氧化物半导体自组装薄膜的气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用气敏元件对人们生产生活中产生的有毒有害气体作出快速准确的检测和监控是十分必要的。有效地控制元件材料的膜厚、微观结构、组成,进而使气敏元件减小体积、降低功耗、提高灵敏度、增加工作稳定性,将对于促使气敏元件更加微型化、智能化、多功能化和广泛应用具有重要的意义。本论文利用层层静电自组装法制备了具有较多连通孔洞的半导体颗粒膜及其气敏元件,实现了气敏元件的薄膜化,进而在改善和提高元件气敏性能方面进行了系统深入的研究,并对元件的气敏机理做了初步分析与探讨。论文的主要工作如下:
     利用醋酸锌和双氧水在太阳光光照的条件下反应制备了均匀、稳定的ZnO2溶胶,烧结促使ZnO2转变得到ZnO,并根据实验结果确定了其转变温度与转变过程,推演了反应方程。以此为基础发展了一种具有反应条件温和、环境友好、工艺简单、节能等特性的制备ZnO2和ZnO颗粒的“绿色工艺”,得到的ZnO2和ZnO颗粒分散性好、晶粒可控、纯度高、结晶度高。
     通常,ZnO溶胶是利用各类醇作为溶剂制备的,得到的ZnO溶胶颗粒带有很弱的电荷,无法采用静电自组装工艺制备多层膜,由于ZnO2溶胶颗粒带有充足的电荷,本论文先通过层层静电自组装工艺制备了ZnO2薄膜,再对所得薄膜退火处理得到ZnO自组装薄膜,并优化了自组装薄膜的工艺条件。
     制备了ZnO自组装薄膜气敏元件,通过调节制备参数可精确控制薄膜元件的层数,微观结构,厚度,得到了具有连通孔洞结构的薄膜气敏元件。测试了不同掺Al方式的ZnO气敏元件对多种还原性气体的气敏性能,表明自组装法制备的ZnO薄膜气敏元件比传统的厚膜元件具有更优异的气敏性能。并探讨了适合连通孔洞结构的ZnO自组装颗粒薄膜的气敏机理,建立了气敏模型。
     采用静电自组装技术制备了层层交替生长的复合氧化物半导体薄膜,具体制备了ZnO/SnO2,ZnO/TiO2两种复合薄膜,薄膜具有较好的交替生长结构。SnO2和TiO2在ZnO中的均匀掺杂有效的提高了薄膜元件的气敏性能。
     本论文用层层静电自组装法制备了氧化物半导体气敏元件,改变了传统厚膜气敏元件的微观结构、膜厚,得到了薄膜化的气敏元件,提高了元件的气敏性能。
On-line monitoring of harmful gases in industry and home has become an important issue for environmental control. In this respect, semiconductor gas sensors may offer advantages in the form of simple construction, resistance to severe conditions, short response time. To obtain subminiature, intelligent and multi-functional gas sensors, it is important to effectively control thickness, microstructure and composition of film. In this thesis, the granular film with interconnected pore was fabricated by layer-by-layer self-assembly method and it was used for gas sensors. Then the improvement of gas sensitive performance was investigated deeply and the mechanism of gas sensors was analyzed. The major research is as follows.
     The stable and homogeneous ZnO2 sol was synthesized through reaction of zinc acetate dehydrate and hydrogen peroxide under sunlight radiations, and ZnO2 was annealed to obtain ZnO. Then according to experimental data, reaction equation was deduced and transformation temperature was confirmed. Finally, a green method for sol-gel synthesis of ZnO and ZnO2 powders was developed which is simple, low energy consumption and no pollution. Both the ZnO2 and ZnO have crystal structure and high purity.
     Generally, ZnO sol is synthesized with alcohol as solvent, so the charges of sol particles are too weak for electrostatic adsorption with oppositely charged polyelectrolytes. Therefore, we adopt an indirect method to fabricate ZnO self-assembled film. First, ZnO2 sol was synthesized with water as solvent. The as-prepared sol particles have strong electrostatic adsorption which makes it easy to construct LbL self-assembled ZnO2 multilayers. Then the ZnO2 multilayers are annealed to obtain ZnO multilayers at temperature above 200 oC
     The ZnO film gas sensors were prepared by self-assembly and the gas sensors with interconnected pore were obtained. The layer, microstructure and thickness could be accurately controlled by adjusting preparation parameter. The ZnO gas sensors with different Al dopping method were measured, and it is indicated that ZnO self-assembled film has better performance than thick film to use as gas sensors. Then, gas sensitive mechanism of ZnO self-assembled film was analyzed and the model was established.
