V. Cu-Fe-Si (Copper-Iron-Silicon)[J]. J. Phase Equilib,2002,23(3): 267-270.
    [61]Raghavan V. Cu-Fe-Si (Copper-Iron-Silicon)[J]. J. Phase Equilib.,2009,30(1): 96-97.
    [62]Lebrun N, Perrot P, Harmelin M. Landolt-Bornstein-Group IV Physical Chemistry[M]. New York:Springer Berlin Heidelberg,2008.
    [63]Ohtani H, Suda H, Ishida K. Solid/Liquid Equilibria in Fe-Cu Based Ternary Systems[J]. ISIJ Int.,1997,37(3):207-216.
    [64]Ludecke D. A thermodynamic assessment of the Cu-Si system[J]. Calphad,1987, 11(2):135-142.
    [65]Swartzendruber L J. Phase Diagrams of Binary Copper Alloys[M]. Materials Park, OH:ASM International,1994.
    [66]Wang C, Liu X, Ohnuma Ⅰ, et al. Phase equilibria in Fe-Cu-X (X:Co, Cr, Si, V) ternary systems[J]. J. Phase Equilib.,2002,23(3):236-245.
    [67]Miettinen J. Thermodynamic description of the Cu-Fe-Si system at the Cu-Fe side[J]. Calphad,2003,27(4):389-394.
    [68]Roll F. Beitrage zum EinfluB des Ni und Si auf die Mischungslucke des Fe—— Cu-Systems im festen Zustand (20℃)[J]. Z. Anorg. Chem.,1933,212(1):61-64.
    [69]Hanson D, West E G. The Constitution of Cooper-Iron-Silicon Alloys[J]. J. Inst. Met.,1934,54:229-253.
    [70]Andersen A G H, Kingsbury A W. Phase Diagram of the Copper-Iron-Silicon Alloys[J]. Trans. Am. Inst. Mining Metallurgy Pet. Engineering,1943,152: 38-47.
    [71]Vogel R, Horstmann D. The Diagram of State Iron-Iron Silicide-Copper Silicide-Copper[J]. Arch. Eisenhuettenwes.,1953,24(9):435-440.
    [72]Abrikosov N K, Petrova L I. Preparation of Crystals of the Low-Temperature Modification of FeSi2[J]. Izv. Akad. Nauk SSSR, Neorg. Mater,1975,11(2): 223-225.
    [73]Hasebe M, Nishizawa T. Further study on phase diagram of the iron-copper system[J]. Calphad,1981,5(2):105-108.
    [74]Banda W. High temperature phase equilibria in the Fe-Co-Cu-Si system pertinent to slag cleaning[D]. Stellenbosch, South Africa:University of Stellenbosch, 2006.
    [75]Bowles P J, Ramstad H F, Richardson F D. Activities of Silicon in Metals and Alloys[J]. J. Iron Steel Inst.,1964,202:113-121.
    [76]Washizu T, Nagasaka T, Hino M. Heat content of liquid Fe-Cu-Si alloys formed in the melting treatment process of domestic waste incineration residue[J]. Int. J. Mat. Res.,2002,93:281-287.
    [77]Ansara I, Jansson A. Trita-Mac-0533[M]. Stockholm:KTH,1993.
    [78]Yan X, Chang Y A. A thermodynamic analysis of the Cu-Si system[J]. J. Alloys Compd.,2000,308(1-2):221-229.
    [79]Lacaze J, Sundman B. An assessment of the Fe-C-Si system[J]. Metall. Trans. A, 1991,22(10):2211-2223.
    [80]Du Y, Schmid-Fetzer R, Ohtani H. Thermodynamic Assessment of the V-N System[J]. Z. Metallkde.,1997,88(7):545-556.
    [81]Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state[J]. Acta Metall.,1958,6(11):704-711.
    [82]Wilde G, Willnecker R, Singh R N, et al. The Metastable Miscibility Gap in the System Fe-Cu[J]. Z. Metallkde.,1997,88:804-809.
    [83]Amara S, Belhadj A, Kesri R, et al. Stable and Metastable Equilibria in the Binary Fe-Cu and Ternary Fe-Cu-C Systems[J]. Z. Metallkde.,1999,90: 116-123.
