纳米银和纳米银膜制备及表面增强拉曼效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强Raman散射(SERS)具有灵敏度高、水干扰小及适合于研究界面效应等特点,广泛应用于表面配合物研究、吸附界面表面状态研究、生物大小分子的界面取向及构型构象研究、痕量有机物及药物分析、光化学反应的中间产物及终产物的结构分析等。在SERS研究中,SERS基底的制备一直是SERS技术最重要的研究领域,如何制备出高稳定性、高重复性、高普适性、高活性,且制备方法简单廉价的基底一直是人们追求的目标。本文以新型纳米银胶、纳米银膜的研制为主,并对其性质进行了系统地研究。
     利用量子力学从头算的原理,使用Gaussian’98软件包,计算了几种探针分子的Raman光谱,包括计算了氯霉素、甲基橙、甘氨酸、甘氨酸酐的Raman光谱。借助计算的Raman光谱对所获得的SERS谱进行指认,以获取探针分子在纳米银上的吸附方式和存在形式等信息。
     制备了正、负电性纳米银,对其性质进行研究。用柠檬酸三钠为还原剂制备出了外观为淡黄色的纳米银溶胶,电泳实验表明纳米银表面带正电。吸收谱及电镜照片显示正电性银溶胶吸收峰为398nm,平均粒径5nm。用单宁还原硝酸银制备出了外观为红棕色的银溶胶,电泳实验表明该纳米银表面带负电,吸收谱及电镜照片显示银溶胶吸收峰为418nm,平均粒径10nm。用阴离子型分子、阳离子型分子、中性分子和双离子型分子作为探针分子,进行SERS谱的测量,结果显示,正电性胶态纳米银适合作为阴离子型分子的基底,负电性纳米银适合作为阳离子型分子的基底;用室温下保存两年的负电性纳米银与新制备的负电性纳米银进行吸收谱、电镜、SERS谱的比较研究,得出负电性纳米银具有较好的稳定性,可重复性;对前后两次按同一方法制备的正电性纳米银进行电镜、SERS谱的测量,得出正电性纳米银具有较好的可重复性。以正电性纳米银及传统方法制备的纳米银为基底,进行阴阳离子型探针分子的SERS比较研究,表明正电性纳米银比常规方法制备纳米银具有更高的SERS活性;借助于理论计算的甘氨酸酐、甘氨酸的Raman谱对SERS进行了指认,推断出它们在正、负电性纳米银上可能的吸附方式。
     用微波加热法快速制备出了纳米银溶胶,胶体的颜色随加热时间的增加从淡黄色到深灰色变化。电泳实验、吸收光谱、电镜实验表明,通过控制加热时间、加热方式可控制纳米银的表面电荷以及吸收峰位置、纳米银的形貌。该方法制备的纳米银大都具有较强的SERS活性。在该纳米银上获得极少有报道的氯霉素的Raman光谱,其检测极限为10-5M。
     用聚乙烯醇和硝酸银以及柠檬酸三钠和硝酸银作为电解液,用电解的方法获得三种胶态纳米银。该纳米银溶胶制备出来时为淡黄色,静置1、2天后,稳定为棕黄色。用电泳实验、吸收谱、电镜、SERS谱对这些纳米银进行了研究。纳米银表面带正电,吸收峰分别为404、421、434nm(聚乙烯醇),电镜实验表明用聚乙烯醇电解液制备的纳米银为多边型粒子,而用柠檬酸电解液制备的为球性粒子。通过SERS研究,结果发现用两种电解液制备的纳米银都具有很强的SERS活性,但聚乙烯醇混合液作为电解液制备的纳米银溶胶具有更广泛的SERS活性。该方法制备的纳米银得到了在正、负电性纳米银及常规方法制备的纳米银得不到的甲基橙的SERS谱。
     用电解的方法获得了纳米银膜,电镜照片表明纳米银膜上粒子的粒径为70nm,该纳米银膜与便携式Raman光谱仪联用,得到了氯霉素、甲基橙、三聚氰胺、病毒、白叶枯病菌等的SERS谱,且稳定性及可重复性都很好。氯霉素、甲基橙的检测极限与用显微Raman光谱仪的测定结果在同一量级。
Surface-Enhanced Raman Spectroscopy (SERS), due to its high sensitivity andlittle interference from water, has served as a valuable tool for those researches,such as surface complexes, surface state of adsorption interface, orientation andconfiguration of biomolecules, analysis of trace organic compounds and drugs, andanalysis of intermediate and final products structures of photochemical reactions.SERS substrate preparation is the most important areas of research in SERS. It hasbecome the pursuit and aim of researchers on finding ways to prepare a highlystable, highly repeatable, highly universal, highly active, simple and inexpensivesubstrate. The main goals in this project are to develop new substrates of nano-silver colloid and film, and to study its properties systematically.