     The composite semiconductor film, ZnO/SnO2 and ZnO/TiO2 composite film, was fabricated by self-assembly. The films have regular alternate layer-by-layer structure. After annealing, SnO2 and TiO2 were doped homogeneously in ZnO which improved gas sensitive properties.
     In general, the semiconductor gas sensors were fabricated by layer-by-layer electrostatic self-assembly. The obtained film gas sensors have different microstructure and thickness from thick film sensors. The gas sensitive properties were improved.
引文
[1] Rapaport H., Moller G., Knobler C. M., et al., Assembly of triple-strandedβ-sheet peptides at interfaces [J]. Journal of the American Chemical Society, 2002, 124(32): 9342-9343
    [2] Zubarev E. R., Pralle M. U., Li L. M., et al. Conversion of supramolecular clusters to macromolecular objects [J]. Science, 1999, 283(5401): 523-526
    [3] Wijnhoven J. E. G. J., Vos W. L., Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998, 281(5378): 802-804
    [4] von Werne T., Patten T. E., Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations [J]. Journal of the American Chemical Society, 1999, 121(32): 7409
    [5] Radzilowski L. H., Stup S. I. Nanophase separation in monodisperse rodcoil diblock polymers [J]. Macromolecules, 1994, 27(26): 7747-7753
    [6] Murray C. B., Kagan C. R., Bawendi M. G., Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 270(5240): 1335-1338
    [7] Alivisatos A. P., Johnsson K. P., Peng X., et al., Organization of nanocrystal molecules using DNA [J]. Nature, 1996, 382(6592): 609
    [8] Mucic R. C., Storhoff J., Letsinger R. L., et al., DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382(6592): 607
    [9] Andres R. P., Bielefeld J. D., Henderson J. I., et al., Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters [J]. Science, 1996, 273(5282): 1690-1696
    [10] Sagiv J., Organized monolayers by adsorption [J]. Journal of the American Chemical Society, 1980, 102(1): 92-98
    [11] Bell C. M., Arendt M. F., Gomez L., Growth of lamellar hofmann clathrate films by sequential ligand exchange reactions: assembling a coordination solid one layer at a time [J]. Journal of the American Chemical Society, 1994, 116(18): 8374-8375
    [12] Lee H., Kepley L. J., Hong H. G.., Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces [J]. Journal of the American Chemical Society, 1988, 92(9): 2597-2601
    [13] Shimazaki Y., Mitsuishi M., Ito S. Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in orgnaic solvents [J]. Langmuir, 1998, 14(10): 2768-2773
    [14] Stockton W. B., Rubner M. F., Molecular-level processing of conjugated polymers [J]. Macromolecules, 1997, 30(9): 2717-2725
    [15] Decher G., Hong J. D., Buildup of ultrathin multilayer films by a self-assambly process: II Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces [J]. Berichte der Bunsengesellschaft fuer Physikalische Chemie, 1991, 95(11): 1430-1434
    [16] Bigelow W. C., Pickett D. L., Zisman W. A., Oleophobic monolayers [J]. Journal of Colloid Science, 1946, 1(1): 513-538
    [17] Decher G., Hong J. D., Schmitt J., Buildup of ultrathin multilayer films by a self-assembly process: III Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin Solid Film, 1992, 211: 831-835
    [18] Russell V. A., Evans C. C., Li W, et al. Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity [J]. Science, 1 997, 276(5312): 575-579
    [19] Fujita M., Oguro D., Miyazawa M., et al., Self-assembly of ten molecules into nanometre-sized organic host frameworks [J]. Nature,1995, 378(6556): 469-471