    [84]Lu X Y, Cao C D, Wei B. Microstructure evolution of undercooled iron-copper hypoperitectic alloy[J]. Mater. Sci. Eng. A,2001,313:198-206.
    [85]Grobner J, Mirkovic D, Schmid-Fetzer R. Monotectic four-phase reaction in Al-Bi-Zn alloys[J]. Acta Mater.,2005,53(11):3271-3280.
    [86]Du Y, Wang J, Zhao J R, et al. Reassessment of the Al-Mn system and a thermodynamic description of the Al-Mg-Mn system[J]. Int. J. Mat. Res.,2007, 98(9):855-871.
    [87]Du Y, Zhao J R, Zhang C, et al. Thermodynamic modeling of the Fe-Mg-Si system[J]. J. Min. Met. B,2007,43(1):39-56.
    [88]Grobner J, Schmid-Fetzer R, Pisch A, et al. Experimental investigations and thermodynamic calculation in the Al-Mg-Sc system[J]. Int. J. Mat. Res.,1999, 90(11):872-880.
    [89]Mirkovic D, Grobner J, Schmid-Fetzer R. Liquid demixing and microstructure formation in ternary Al-Sn-Cu alloys[J]. Mater. Sci. Eng. A,2008,487: 456-467.
    [90]Zhang L, Du Y, Xu H, et al. Thermodynamic description of the Mn-Si-Zn system[J]. Sci. China Tech. Sci.,2012,55(2):475-483.
    [91]Meijering J L. Phasenlehre[J]. Philips'Technische Rundschau,1965,26: 224-239.
    [92]Chang Y. Phase diagram calculations in teaching, research, and industry [J]. Metall. Mater. Trans. B,2006,37(1):7-39.
    [93]Zhang L, Du Y, Chen Q, et al. Thermodynamic description of the Cu-Fe-Mn system with key experiments and its practical applications[J]. Int. J. Mat. Res., 2008,99(12):1306-1318.
    [94]Zhang L, Du Y, Xu H, et al. Phase equilibria and thermal analysis in the Fe-Mn-Ni system[J]. Int. J. Mat. Res.,2009,100(2):160-175.
    [95]Oki S. Influence of the chemical composition of cast steel on hot-tearing tendency (Ⅱ)[J]. ISIJ Int.,1957,43(12):1293-1298.
    [96]Asano E, Suseki A. Influences of Cu, Sn and Other Factors on the Hot Workability(Study of the hot workability of special shape steel-Ⅰ)[J]. ISIJ Int., 1959,45(1):27-34.
    [97]Nicholson A, Murray J D. Surface Hot Shortness in Low-carbon Steel [J]. J. Iron Steel Inst.,1965,203:1007-1018.
    [98]Kajitani T, Wakoh M, Tokumitsu N, et al. Influence of Heating Temperature and Strain on Surface Crack in Carbon Steel Induced by Residual Copper[J]. ISIJ Int.,1995,81(3):185-190.
    [99]陈海林.Al-Cr-Si、Al-Cr-Ti、Al-Cu-Fe、Al-Cu-Ni和Nb-Ni体系的晶体结构与相图测定及热力学模拟[D].长沙:中南大学,2008.
    [100]Servant C, Sundman B, Lyon O. Thermodynamic assessment of the Cu-Fe-Ni system[J]. Calphad,2001,25(1):79-95.
    [101]Wang C, Liu X, Kainuma R, et al. Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap[J]. Metall. Mater. Trans. A,2004,35(4):1243-1253.
    [102]Lee J I, Han Y S, Lee H I. Microstructures and Mechanical Properties of Squeeze cast Al-Si-Cu-Mg Alloy[J]. J Korean Inst. Met. Mater.,1994,32 (10): 1259-1268.
    [103]Zafar S, Ikram N, Shaikh M A, et al. Microstructure studies in Al-6% Si-1.9% Cu-x% Mg alloys[J]. J Mater. Sci.,1990,25(5):2595-2597.
    [104]Ganesan V, Feufel H, Sommer F, et al. Thermochemistry of ternary liquid Cu-Mg-Si alloys[J]. Met. Mater. Trans. B,1998,29(4):807-813.