     Raman spectra of several probe molecules, such as chloramphenicol, methylorange, glycine, glycine anhydride, were computed firstly using quantummechanical ab initio theory and Gaussian’98package. The assignments of Ramanspectrum and SERS of those probe molecules were calculated to obtain informationabout absorption mode and existence forms of probe molecules on surface of nano-silver.
     Positive and negative nano-silver were prepared and investigated. Sodiumcitrate was used to reduce silver nitrate and obtained the light yellow colored nano-silver colloids; the electrophoresis experiments show that the resulting nano-silveris with positive charge. The absorption spectrum and TEM imaging show that theaverage diameter of the particles is5nm and maximum absorption peaks was398nm for positive nano-silver particles. Tannic acid was used to reduce silver nitrateand obtained the reddish-brown colored nano-silver colloids; the electrophoresisexperiments show that the resulting nano-silver is with negative charge. Theabsorption spectrum and TEM imaging show that the average diameter of theparticles is10nm and maximum absorption peaks is located at418nm. Anionic,cationic, neutral, zwitterionic molecules were used probe molecules to obtain SERSspectrum. The results showed that the positive nano-silver is suitable as a substratefor anionic molecules, and the negative nano-silver is suitable as a substrate forcationic molecules. The negative silver colloids kept at room temperature for two years (for short, old NCS) were compared with the new NCS for absorption spectra,TEM imaging, and SERS spectra. It is found that the NCS, over time, have betterstability and repeatability than the silver colloids prepared by traditional method.The two positive nano-silvers by the same preparation method at different timewere observed by TEM, and it is found that it has good repeatability. Comparedwith the traditionally prepared nano-silver, the positive nano-silver has strongerSERS for probe molecules. The SERS spectrum of glycine anhydride and glycineon positive and negative nano-silver were assigned with the help of the theory ofcalculation of their Raman spectra. The possible adsorption modes of molecules onnano-silver particles were deduced.
     Nano-silver colloids are prepared by using a microwave heating method. Thecolor of nano-silver changes from light yellow to dark gray when the heat increases.Electrophoresis experiments, absorption spectrum, and electron microscopicobservations show that one can control the nano-silver surface charge, theabsorption peak position, and the morphology of nano-silver by controlling theheating time and heating method,. Most nano-silver prepared by this method has astrong SERS activity. On the nano-silver, Raman spectra of chloramphenicol with adetection limit of10-5M has been obtained.
     Three kinds of nano-silver colloids were obtained through electrolysis by usingthe mixture solution of polyvinyl alcohol and silver nitrate as electrolyte and themixture solution of sodium citrate and silver nitrate as electrolyte. The resultantlight yellow colored silver colloid turned to brownish yellow after sitting for one ortwo days. Through studying of electrophoresis experiment, absorption spectra, TEMobservation and SERS spectra, it is found that nano-silver surface charge is positiveand absorption peaks are at404,421and434nm (polyvinyl alcohol) respectively.Under electron microscope the nano-silver prepared with polyvinyl alcohol aselectrolyte appeared to be polygon particles, and nano-silver prepared with sodiumcitrate as electrolyte appeared to be spherical particles. Through SERS research, itis found that the nano-silver prepared with the above two types of electrolytes hasstrong SERS activity. Furthermore, the nano-silver colloid that used silver nitratemixing with polyvinyl alcohol solution as electrolyte has the strongest SERSactivity among all the tested molecules. The SERS of methyl orange was obtainedon the nano-silver colloids; it could not have been obtained on the colloids prepared by electrolysis of silver rod using sodium citrate solution and on the silver colloidsprepared by traditional means..
