O_3/BAF联合工艺深度处理生活污水二级出水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境污染和水资源短缺加速了污水深度处理与回用的研究。城市污水二级处理出水水质稳定、水量大,是良好的第二水源。生活污水经过二级生化处理后,一般悬浮物颗粒微小、浓度低,溶解性污染物大多为难生物降解有机物。即使如此,由于生物法(如生物膜法)仍然是目前最经济的污水处理方式,这使得人们仍不放弃将生物法作为组合工艺(如与化学法组合)的一部分来对其进行深度处理以实现再生回用。针对现行深度处理工艺存在的去除效率低、占地面积大等问题,在对生活污水二级出水的水质特性进行系统分析的基础上,提出了臭氧预氧化/曝气生物滤池(ozonation/biological aereated filter, O3/BAF)联合工艺,并考察了该联合工艺的长期运行效果、工艺参数和影响因素,并对臭氧预氧化有机物的反应动力学、后续BAF净化有机物的机理、生物膜特性等进行了探讨与分析。
     二级出水的水质特性分析结果表明,溶解态COD占78.17-86.54%;悬浮物中有机组分占总物质含量的75.54-89.93%;二级出水中大约80%的颗粒分布在2-6.84μm之间。二级出水中分子量(MW)小于1k Dalton的有机物占56.3-62.8%。二级出水的可生化性较差,BDOC仅占DOC的15.5-26%。溶解性有机物和悬浮物(SS)中有机物的GC/MS分析结果表明,具有环状结构的化合物分别占各自总化合物的58%和35%。从结构上看,大多为难降解有机物。上述分析表明,溶解性有机污染物是生活污水二级出水深度处理的主要目标,但由于其可生化性差,采用化学预氧化提高后续BAF的处理效率十分必要。
     研究了臭氧氧化二级出水的特性。在臭氧投量为10 mg/L、接触时间为4 min情况下,单独臭氧氧化对二级出水的COD、TOC、UV254和色度的去除率分别为25.7%和16.5%、69.3和79.2%;臭氧预氧化使二级出水的可生化性显著提高:使MW<1k Dalton的有机物的比例由52%提高到72.6%、使BDOC从1.08 mg/L提高到2.6 mg/L。
     建立了臭氧预氧化/曝气生物滤池(O3/BAF)联合工艺。实验发现,臭氧预氧化能够提高二级出水的可生化性,促进后续BAF的生物膜生长,提高生物活性,进而强化BAF的除污染效能。臭氧预氧化与曝气生物滤池具有协同作用,O3/BAF对有机物总量的去除率比单独O3和BAF去除率之和高7-10%;O3/BAF对TOC、UV254、色度的去除效率分别为20-27%、65-75%和87-93%;此外,O3/BAF出水中MW<1k Dalton的有机物比例明显降低。BAF对水力负荷、pH等条件具有较好的适应性。O_3/BAF对NH_3-N和TN的去除率分别为87-92%和13-17%,TN的去除率主要来源于厌氧氨氧化。实验还发现,温度、NH_3-N负荷和pH是影响NH_3-N去除的重要因素。在一定温度范围内,温度升高,NH_3-N去除率升高;NH_3-N负荷增加去除率降低。亚硝化作用最佳pH范围为7.3-7.9,硝化作用的最佳pH范围为6.75-7.5。氮平衡分析表明,供氧受限时,NH_3-N被好氧氨氧化菌氧化成NO_2-N,然后在生物膜的厌氧区由厌氧氨氧化菌再将NH_3-N和NO_2-N氧化为N_2,同时产生少量NO_3-N。上述过程是氮流失的主导原因。
     气-水联合反冲洗能够有效地去除滤层中的悬浮物和多余的非活性生物膜。适当控制反冲洗强度和时间,反冲洗对有机物去除、硝化作用仅有轻微影响,反冲洗结束后BAF净化效能能较快地恢复到正常水平。臭氧氧化水中有机物的动力学分析认为,臭氧与有机物的氧化反应在0-1.6、1.6-16、16-30 min范围内均呈一级动力学反应,各阶段反应速率常数分别为0.0241、0.00296和0.000732 (L·mg-1·min-1)。
     在实验和理论分析的基础上,总结提出了曝气生物滤池降解有机物是生物氧化、过滤截留、生物絮凝和食物链分级捕食综合作用的结果。观察发现,进水端生物膜较厚,颜色较深,填料的空隙较小;随着滤层高度增加,生物膜逐渐变薄,颜色逐渐变浅。整个系统中活跃着大量的杆菌、丝状菌、钟虫、藻类、球菌等。进水端、中间段和出水端生物膜表面形态结构、种群组成等各有特点,异养菌和硝化菌分布与有机物去除和硝化作用规律一致。
     建立了基于有机物浓度和反应器高度两参数的有机物生物降解动力学模型,并根据实验数据进行了线性回归分析,计算得出了模型总体运行常数和填料特性常数,并验证了模型的实用性,该模型可为实际工程提供一定的设计参考。
     研究结果表明,臭氧预氧化/曝气生物滤池联合工艺对生活污水二级出水具有良好的净化效能,工艺出水的COD、NH_3-N低于20 mg/L、2 mg/L,是很有应用前景的污水深度处理工艺。
Both the pollution of water environment and the shortage of water resources are driving the researches in applications of advanced treatment and in the reuse of wastewater. The secondary effluent of municipal wastewater can be used as a good potential water source due to its stable quality and large quantity. Generally, the secondary effluent of chembiological treatment has lower particle size and concentration of suspended solid (SS). Evenhough, biological processes (i.g. biofilm processes) are often adoptted as a combined unit for advanced treatment of wastewater due to its economical characteristics. Based on the systematic analysis of the secondary effluent, the combined process of ozonation and biofiltration (O3/BAF) was established for the advanced treatment of secondary effluent aiming at water reuse. Except for the general index, some chemical and biological methods including the molecular weight distribution (MWD), GC/MS, biodegradable analysis was employed to assess the quality fo the water in the research of operating characteristics of O3/BAF process and impact factors. Further more, the enhancement of the subsequent BAF by ozonation, the mechamisms of removal in BAF processes as well as some biofilm characteristic analysis were discussed.