    [20] Russell V. A., Evans C. C., Li W., et al., Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity [J]. Science, 1997, 276(5312): 575-579
    [21] Fendler J. H., Membrane-mimetic approach to advanced materials [M]. Berlin: Springer-Verlag, 1994: 15-30
    [22] Polymeropoulos E. E., Electron tunneling through fatty-acid monolayers [J]. Journal of Applied Physics, 1977, 48(6): 2404-2407
    [23] Girling I. R., Cade N. A., Kolinsky P. V., Observation of second-harmonic generationfrom langmuir-blodgett multilayers of a hemicyanine dye [J]. Thin Solid Films, 1985, 132(1-4): 101-112
    [24]陈福深,刘云圻,徐愉,分子电子学及其LB膜技术[J].电子科技大学学报, 1997, 26(1): 102-07
    [25] Ulman A., Formation and structure of self-assembled monolayers [J]. Chemical Review, 1996, 96(4): 1533-1554
    [26] Nakagawa T., Soga M., Contact angle and atomic force microscopy study of reactions of n-alkyltrichlorosilanes with Muscovite micas exposed to water vapor plasmas with various power densities [J]. Japanese Journal of Applied Physics [J]. 1997, 36(11): 6915-6921
    [27] Gauthier S., Aime J. P., Bouhacina T., et al., Study of grafted silane molecules on silica surface with an atomic force microscope [J]. Langmuir, 1996, 12(21): 5126-5137
    [28] Lobau J., Rumphorst A., Galla K., et al., Adsorption of alkyl-trichlorosilanes on glass and silicon: a comparative study using sum-frequency spectroscopy and XPS [J]. Thin Solid Films, 1996, 289(1-2): 272-281
    [29] Nuzzo R. G., Aliara D. L., Adsorption of bifunctional organic disulfides on gold surfaces [J]. Journal of the American Chemical Society, 1983, 105: 4481-4483
    [30] Tao Y. T., Lee M. T., Chang S. C., Effect of biphenyl and naphthyl groups on the structure of self-assembled monolayers: packing, orientation, and wetting properties [J]. Journal of the American Chemical Society, 1993, 115: 9547-9555
    [31] Iler R. K., Multilayers of colloidal particles [J]. Journal of Colloid Interface Science, 1966, 21(6): 569-594
    [32] Decher G., Fuzzy nanoassemblies: toward layered polymeric multicomposites [J]. Science, 1997, 277(5330): 1232-1237
    [33] Heuer A. H., Fink D. J., Laraia V. J., et al., Innovative materials processing strategies. A biomimetic approach [J]. Science, 1992, 255(5048): 1098-1105
    [34] Feng Q. L., Su X. W., Cui F. Z., et al., Crystallographic orientation domains of flat tablets in nacre [J]. Biomimetics, 1995, 3(4): 157-169
    [35]李秀华,袁启明,杨正方,硅酸盐通报[J]. 2003, 2: 53-56
    [36] Tang Z., Kotov N., Magonov S., et al., Nanostructured artificial nacre [J]. Nature Materials, 2003, 2(6): 413-418
    [37] Kotov N. A., Dekany I., Fendler J. H., Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states [J]. Advanced Materials, 1996, 8(8): 637-641
    [38] Kotov N. A., Dekany I., Fendler J. H., Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films [J]. Journal of Physical Chemistry, 1995, 99: 13065-13069
    [39] Schmitt J., Decher G., Dressick W. J., et al. Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure [J]. Advanced Materials, 1997, 9 (1): 61
    [40] Caruso F., Niikura K., Furling D. N., Assembly of alternation polyelectrolyte and protein multilayer films for immunosensing [J]. Langmuir, 1997, 13(13): 3427-3433
    [41] Lvov Y., Ariga K., Ichinose I., et al., Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecule (linearpolymer,protein and clay)and concanavalin A and glycogen [J]. Thin Solid Films, 1996, 284-285: 797-801
    [42] Spaeth K., Brech A., Gauglitz G., Studies on the biotin-avidin multiayer adsorption by spectroscopic ellipsometry [J]. Journal of Colloid Interface Science, 1997, 196(2): 128-135