     A nanoscale silver film was made by electrolysis method, and was studied byscanning electronic microscopy (SEM). The nano-silver particle size is70nm.SERS spectra of chloramphenicol, methyl orange, melamine, viruses, Xanthomonasoryzae and Oryzicola have been obtained using the nanoscale silver film andportable Raman spectrometer. These SERS spectrum have very good stability andrepeatability. The detection limits of Chloramphenicol and methyl orange are in thesame order as using Micro-Raman spectrometer.
引文
1. K. Kneipp. Surface-Enhanced Raman Scattering. Physics Today.2007,60(11):40~46
    2. M. Fleischmann, P. J. Hendra, A. J. Mcquillan. Raman Spectra of PyridineAdsorbed at a Silver Electrode.[J]. Chemical Physics Letters.1974,26(2):163~166
    3. J. H. Fang, Y. X. Huang, X. Li, X.M. Dou, et al. Aggregation andSurface~enhanced Raman Activity Study of Dye~coated Mixed Silver-goldColloids. Journal of Raman Spectroscopy.2004,35(11):914~920
    4. Y. H. Zhang, D. M. Chen, T. J. He and F. Ch. Liu. Reaction ofMetallotetraphenylporphyrins on Hydroxyl-modified Silver Colloid and Ag2OColloid by Surface-Enhanced Raman Scattering. Spectrochimica Acta Part A.2001,57(13):2599~2605
    5. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld. Surface-Enhanced Raman Scattering and Biophysics. Journal of Physics-condensedMatter.2002,14(18):597~624
    6. X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, and Z. Q. Tian. Surface-Enhanced Ramanspectroscopy: Substrate-related Issues. Analytical and Bioanalyticle Chemistry.2009,394(7):1729~1745
    7. D. S. Wang, H. Chew, M. Kerker. Enhanced Raman Scattering at the Surface(SERS) of a Spherical Particle. Applied Optics.1980,19:2256~2257
    8. M. Kerker. The Optics of Colloidal Silver: Something old and something new.Journal of Colloid and Interface Science.1985,105:297~314
    9. Y. Du, Y. Fang. Assignment of Charge Transfer Absorption Band inOpticalAbsorption Spectra of the Adsorbate–silver Colloid system. SpectrochimicaActa Part A.2004,60(3):535~539
    10. K. M. Mukherjee, T. N. Misra. Solvent Effect on Surface-Enhanced RamanActivity of Copperphthalocyanine on Colloidal Silver. Colloids and Surfaces B:Biointerfaces.2000,17(3):139~143
    11. P. Mulvaney. Surface Plasmon Spectroscopy of Nanosized Metal Particles,Langmuir.1996,12(3):788~800
    12. A. Henglein. Physicochemical Properties of Small Metal Particles and theAtom-to-Metal Transition. Journal of Physical Chemistry.1993,97:5457~5471
    13. G. Chumanov, K. Sokolov, T. M. Cotton, et al. Colloidal Metal Films as aSubstrate for Surface-Enhanced Spectroscopy. Journal of Physical Chemistry.1995,99:9466~9471
    14. I. Nabiev, A. Baranov, I. Chourpa, A. Beljebbar, S. Gockalingum, M. Manfait.Does Adsorption on the Surface of Silver Colloid Perturb Drug/DNAInteractions? Comparative SERS, FT-SERS, and Resonance Raman Study ofMitoxantrone and Its Derivatives. Journal of Physical Chemistry.1995,99:1608~1613,
    15. C. G. Blatchford, O. Siiman and M. Kerker. Raman Scattering from Citrate onColloidal Silver. Journal of Physical Chemistry.1983,87:2503~2508.