    [105]Portevin A, Bonnot M. Contribution to Study of the Constitution of the Ternary Magnesium-Copper-Silicon Alloys[J]. Compt. Rend. Acad. Sci. Paris,1933, 196:1603-1605.
    [106]Laves F, Witte H. Influence of Valence Electron to Crystal Structure of Ternary Magnesium Alloys[J]. Metallwietschaft,1936,15:840-842.
    [107]Witte H. The Study of the Crystal Chemistry of Alloys. II. Investigations in the System Magnesium-Copper-Silicon with Special Reference to the Section MgCu2-MgSi2[J]. Z. Angew. Mineral.,1938,1:255-268.
    [108]Vosskuehler H. Metallography of Magnesium and its Alloys[M]//BECK A. Magnesium und Seine Legierungen. Berlin:1939.
    [109]Laves F, Wallbaum H J. On the Influence of Geometrical Factors on the Stoichiometrical Formula of Metallic Bonds Demonstrated of Crystal Structure of KNa2[J]. Z. Anorg. Allg. Chem.,1942,250:110-120.
    [110]Klee H, Witte H. The Magnetic Susceptibility of Ternary Magnesium Alloys and its Explanation with Point of View of Electronic Theory of Metals[J]. Z. Phys. Chem.,1954,202:352-377.
    [111]Bergman G, Waugh J L T. The Crystal Structure of the Intermetallic Compound Mg6Si7Cu16[J]. Acta Crystallogr.,1953,6(1):93-94.
    [112]Nagorsen G, Witte H. The Crystal Structure of Mg6Si7Cu16[J]. Z. Anorg. Allg. Chem.,1953,271:144-149.
    [113]Bergman G, Waugh J L T. The Crystal Structure of the Intermetallic Compound Mg6Si7Cu16[J]. Acta Crystallogr.,1956,9(3):214-217.
    [114]Aschan L J. Studies on the Ternary System Cu-Mg-Si[J]. Acta Polytech. Scand., 1960,11(285):1-63.
    [115]Komura Y, Matsunaga T. A New Ordered Structure of the Off-Stoichiometric Laves Phase Having C15-Type Structure in Mg-Cu-Si System[J]. Mater. Res. Soc. Symp. Proc.,1984,21:325-328.
    [116]Matsunaga T, Koders E, Komura Y. A New Ordered Structure of C15-Type Laves Phase, Mg28.4 Cu57.9Si13.7[J]. Acta Crystallogr., Sect. C:Cryst. Struct. Commun.,1984,40(10):1668-1670.
    [117]Farkas D, Birchenall C E. New Eutectic Alloys and Their Heats of Transformation[J]. Metall. Trans. A,1985,16A(3):323-328.
    [118]Matsunaga T, Komura Y. A New Ordered Phase of MgCu2-Type Structure in the Mg-Cu-Si System[J]. J. Jpn. Inst. Met,1986,50(7):611-615.
    [119]Matsunaga T. A Study of New Ordered Structure in the Magnesium-Copper-Silicon Ternary System[J]. J. Sci. Hiroshima Univ., Ser. A:Phys. Chem.,1987, 51(3):247-275.
    [120]Jaenecke E. Cu-Mg-Si[M]//Kurzgefasstes Handbuch aller Legierungen. Heidelberg:Winter Verlag,1949:577-578.
    [121]Pietsch E H E, Meyer R J. Magnesium-Copper-Silicon[J]. Gmelins Handbuch der Anorg. Chemie,1952,27(A4):714-716.
    [122]Drits M E, Bochvar N R, Kadaner E S, et al. Magnesium-Silicon-Copper[M]// Phase Diagrams of Alunimium and Magnesium Alloys. Moscow:Nauka,1977: 167-168.
    [123]Raynor G V. The Physical Metallurgy of Magnesium and Its Alloys[M]. London, New York, Paris, Los Angeles:Pergamon Press,1959.
    [124]Krypyakevich P I, Gladyshevskii E I, Cherkashin E E. Problems of Crystalchemistry of Intermetallic Compounds in Papers of Co-workers of the Department of Inorganic Chemistry of the L'viv University [J]. Visnik L'viv Univ., Ser. Khim,1968(10):90-99.