    [43] Anzai J., Kobayushi Y., Nakamura N., Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s [J]. Langmuir, 1999, 15(1): 221-226
    [44] Kurth D. G., Osterhout R., In situ analysis of metallosuperamolecular coordination polyelectrolyte films by surface plasmon resonance spectroscopy [J]. Langmuir, 1999, 15(14): 4842-4846
    [45] Lvov Y. M., Amau G. N., Zhou D. L., et al., Assembly of electroactive ordered multilayer films of cobalt phthalo cyanine tetrasulfonate and polycations [J]. Journal of Colloid Interface Science, 1999, 212(2): 570-575
    [46] Fukumoto H., Yonezaw Q. Y., Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye [J]. Thin Solid Films, 1998, 327-329: 748-751
    [47] Dante S., Advincula R., Frank C. W., et al., Photoisomerization of polyionic layer-by–layer films containing azobenzene [J]. Langmuir, 1999, 15(1): 193-201
    [48] He J.A., Jang K., Tkumar J., et al., Electrostatic Self-assembly of polydiacetylene nanocrystals: nonlinear optical properties and chain orienlation [J]. Journal of Physical Chemistry B, 1999, 103(50), 1050-11056
    [49] Baur J. W., Kim S., Balanada P. B., Thin film hight emitting devices based on sequentially adsorbed multiayers of water soluble poly(p-phenylene)s [J]. Advanced Materials, 1998, 10(17): 1452-1455
    [50] Fulda K. V., Kampes A., Krasemaml L., Self-assembled mono-and multilayers of monodisperse cationic and anionic latex particles [J]. Thin Solid Films, 1998, 327-329: 752-757
    [51] Kotov N. A., Dekany I., Fendler J. H., Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite [J]. Journal of Physical Chemistry, 1995, 99(35), 13065-13069
    [52] Shimazaki Y., Mitsaishi M., Yamamoto M., et al., Preparation of the layer-by-Layer deposited ultrathin film based on the charge-trandsfer interaction [J]. Langmuir, 1997, 13: 1385-1387
    [53] Hsieh M. C., Farris R. J., McCarthy T. J., Polyelectrolyte multilayer deposition on plasma-modified poly(tetrafluoroethylene) [J]. Macromolecules, 1997, 30(26): 8453-8458
    [54] Shinbo K., Suzuki K., Kato K., Kaneko F., et al., Thermally stimulated currents and electrical conduction in self-assembled ultrathin films [J]. Thin Solid Films, 1998, 327-329: 209-213
    [55] Losche M., Schmitt J., Decher G., et al., Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry [J]. Macromolecules, 1998, 31(25): 8893-8906
    [56] Shimazaki Y., Mitsuishi M., Ho S., et al., Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents [J]. Langmuir, 1998, 14(10): 2768-2773
    [57] Lowack, K., Helm, C. A., Molecular mechanisms controlling the self-assemblyprocess of polyelectrolyte multilayers [J]. Macromolecules, 1998, 31(3): 823-833
    [58] Yoo D., Shiratori S. S., Rubner M. F., Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes [J]. Macromolecules, 1998, 31(13): 4309-4318
    [59] Dante S., Hou Z., Risbud S., Stroeve P., Nucleation of iron oxyhydroxide nanoparticles by layer-by-layer polyionic assemblies [J]. Langmuir, 1999, 15(6): 2176-2182
    [60] Clark S. L., Montague M. F., Hammond P. T., Ionic effects of sodium chloride on the templated deposition of polyelectrolytes using layer-by-layer ionic assembly [J]. Macromolecules, 1997, 30(23): 7237-7244
    [61] Kolarik L., Furlong V. F., Joy H., et al., Building sssemblies from high molecular weight polyelectrolytes [J]. Langmuir, 1999, l5(23): 8265-8275
    [62] Borukhov I., Andelman D., Orland H., Scanling laws of polyelectrolyte adsorption [J]. Macromolecules, 1998, 31(5), 1665-1671