    16. M. G. Albrecht, J. A. Creighton. Anomalously Intense Raman Spectra ofPyridine at a Silver Electrode. Journal American Chemical Society.1977,99:5215~5218
    17. P. C. Lee, D. Meisel. Adsorption and SERS of Dyes on Silver and Gold sols.The Journal of Physical Chemistry.1982,86:3391~3395
    18. A. Henglein. Photochemical Preparation and Interaction with O2, CCl4andSome Metal Ions. Chemistry of Materials.1988,10:444~450
    19. A.Henglein. Small-particle Research: Physicochemical Properties of ExtremelySmall Colloidal Metal and Semiconductor Particles. Chemical Reviews.1989,89(8):1861~1873
    20. R. M. Bright, M. D. Musick, and M. J. Natan. Preparation and characterizationof Ag colloid monolayers. Langmuir.1998,14(20):5695~5701
    21. J. Turkevich, P. C. Stevenson and J. Hillier Disc. A Study of the Nucleationand Growth Processes in the Synthesis of Colloidal Gold. Discussions of theFaraday Society.1951,11:55~75
    22. B. Teiten and A. Burneau. Aggregation of Silver Hydrosols Prepared in Air.Journal of Colloid and Interface Science.1998,206:267~273
    23. C. H. Munro, W. E. Smith, M Garner, J. Clarkson and P. C. White.Characterization of the Surface of a Citrate-reduced Colloid Optimized for Useas a Substrate for Surface-Enhanced Resonance Raman Scattering. Langmuir.1995,11:3712–3720
    24.傅石友,郭余峰,王云山,张鹏翔,张志三.银胶中结晶紫分子吸附动力学过程及氯离子的影响.化学物理学报.1995,8(6):490~494
    25.叶晓岚,邓文杰,梁二军, W. Kiefer.结晶紫与卤素或卤酸根离子共吸附的近红外表面增强喇曼散射.高等化学学报.1998,19(5):774~778
    26. H. Wetzel and H. Gerischer. Surface enhanced Raman Scattering from Pyridineand Halide Ions Adsorbed on Silver and Gold Sol Particles. Chemical PhysicsLetters,1980,76(3):460~464
    27.朱惠菊,方炎,魏凤文,于永澄,朱克莉,张鹏翔.染料分子SERS与FTIR-Raman的比较研究.光谱学与光谱分析.1994,14(5):19~23
    28.蒋化,陈万喜,徐铸德,陆云.亚甲基蓝化学吸附动力学的SERS研究.化学物理学报.1998,11(1):82~86
    29. S. Y. Fu and P. X. Zhang. Chemical Effect of Chloride Ions on SERS in SilverSol. Journal of Raman Spectroscopy.1992,23:93~97
    30.刘春艳,张振宗,任新民.表面吸附质对银亚胶体吸光特性的影响.化学学报.1993,51(3):239~245
    31.张鹏翔,高小平,庄为平.苯甲酸、邻羟基苯甲酸和对羟基苯甲酸在银胶粒中的表面增强喇曼散射.物理学报.1985,34(12):1603~1612
    32.司民真,武荣国,张鹏翔.关于氯离子对银胶体系SERS效应的进一步增强机理.光谱学与光谱分析.2001,21(3):343~346
    33. R. A. Alvarez-Puebla, E. Arceo, P. J. G. Goulet, J. J. Garrido, R. F. Aroca.Journal of Physical Chemistry B.2005,109:3787~3792
    34. R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, J. V.Garcia-Ramos.Surface-enhanced Raman Scatering on Colloidal Nano-stuctures.Advance in Colloid and Interface Science.2005,116:45~61
    35. R. A. Alvarez-Puebla, and R. A. Arceo. Synthesis of Silver Nanoparticles withControllable Surface Charge and Their Application to Surface-EnhancedRaman Scattering. Analytical Chemistry.2009,81(6):2280~2285
    36. Takeshi Tsuji, Kenzo Iryo, Yukio Nishimura, Masaharu Tsuji. Preparation ofMetal Colloids by a Laser Ablation Technique in Solution: Influence ofLaserWavelength on the Ablation Efficiency (II). Journal of Photochemistry andPhotobiology A: Chemistry.2001,145(3):201~207
    37. T. Tsuji, T. Kakita, M. Tsuji, Preparation of nano-size Particles of Silver withFemtosecond Laser Ablation in Water. Applied Surface Science.2003,206:314~320
    38. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji. Preparation of Silver Nanoparticlesby Laser Ablation in Solution: Influence of Laser Wavelength on Particle Size.Applied Surface Science.2002,202(1~2):80~85