    [125]Teslyuk M Y. Intermetallic Compounds with Structure of Laves Phases[M]. Moskow:Nauka,1969.
    [126]Witte H. The Study of the Crystal Chemistry of Alloys:Investigations in the System Magnesium-Copper-Silicon with Special Reference to the Section MgCu2-MgSi2[J]. Metallwirtschaft,1939,18(22):459-463.
    [127]Schuster H U, Bockelmann W, Captuller J. Ternary Phases in the Magnesium-Copper-Germanium System[J]. Z. Naturforsch B,1970,25(11): 666-668.
    [128]Ellner M, Predel B. Neutron Diffraction Investigation of Ternary Laves Phases with MgCu2-Type[J]. J. Solid State Chem.,1979,30:209-221.
    [129]Friauf J B. The crystal structures of two intermetallic compounds[J]. J. Am. Chem. Soc.,1927,49(12):3107-3114.
    [130]Friauf J B. The Crystal Structure of Magnesium Di-Zincide[J]. Phys. Rev.,1927, 29(1):34-40.
    [131]Laves F, Witte H. Die Kristallstruktur des MgNi2 und seine Beziehung zu den Typen des MgCu2 und MgZn2[J]. Metall-Wirtschaft Wiss Techn,1935,14: 645-649.
    [132]Ganesan V, Ipser H. Partial thermodynamic properties of magnesium in ternary Cu-Mg-Si alloys[J]. J. Non-Cryst. Solids,1996,205-207:711-715.
    [133]Ipser H, Sommer F. Thermochemistry of Magnesium Based Light Alloys:Proc.-Electrochem. Soc.(High Temperature Materials Chemistry), Pennington, NJ, 1997[C].
    [134]Coughnanowr C A, Ansara I, Luoma R, et al. Z. Metallkd.,1991,82(7): 574-581.
    [135]Kevorkov D, Schmid-Fetzer R, Zhang F. Phase equilibria and thermodynamics of the Mg-Si-Li system and remodeling of the Mg-Si system[J]. J. Phase Equilib. Diff.,2004,25(2):140-151.
    [136]Xiong W, Du Y, Zhang W, et al. Thermodynamic reassessment of the Cu-Mg-Ni system with brief comments on the thermodynamic modeling of the sub-systems[J]. Calphad,2008,32(4):675-685.
    [137]Schumann S, Friedrich H. Current and Future Use of Magnesium in the Automobile Industry[J]. Mater. Sci. Forum,2003,419-422:51-56.
    [138]Kainer K U. Magnesium Alloys and Technologies[M]. Weinheim:Wiley-VCH, 2003.
    [139]Massalski T B. Binary Alloy Phase Diagrams[M]. Materials Park, OH:ASM International,1986.
    [140]Haitani T, Tamura Y, Motegi T, et al. Solubility of Iron in Pure Magnesium and Cast Structure of Mg-Fe Alloy[J]. Mater. Sci. Forum,2003,419-422:697-702.
    [141]Normann H H, Thoresen H, Tibballs J E, et al. Impurities and Mg-Base Phase Diagrams:Proc. Conf. Light Metals, Amsterdam, Netherlands,1990[C]. ASM International.
    [142]Pierre D, Peronnet M, Bosselet F, et al. Solid-liquid phase equilibria at 727℃ in the ternary system Fe-Mg-Si[J]. J. Phase Equilib. Diffus.,2000,21(1):78-86.
    [143]Grobner J, Rokhlin L L, Dobatkina T V, et al. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database[J]. J. Alloys Compd.,2007,433(1-2):108-113.
    [144]Lebrun N, Baetzner C, Stamou A, et al. Ternary alloys[M]. Weinheim:VCH, 2004.
    [145]Zwicker V. Reactions of Some Magnesium-Alloys with Cast Iron Melts[J]. Z. Metallkd,1954,45:31-35.
    [146]Guichelaar P J, Trojan P K, Flinn R A. A New Techniques for Vapor Pressure Measurement Applied to the Fe-Si-Mg System[J]. Metall. Trans.,1971,2(12): 3305-3313.
    [147]Ageev Y A, Archugov S A. Solubility of Mg in Some Molten Binary Iron-Base Alloys[J]. Russ. Metall.,1984(3):72-74.