    [63] Klitzing R. V., Mohwald H., Realistic diffusion model for ultrathin polyelectrolyte films [J]. Macromolecules, 1996, 29(21): 6901-6909
    [64] Zhang X., Shen J. C., Self-assembled ultrahiM films: From layered nanoarchitectures to functional assemblies [J]. Advanced Materials, 1999, 11(13): 1139-1143
    [65] Van Ackern F., Krasemann L., Tieke B., Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes [J]. Thin Solid Films,1998, 327-329: 762-766
    [66] Raposo M., Pontes R. S., Mattoso L. H. C., et al., Kinetics of adsorption of poly(o-methoxyaniline) self-assembled films [J]. Macromolecules, 1997, 30(20): 6095-6101
    [67] Hong H. P., Steitz R., Kirstein S., et al., Superlattice structures in poly(phenylenevinylene)-based self-assembled films [J]. Advanced Materials, 1998, 10(14): 1l04-l108
    [68] Decher G.., Hong J. D., Buildup of ultrathin multilayer films by a self-assembly process: 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [C]. European Conference on Organized Organic Thin Films, 1991,321
    [69] Lenahan K. M., Wang Y. X., Liu Y., et al., Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology [J]. Advanced Materials, 1998, 10(11): 853-855
    [70] He J. A., Valluzzi R., Yang K., et al., Synthesis and cation distribution of the spinel cobaltites CuxMyCo3-(x+y)O4 (M=Ni, Zn) obtained by pyrolysis of layered hydroxide nitrate solid solutions [J]. Chemical Materials, 1999, 11(11): 3268-3274
    [71] Shipway A. N., Lahav M., Willner I., Nanostructured gold colloid electrodes [J]. Advanced Materials, 2000,12(13): 993-998
    [72] Lvov Y., Ariga K., Ihinose I., Kunitake T., Assembly of multicomponent protein films by means of electrostatic layer-by-Layer adsorption [J]. Journal of the American Chemical Society, 1995, 117(22): 6117-6123
    [73] Ma H. Y., Hu N. F., Rusling J. F., Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodes [J]. Langmuir, 2000, 16(11): 4969-4975
    [74] Ram M. K., Adami M., Paddeu S., et al., Nano-assembly of glucose oxidase on the in situ self-assembled films of polypyrrole and its optical, surface and electrochemical characterizations [J]. Nanotechnology, 2000, 11(2): 112-119
    [75] Yoon H. C., Kim H. S., Multilayered assembly of dendrimers with enzymes on gold: Thickness-controlled biosensing interface [J]. Analytical Chemistry, 2000, 72(5): 922-926
    [76] Byrd H., Holloway C. E., Pogue J., et al., Ultrathin film self-assembly of hybrid organic-inorganic metal coordination polymers [J]. Langmuir, 2000, 16(26): 10322-10328
    [77] Dante S., Hou Z. Z., Risbud S., et al., Nucleation of iron oxy-hydroxide nanoparticles by layer-by-layer polyionic assemblies [J]. Langmuir, 1999, 15(6): 2176-2182
    [78] Li L. S., Wang R., Fitzsimmons M., et al., Surface electronic properties of self-assembled, oppositely charged macrocycle and polymer multilayers on conductive oxides [J]. Journal of Physical Chemistry B, 2000, 104(47): 11195-11201
    [79] Rogach A. L., Koktysh D. S., Harrison M., et al., Layer-by-Layer assembled films ofHgTe nanocrystals with strong infrared emission [J]. Chemistry of Materials, 2000, 12(6): 526-1528
    [80] Kovtyukhova N. I., Gorchinskiy A. D., Waraksa C., Self-assembly of nanostructured composite ZnO/polyaniline films [J]. Materials Science and Engineering B, 2000, 69: 424-430
    [81] Caruso F., Niikura K., Furlong D. N., et al., Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing [J]. Langmuir, 1997, 13(13): 3427-3433
    [82] Lvov Y., Munge B., Giraldo G., et al., Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption [J]. Langmuir, 2000, 16(23): 8850-8857