    39. J. Nedderson, G. Chumanov, and T. M. Cotton. Laser Ablation of Metals: Anew Method for Preparing SERS Active Colloids. Applied Spectroscopy.1993,47:1959~1964
    40. Inhyung Lee, Sang Woo Han, Kwan Kim. Simultaneous Preparation of SERS-active Metal Colloids and Plates by Laser Ablation.[J]. Journal of RamanSpectroscopy,2001,32:947~952
    41. R. Brause, H. Moeltgen, K. Kleinermanns. Characterization of Laser-ablatedand Chemically Reduced Silver Colloids in Aqueous Solution by UV/VISSpectroscopy and STM/SEM Microscopy. Applied Physics B.2002,75:711~716
    42.张建兵,方炎.激光烧蚀Ag表面的结构表征及纳米产物的光谱应用.光电子激光.2005,16(7):845~849
    43.杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体及其特征研究.光电子.激光.2003,14(4):383~386
    44. N. R. Jana and C. J. Murphy. Wet Chemical Synthesis of silver Nanorods andNanowires of Controllable Aspect Ratio. Chemical Communications.2001,7:617~619
    45. A. V. Simakin, V. V. Voronov, G. A. Shafeev, et al. Nanoparticles Produced byLaser Ablation of Solids in Liquid Environment. Applied Physics A.2004,79:1127~1132
    46. M. A. El-Sayed. Some Interesting Properties of Metals Confined in Time andNanometer Space of Different Shapes. Acc. Chem. Res.2001,34(4):257~264
    47. R. Jin, Y. W. Cao, C. A. Mirkin, et al. Photoinduced Conversion of SilverNanospheres to Nanoprisms. Science.2001,294:1901~1903
    48. Z. S. Pillai and P. V. Kamat. What Factors Control the Size and Shape of SilverNanoparticles in the Citrate Ion Reduction Method? Journal of PhysicalChemistry B.2004,108(3):945~951
    49. R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J. V.Garcia-Ramos. Surface-Enhanced Raman Scattering on ColloidalNanostructures. Advances in Colloid and Interface Science.2005,116:45~61
    50. R. A. Alvarez-Pueba, D. S. Dos Santos, and R. F. Aroca. Surface-EnhancedRaman scattering for ultrasensitive chemicalanalysis of1and2~naphthalenethiols. Analyst.2004,129:1251~1256
    51. K. Kim, H. B. Lee, J. W. Lee, H. K. Park, and K. S. Shin. Self-assembly ofPoly (ethylenimine)-Capped Au Nanoparticles at a Toluene Water Interface forEfficient Surface-Enhanced Raman Scattering. Langmuir.2008,24(14):7178~7183
    52. K. Y. Lee, M. J. Kim, S. S. Kwon, S. W. Han. Self-assembled SilverNanoprisms Monolayers at the Liquid/Liquid Interface. Materials Letters.2006,60:1622~1624
    53.吴青松,赵岩,张彩碚,李峰.片状三角形银纳米颗粒的自组织行为与光学特性.物理学报.2005,54(3):1452~1456
    54.何声太,姚建年,汪裕萍,江鹏等.银纳米粒子自组织二维有序阵列.物理学报.2001,50(4):765~768
    55. S. T. He, J. N. Yao, P. Jiang, et al. Formation ofSilver Nanoparticles and Self-assembled Two-dimensional Ordered Superlattice.[J]. Langmuir.2001,17:1571~1575
    56. J. H. Fendler. Self-Assembled Nanostructured Materials. Chemistry Materials.1996,8(8):1616~1624
    57. P. L. Gai, R. Roper, M. G. White. Recent Advances in Nanocatalysis Research.Current Opinion in Solid State and Materials Science.2002,6:401~406
    58. Cerofolini G F. Toward a Hybrid Micro-nanoelectronics. Journal ofNanoparticle Research.2002,4:1~5
    59. A. Campion. Surface-Enhanced Raman Scattering.Chemical Society Reviews1998,27:2~9
    60. S. Malynych, G. Chumanov. Light-Induced Coherent Interactions betweenSilver Nanoparticles in Two-Dimensional Arrays. Journal of the AmericanChemical Society,2003,125:2896~2898.
    61. J. Zheng, Y. Zhou, X. Li, Y. Ji and R. Lu. Surface-Enhanced Raman Scatteringof4-Aminothiophenol in Assemblies of Nanosized Particles and theMacroscopic Surface of Silver. Langmuir.2003,19:632~636.