    [148]Rodyakin V V, Andreyev A E, Tkalich V S. On the Solubility of Iron in Magnesium[J]. Russ.Metall.,1967(3):23-24.
    [149]Lepinskikh B M, Sryvalin I T, Tekhomorov A A. Thermodynamic Properties of Iron-Silicon-Magnesium Alloys[J]. Russ. J. Phys. Chem.,1966,40(7): 840-842.
    [150]Ansara Ⅰ, Dinsdale A T, Rand M H. Cost 507:Thermochemical database for light metal alloys[M]. Belgium:Luxembourg:Office for Official Publications of the European Communities,1998.
    [151]Wang J, Yi D, Su X, et al. Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618[J]. Mater. Charact.,2008, 59(7):965-968.
    [152]Ringer S P, Sakurai T, Polmear I J. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys[J]. Acta Materialia,1997,45(9):3731-3744.
    [153]Xiao D H, Wang J N, Ding D Y, et al. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy[J]. J Alloy. Compd,2002,343(1-2): 77-81.
    [154]Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys[J]. Acta Mater.,2007,55(3):933-941.
    [155]Xiao D H, Wang J N, Ding D Y, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. J Alloy. Compd,2003,352(1-2):84-88.
    [156]Yu K, LI S, LI W. Effect of Trace Sc and Zr on the Mechanical Properties and Microstructure of Al Alloy 2618[J]. J Mater. Sci. Technol.,2000(4):416-420.
    [157]Wang J H, Yi D H, Wang B. Microstructure and properties of 2618-Ti heat resistant aluminum alloy [J]. Trans. Nonferrous Met. Soc. China,2003,13(3): 590-594.
    [158]Villars P, Calvert L D, Pearson W B. Pearson's Handbook:Desk Edition: Crystallographic Data for Intermetallic Phases[M]. Materials Park, Ohio:ASM International,1997.
    [159]Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams,2nd Edition[M]. Materials Park, Ohio:ASM International,1996.
    [160]Ivanchenko V, Ansara I. Cu-Mg (Copper-Magnesium)[M]//EFFENBERG G. MSIT Binary Evaluation Program, in MSIT Workplace. Stuttgart:MSI, Materials Science International Services GmbH,2002.
    [161]渡边久藤,佐藤英一郎.Al基状态囡[J].J Jan. Inst. Light Met.,1969,19 (11):499-535.
    [162]Mondolf L F. Aluminium alloys:structure and properties[M]. London: Butterworths,1976.
    [163]Gwyer A G C, Phillips H W L, Mann L. The constitution of the alloys of aluminum with copper, silicon, and iron.[J]. Journal of the Institute of Metals, 1928,468:52.
    [164]Phillips H W L. Annotated equilibrium diagrams of some aluminium alloys systems,25 [R], London:Institute of Metals monograph and report series,1959.
    [165]Chang K, Liu S, Zhao D, et al. Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary system and its application to solidification simulation[J]. Thermochim. Acta,2011,512(1-2):258-267.
    [166]Gul'Din I T, Anosov V F, Arnol'D A A. Effect of copper on the refining of aluminum.[J]. Izvestiya Akademii Nauk SSSR, Metally,1972(4):72-76.
    [167]Belov N A, Aksenov A A, Eskin D G. Iron in Aluminum Alloys:Impurity and Alloying Element[M]. London:Taylor and Francis,2002.
    [168]John E H. Aluminum:Properties and Physical Metallurgy[M]. Metals Park, OH: ASM International,1984.
    [169]Belov N A, Koltsov A V, Eskin D G. The Al-Cu-Fe-Mg-Si phase diagram in the range of Al-Cu alloys.[J]. Mater. Sci. Forum,2002,396-402:929-934.
    [170]Belov N, Gusev A Y, Eskin D G. Evaluation of five-component phase diagrams for the analysis of phase composition in Al-Si based alloys[J]. Z Metallkd, 1998,89(9):618-622.
    [171]Backerud L, Chai G, Tamminen J. Solidification Characteristics of Aluminum Alloys:Foundry Alloys[M]. Sweden:American Foundry Society,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700