    [83] Ramsden J. J., Lvov Y. M., Decher G., Determination of optical constants of molecular films assembled via alternate polyion adsorption [J]. Thin Solid Films, 1995, 254(1-2): 246-251
    [84] Clark S. L., Hammond P. T., Engineering the microfabrication of layer-by-layer thin films [J]. Advanced Materials, 1998, 10(18): 1515-1519
    [85] Decher G., Lvov Y., Schmitt J., et al., New nanocompoite films for biosensors: layer-by-layer adsorbed films of polyelectrolyte, proteins of DNA [J]. Biosensors and Bioelectronics, 1994, 9(9-10): 677-684
    [86] Caurso F., Caurso R. A., Mohwald H., Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282(5391): 1111-1114
    [87] Caurso F., Lichtenefld H., Giersig M., et al., Electrostatic self-Assembly of silica nanoparticle-polyelectrolyte multilyaers on polystyrene latex particles [J]. Journal of the American Chemical Society, 1998, 120(33): 8523-8524
    [88] Song K. C., Kim J. H., Preparation of nanosize tin oxide particles from water in oilmicroemulsion [J]. Colloid Interafce Science, 1999, 212: 193-198
    [89] Gao M. Y., Richter B., Kirstein S., et al., White-light electroluminescence from self-assembled Q-CdSe/PPV multilayer structures [J]. Advanced Materials, 1997, 9 (10): 802-805
    [90] Gao M. Y., Richter B., Kirstein S., et al., Electroluminescence studies onself-assembled films of PPV and CdSe nanoparticles [J]. Journal of Physical Chemistry B, 1998, 102(21): 4096-4103
    [91] Onoda M., Yoshino K., Fabrication of self-assembled multilayer heterostructure of poly(p-phenylene vinylene) and its use for an electroluminescent diode [J]. Journal of Applied Physics, 1995, 78(7): 4465-4462
    [92] Onitsuka O., Fou A. C., Ferreira M., et al., Enhancement of light emitting diodes based on self-assembled heterostructures of poly(p-phenylene vinylene) [J]. Journal of Applied Physics,1996, 80(7): 4067
    [93] Fou A. C., Onitsuka O., Ferreira M., et al., Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene) [J]. Journal of Applied Physics, 1996, 79(10): 7501-7509
    [94] Csssagneau T., Fendler J. H., High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes [J]. Advanced Materials, 1998, 10(11): 877-881
    [95] Stroeve P., Vasquez V., Coelho M. A. N., Gas transfer in supported films made by molecular self-assembly of ionic polymers [J]. Thin Solid Films, 1996, 284-285: 708-712
    [96] van Ackern F., Krasemann L., Tieke B., Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes [J]. Thin Solid Films, 1998, 327-329: 762-766
    [97] Liu Y. J., Wang Y. X., Claus R. O., Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity [J]. Chemical Physics Letter, 1998, 298(4-6): 315-319
    [98] Rouse J. H., Lillehei P. T., Electrostatic assembly of polymer/single walled carbon nanobube multiplayer films [J]. Nano Letter, 2003, 3(1): 59-62
    [99] Kotov N. A., Dekany I., Fendler J. H., Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states [J]. Advanced Materials, 1996, 8(8): 637-641
    [100] Taguchi R., [P]. Japanese patent: 45-38200, 1962
    [101] Yamazoe N., Kurakowa Y., Seiyama T., Effects of additives on semiconductors gassensors [J]. Sensors and Actuators B, 1983, 4(2): 283-289
    [102]刘广玉,几种新型传感器-设计和应用[M].北京:国防工业出版社, 1988: 295-297
    [103]宁新宝,黄德培,物理化学生物传感器[M].南京:南京大学出版社, 1991: 394-418
    [104] Meixner H., Lampe U., Metal oxide sensors [J]. Sensors and Actuators B, 1996, 33(1-3): 198–202
    [105] Yamazoe N., Miura N., New approaches in the devices of gas sensors [M]. The Netherlands: Kluwer Academic Publishers, 1992: 50-80