    62. M. L. Stastry. Nanostructured thin Films by Self-assembly of Surface ModifiedColloidal Particles. Current Science.2000,78(9):1089~1097
    63. A. M. Michaels, M. Nirmal, L. E. Brus. Surface Enhanced RamanSpectroscopy of Individual Rhodamine6G Molecules on Large AgNanocrystals.Journal of the American Chemical Society.1999,121(43):9932~9939
    64. C. A. Murray, D. L. Allara and M. Rhinewine. Silver-molecule SeparationDependence of Surface-Enhanced Raman Scattering. Physics Review Letters1980,46:57~59
    65. P. D. Vladimir, C. N. Vishal, D. T. Mark, B. A. Dor, V. J. Davisson, M. S.Vladimir. Adaptive Silver Films for Detection of Antibody-antigen Binding.Lgmuir.2005,21(18):8368~8373
    66. D. J. Maxwell, S. R. Emory, S. Nie. Nanostructured Thin-film Materials withSurface-Enhanced Optical Properties. Chem. Mater.2001,13(3):1082~1088
    67. P. Liao, J. G.. Bergman, D. S. Chemla, A. Wokaun, J. Mengalis, A. M.Hawryluk, N. P. Economou. Surface-Enhanced Raman Scattering fromMicrolithographic Silver Particle Surface. Chemical Physics Letters.1981,82:355~359
    68. J. C. Hulteen, D. A. Treichel, M.T. Smith, M. L. Duval, T. R. Jensen, D. R. P.Van. Nanosphere Lithography: Size-Tunable Silver Nanoparticle and SurfaceCluster Arrays. The Journal of Physics Chemistry B.1999,103(19):3854~3863
    69. Y. Saito, J. J. Wang, D. A. Smith, D. N. Batchelder. A Simple Chemical Methodfor the Preparation of Silver Surfaces for Efficient SERS. Langmuir.2002,18(8):2959~2961
    70. Z. Wang, L. Rothberg, Silver Nanoparticle Coverage Dependence of Surface-Enhanced Raman Scattering. J. Appl. Phys. B.2006,84(1~2):289~293
    71. G. S. Kedziora and G. C. Schatz. Calculating Dipole and QuadrupolePolarizabilities Relevant to Surface Enhanced Raman Spectroscopy.Spectrochimica Acta Part A-Molecular and Biomolecular Opectroscopy.1999,55(3):625~638
    72. A. Bigotto and B. Pergolese. Surface-Enhanced Raman Spectroscopic Studiesof2-Mercaptobenzoxazole on Silver Sols. Journal of Raman Spectroscopy.2001,32(11):953~959
    73. S. Corni and J. Tomasi. Theoretical Evaluation of Raman Spectra andEnhancement Factors for a Molecule Adsorbed on a Complex-shaped MetalParticle. Chemical Physics Letters.2001,342(1-2):135~140
    74. B. Giese and D. McNaughton. Interaction of Anticancer Drug Cisplatin withGuanine: Density functional Theory and Surface-Enhanced RamanSpectroscopy Study. Biopolymers.2003,72(6):472~489
    75. M. T. Direct. Visual Evidence for the Chemical Mechanism of Surface-Enhanced Resonance Raman Scattering via Charge Transfer. Journal of RamanSpectroscopy.2009,40(2):139~143
    76. G. D. Fleming, J. J. Finnerty, M. Campos-Vallett, F. Celis, A. E. Aliaga, C.Fredes, and R. Koch. Experimental and Theoretical Raman and Surface-Enhanced Raman Scattering Study of Cysteine. Journal of Raman Spectroscopy.2009,40(6):632~638
    77. R. Aroca, R. E. Clavijo, M. D. Halls, et al. Surface-Enhanced Raman Spectra ofPhthalimide. Interpretation of the SERS Spectra of the Surface ComplexFormed on Silver Islands and Colloids. Journal of Physical Chemistry A.2000,104:9500~9005
    78. M. Muniz-Miranda, G. Cardini, V. Schettino. Surface-Enhanced Raman Spectraof Pyridine and Pyrazolide on Silver Colloids: Chemical and ElectromagneticEffects. Theoretical Chemistry Accounts.2004,111:264~269
    79. T. Anaka, A. Nakajima, A. Watanabe, et al. Surface-Enhanced RamanScattering of Pyridine and P-nitrophenol Studied by Density Functional TheoryCalculations. Vibrational Spectroscopy.2004,34:157~167
    80. B. O. Skadtchenko, R. F. Aroca. Surface-Enhanced Raman Scattering of P-nitrothiophenol Molecular Vibrations of its Silver Salt and the SurfaceComplex Formed on Silver Islands and Colloids. Spectrochimica Acta Part A.2001,57:1009~1016
    81. G. Cardini, M. Muniz-Miranda. Density Functional Study on the Adsorption ofPyrazole onto Silver Colloidal Particles. Journal of Physical Chemistry B.2002,106:6875~6880
    82. Masatomo Asai and Kumo Noda. The Normal Coordinate Analysis of GlycineAnhydride (2,5-piperazinedione). Spectrochimica Acta.1974,30:1147~1159
    83. J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman,G. C. Schatz, and R. P. Van Duyne. Surface-Enhanced Raman ExcitationSpectroscopy of a Single Rhodamine6G Molecule. Journal of the AmericanChemical Society.2009,131(2):849~854
    84. B. Teiten, A. Burneau. Aggregation of Silver Hydrosols Prepared in Air.Journal of Colloid and Interface Science.1998,206(1):267~273
    85. M. Campbell, S. Lecomte, W. E. Smith. Effect of Different Mechanisms ofSurface Binding of Dyes on the Surface-Enhanced Resonance RamanScattering Obtained from Aggregated Colloid. Journal of Raman Spectroscopy.1999,30:37~41
    86.上海化工学院,成都工学院编.分析化学.人民教育出版社.1978:313~314
    87. T. N. Misra. A Satellite Meeting of ICORS2000, Progress in Surface RamanSpectroscopy, Xiamen University Press, Xiamen.2000,211~211
    88. J. J. Max, M. Trudel, C. Chapados. Infrared Titration of Aqueous Glycine.Applied Spectroscopy.1998,52:226~233
    89.葛四平,朱星,杨威生. CuAg纳米结构表面共存和Ag表面对甘氨酸的新吸附行为.物理学报.2004,53(10):3477~3452
    90. J. H. Suh, M. Moskovits. Surface-Enhanced Raman Spectroscopy of AminoAcids and Nucleotide Bases Adsorbed on Silver.Journal of the AmericanChemical Society.1986,108:4711~4718
    91. E. Podstawka, Y. Ozaki, L. M. Proniewicz. Part I: Surface-Enhanced RamanSpectroscopy Investigation of Amino Acids and Their HomodipeptidesAdsorbed on Colloidal Silver. Applied Spectroscopy.2004,58(5):570~580
    92.柯惟中,吴缄中.氨基酸在银胶溶液中的表面增强Raman效应.光谱学与光谱分析.2004,24(5):551~553
    93. X. Dou, Y. Jung, H. Y amamoto, et al. Near-Infrared Excited Surface-EnhancedRaman Scattering of Biological Molecules on Gold Colloid I: Effects of pH ofthe Solutions of Amino Acids and of Their Polymerization. AppliedSpectroscopy.1999,53(2):133~138
    94. X. P. Gao, J. P. Davies, M. J. Weaver. Test of Surface Selection Rules forSurface-Enhanced Raman Scattering: the Orientation of Adsorbed Benzene andMonosubstituted Benzenes on Gold. Journal of Physical Chemistry.1990,94(17):6858~6864
    95. J. A. Creighton. The Selection Rules for Surface-Enhanced RamanSpectroscopy. Advance Spectroscopy in Chemistry.1988,19:37~41
    96. Ogawah, Fujigakit, Chiharat. Selective Formation of Glycylglycine byDehydration of Glycine Adsorbed On Silica Gel. Journal of Physical OrganicChemistry1999,12:354~358
    97.孙永泰,杨景文.在银溶胶中甘氨酸和甘氨酸二肽的表面增强Raman散射.生物物理学报.1993,9(1):16~19
    98.梁二军,张鹏翔.核黄素、银溶胶体系的吸收光谱和表面增强共振喇曼光谱.物理学报.1991,40(2):198~202
    99. N. Leopold, B. Lendl. A New Method forFast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at RoomTemperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride.The Journal of Physical Chemistry B.2003.107(24):5723~5727.