    [106] Gopel W., Dieter S. K., SnO2 sensors: current status and future prospects [J]. Sensors and Actuators B, 1995, 26(1-3): 1-12
    [107] Korotcenkov G., Cornet A., Rossinyol E., et al., Faceting characterization of SnO2 nanocrystals deposited by spray pyrolysis from SnCl4-5H2O water solution [J]. Thin Solid Films, 2004, 471(1-2): 310-319
    [108] Skala T., Veltruska K., Moroseac M., et al., Study of Pd–In interaction during Pd deposition on pyrolytically prepared In2O3 [J]. Applied Surface Science, 2003, 205(1-4): 196-205
    [109] Kawamura F., Yasui I., Kamei M., et al., Habit modifications of SnO2 crystals in SnO2-Cu2O flux system in the presence of trivalent impurity cations [J]. Journal of the American Chemical Society, 2001, 84(6): 1134
    [110] Korotcenkov G., Cerneavschi A., Brinzari V., et al., In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors [J]. Sensors and Actuators B, 2004, 99(2/3): 304-310
    [111] McAleer J. F., Moseley P. T., Norris J. O. W., et al., Tin dioxide based gas sensors [J]. Materials Chemistry and Physics, 1987, 17(6): 577-583
    [112] Carreno N. L. V., Maciel A. P., Leite A. P., et al., The influence of cations segregation on the methanol decomposition on nanostructured SnO2 [J]. Sensors and Actuators B, 2002, 86(2-3): 185-192
    [113] Ratko A., Babushkin O., Baran A., et al., Sorption and gas sensitive properties of In2O3 based ceramics doped with Ga2O3 [J]. Journal of European ceramic society,1998, 18(14): 2227-2232
    [114] Szezuka D., Werner J., Oswald S., et al., XPS investigations of surface segregation of doping elements in SnO2 [J]. Applied Surface Science, 2001, 179(1-4): 301-306
    [115] Gaskov A. M., Rumyantseva M. N., Nature of gas sensitivity in nanocrystalline metal oxides [J]. Russian Journal of Applied Chemistry, 2001, 74(3): 440-444
    [116] Trivikrama Rao G. S., Tarakarama Rao D., Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature [J]. Sensors and Actuators B, 1999, B55(2-3): 166-169
    [117] Boccuzzi F., Guglielminotti E., Chiorino A., IR study of gas-sensor materials: NO interaction on ZnO and TiO2, pure or modified by metals [J]. Sensors and Actuators B, 1992, 7(1-3): 645-650
    [118] Aslam M., Chaudhary V. A., Mulla I. S., et al., A highly selective ammonia gas sensor using surface-ruthenated zinc oxide [J]. Sensors and Actuators A, 1999, 75(2): 162-167
    [119]牛新书,杜卫平,杜卫民,等,掺杂稀土氧化物的ZnO材料的制备及气敏性能[J].稀土, 2003, 24(6): 44-47
    [120]李健,白素杰,通拉嘎,稀土Nd掺杂纳米ZnO薄膜气敏特性[J].传感器技术, 2004, 23(5): 9-11
    [121] Ken-ichi I., Masaru M., Chlorine gas sensing properties of ZnO-CaO ceramics [J]. Journal of Electroceramics, 1998, 2(1): 41-48
    [122] Egashira M., Kanehara N., Shimizu Y., et al., Gas-sensing characteristics of Li+-doped and undoped ZnO whiskers [J]. Sensors and Actuators, 1989, 18(3-4): 349-360
    [123] Anno Y., Maekawa T., Tamaki J., et al., Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consommk soup [J]. Sensors and Actuators B, 1995, B25(1-3): 623-627
    [124] Kwon C. H., Hong H. K., Yun D. H., et.al. Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems [J]. Sensors and Actuators B, 1995, B25(1-3): 610-613
    [125]沈琦生,尚文,刘杏芹, ZnO-CdO二元体系的导电机制和气敏效应[J].云南大学学报(自然科学版), 1997, 19(1): 88-92
    [126] Zhang T. S., Hing P., Yang L., et al., Selective detection of ethandol vapor and hydrogen using cd-doped SnO2-based sensors [J]. Sensors and Actuators 1999, B60(3): 208-215
    [127] Cheong H. W., Choi J. J., Kim H. P., et al., The role of additives in tin dioxide based gas sensors [J]. Sensors and Actuators B, 1992, B9(3): 227-231