    100.关英勋,房大维,陈林,等.微波法制备无机纳米材料的研究进展.[J].化工时刊.2004,18(6):8~11
    101. Raveendranp, Fuaj, Wallens. A Simple and “Green” Method for the Synthesisof Au, Ag, and Au-Ag Alloy Nanoparticles. Green Chemistry.2006,8(1):34~38
    102. Kirtipatel, Kapoors, Devilalpurshottamdave, et al. Synthesis of Pt, Pd, Pt/Agand Pd/Ag Nanoparticles by Microwave-Polyol Method. Journal ChemistySciences,2005,117(4):311~316
    103. J. H. Fang, Y. X. Huang, X. Li, et al. Aggregation and Surface-EnhancedRaman Activity Study of Dye-coated Mixed Silver–Gold Colloids. Journal ofPhysical Chemistry.2004,35:914~920
    104.黄华,吴世法.纳米银胶的光化学制备及特性研究.光子学报.2005,34(11):1643~1646
    105. M. Takino, S. Daishima, T. Nakahara. Determination of ChloramphenicolResidues in Fish Meats by Liquid Chromatography-Atmospheric PressurePhotoionization Mass Spectrometry. Journal of Chromatography A.2003,1011:67~75
    106. D. Water, N. Haagsma. Sensitive Stretavidin Biotinenzyme-LinkedIimmunosorbent Assay for Rapid Screening of Chloramphenicol Residues inSwine Muscle Tissue. Association of Official Analytical Chemists Links.1990,73:534~540
    107. T. Nagata and M. Saeki. Simultaneous Determination of Thiamphenicol,Florfenicol and Chloramphenicol Residues in Muscles of Animals and CulturedFish by Liquid Chromatography. Journal of Liquid Chromatography.1992,15(12):2045~2056
    108. T. Nagata and H. Oka. Detection of Residual Chloramphenicol, Florfenicol,and Thiamphenicol in Yellowtail Fish Muscles by Capillary GasChromatography-Mass Spectrometry. Journal of Agriculture Food Chemistry.1996,.44:1280~1284
    109. A. P. Pfenning, M. R. Madson, J. E. Roybal, S. B. Turnipseed, S. A Gonzalas,J. A. Hurlbut, G. D. Salmon. Simultaneous Determination of Chloramphenicol,Florfenicol, and Thiamphenicol Residues in Milk by Gas Chromatography withElectron Capture Detection. Journal of Aoac International.1998,81:714~718
    110. S. Impens, W. Reybroeck, J. Vercammen, et al. Screening and Confirmationof Chloramphenicol in Shrimp Tissue using Elisa in Combination with GC-MS2and LC-MS2. Analytica Chimica Acta.2003,483:153~157
    111.齐航,朱涛,赵忠范.电解法制备棒状金纳米粒子溶胶.物理化学学报.2000,16(10):956~960
    112.何峰,汪武祥,韩雅芳等.制备超细金属粉末的新型电解法.粉末冶金技术.2000,19(2):80~85
    113. Y. Niidome, S. Tagawa, S. Yamada. Adsorption Behaviors of Methyl Orangeto Alternate Polyion Films as Studied by in-situ Absorption and SecondHarmonic Generation Measurements. Colloids and Surfaces A.2002,198–200:467~472
    114. A. Galembeck, S. B. C. Silva, J. P. Silva, J. D. Nero. PolyphosphateGel/Methyl Orange Supramolecular Composites. Optical Materials.2004,24:637~641
    115. M. Azuki, K. Morihashi, T. Watanabe, O. Takahashi, O. Kikuchi. Ab initio GBStudy of the Acid-Catalyzed Cis–trans Isomerization of Methyl yellow andMethyl Orange inAqueous Solution. Journal of Molecular Structure: Theochem.2001,542:255~262
    116. M. S. Masoud, H. H. Hammud. Electronic Pectral Parameters of the AzoIndicators: Methyl Red, Methyl Orange, PAN, and fast black K-salt.Spectrochimica Acta.2001,57:977~984
    117. A. P. Zhang, Y. Fang, H. B. Shao. Studies of Quenching and Enhancement ofFluorescence of Methyl Orange Adsorbed on Silver Colloid. Journal of Colloidand Interface Science.2006,298:769~772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700