    [128] Chen J. S., Li H. L., Huang J. L., Structural and CO sensing characteristics of Ti-added SnO2 thin films [J]. Applied Suface Science, 2002, 187(3-4), 305-312
    [129]王存,王弘,沈瑜生,复合氧化物气敏材料的进展[J].传感器技术, 1994, 1: 1-3
    [130] Yan D. W., Ma X. C., Wang Z. C., et al., Properties and formation of the interface transition layer of SnO2/Fe2O3 films grown by plasma CVD [J]. Thin Solid Films, 1993, 224(2): 257-262
    [131] Sberveglieri G., Groppelli S., Nelli P., Highly sensitive and selective NO and NO2 sensor based on Cd-doped SnO2 thin films [J]. Sensors and Actuators B, 1991, B4(3-4): 457-461
    [132]王利,祁志美,崔大付,微结构气敏传感器制造工艺研究[J].仪表技术与传感器, 1998, 3: 10-13
    [133] Getino J., Gutierrez J., Ares L., et al., Intergrated sensor array for gas analysis in combustion atmospheres [J]. Sensors and Actuators B, 1996, 33(1-3): 128-133
    [134] Hong H. K., Shin H. W., Park H. S., et al., Gas indentification using micro gas sensor array and neural-network pattern recognition [J]. Sensors and Actuators B, 1996, 33(1-3): 68-71
    [135] Ionescu R., Vancu A., Tomescu A., Time-dependent humidity calibration for drift corrections in electronic noses equipped with SnO2 gas sensors [J]. Sensors and Actuators B, 2000, 69(3): 283-286
    [136]赵卫萍,孙以材,王小捧,等,用溅射法制备ZnO薄膜丙酮气敏传感器[J].传感器世界, 2005, 4(12): 10-17
    [137] Matsumoto Y. J., et al., Room temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide [J]. Science, 2001, 291(13): 845-856
    [138]朱顺明,叶建东,顾书林,等, Ga掺杂ZnO薄膜的MOCVD生长及其特性[J].半导体学报, 2005, 26(8): 1567-1571
    [139]边继明,李效民,赵俊亮,等, PLD法生长高质量ZnO薄膜及其光电导特性研究[J].无机材料学报, 2006, 21(3): 701-706
    [140] Li H. X., Wang J. Y., Liu H., et al., Zinc oxide films prepared by sol–gel method [J]. Journal of Crystal Growth, 2005, 275(1-2): e943-e946
    [141] Han K., Young R., Jang H. J., et al., Thermally grown ZnO nanorods from Zn ingot [J]. Journal of the Ceramic Society of Japan, 2005, 113(1317): 337-339
    [142] Cullity B. D., Elements of X-ray Diffractions [M]. MA, Addison-Wesley, 1978: 102-104
    [143] Ashkenov N., Mbenkum B. N., Bundesmann C. et al., Infrared dielectric functions and phonon modes of high-quality ZnO films [J]. Journal of Applied Physics, 2003, 93(1): 126-128
    [144] Ozgur U., Alivov Ya. I., Liu C., et al., A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics, 2005, 98(4): 1-103
    [145]袁吉仁,李要球,邓新华,纳米ZnO的光吸收特性研究[J].南昌大学学报, 2006, 28(4): 329-331
    [146]高芒来,陈刚,聚电解质PSS/PDDA分子沉积膜动力学[J].应用化学, 2003, 20(10): 972-976
    [147]高芒来,陈刚,张华,聚电解质PSS/PDDA分子沉积膜表面性能研究[J].高分子学报, 2003, (6): 837-840
    [148]康昌鹤,唐省吴,等,气、湿敏感器件及其应用[M].北京:科学出版社, 1988: 40-53
    [149]王锡铭,掺杂对纳米TiO2薄膜气敏性能的影响硕士论文[D].北京:北京航空航天大学, 2007
    [150]徐毓龙,金属氧化物气敏传感器(四)[J].传感技术学报, 1996, 19(3): 73-78
    [151]管振林,邢建平,郝丕柱,等,气敏薄膜电导响应的扩散反应和传感理论(一)基本理论[J].山东工业大学学报, 1994, 24(1): 2-13
    [152]李蕾,夏思淝,刘文利,等,气敏金属氧化物表面吸附氧负离子O2?和O?的研究[J].山东工业大学学报, 1994, 24(3): 287-290
    [153]刘风敏, SnO2及其复合氧化物气体传感器的修饰改性研究[D].长春:吉林大学, 2005
    [154]林海安,吴冲若,还原性气体对SnO2表面势垒的影响[J].传感器技术, 1994, 24(3): 13-15
    [155] Chang S. C., Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements [J]. Journal of Vacuum Science and Technology, 1979, 17(1): 366-369
    [156] Seto J. Y. W., The electrical properties of polycrystalline silicon films [J]. Journal of Applied Physics, 1975, 46(12): 5247-5254
    [157]戴振清,孙以材,潘国峰,等,金属氧化物掺杂对TiO2气敏特性的影响[J].传感器世界, 2003, 9(9): 10-13
    [158]郭斯淦,魏星群,郑顺镟, SnO2:TiO2混合物薄膜在丙酮蒸气中的气敏光谱[J].光谱学与光谱分析, 1995, 15(5): 7-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700