     Commonly, the secondary effluent is characterized with the following index, such as BOD、COD、SS、NH3-N、TN and TP. However, they are too general to depict the characteristics of the secondary effluent with the upgrading of the standard of reused water and broadening of the water reuse field. Therefore, the significant characteristics need more research such as molecular weight distribution of organics, type of organics characterized by their functional groups, as well as the classes and structures of the organics in colloidal and suspended forms. Thus, the secondary effluent was fractionated into three parts: dissovled, colloidal and suspended and characterized individually. The analysis results indicated that the dissolved organics were dominating since the dissolved COD accounted for 78.2-86.5% in the secondary effluent. The secondary effluent is poorly biodegradable since the BDOC accounted for 15.5-27% of DOC. Furthermore, the organics with molecular weight <1k Dalton accounted for 56.3- 62.8%. The organic components dominantly accounted for 75.54-89.93% of the total mixture of suspended and colloidal pollutants. The paticle size distribution analysis showed that 80% of the particles ranged from 2 to 6.84μm. GC/MS analysis of the organics in dissolved form and in suspended solid indicated that 58% and 35% of them had cyclic structures, respectively. From this point, most of the organics were refractory. In summary, the secondary effluent is poorly biodegradable, which makes it necessary to adopt chemical oxidation as a pretreatment unit for improvement of the removal efficiency of the organic matter. The ozonation of the secondary effluent indicated that the removals of COD, TOC, UV254 and color were 25.7%, 16.5%, 69.3% and 79.2%, respectively, at the ozone dose of 10 mg/L and the contact time of 4 min. At the same time, the ozonation changed the percentage of organics with MW<1k Dalton from original 52% to final 72.6%. More important, the ozonation enhanced the biodegradability of secondary effluent by inproving BDOC from 1.08 mg/L to 2.6 mg/L, which accelerated the growth of biofilm and improved the biological activity of the biofilm. As a result, the removal function of the sequent BAF is thus efficiently enhanced.
     The long-term running data showed that the removal of organic matter by O3/BAF was higher that the sum of those by ozonation alone and BAF alone.At the same time, the removal of TOC, UV254 and color reached 20-27%, 65-75% and 85-95%, respectively. The percentage of organics with MW<1k Dalton decreased obviously.
     Furthermore, BAF was adaptable for the changes of hydraulic loading and pH for the organics removal. The removal of NH3-N and TN by O3/BAF is 87-92% and 13-17%, respectively. It is considered that the TN removal arised mainly from some anaerobic ammonia oxidation. Temperature, NH3-N loading and pH significiantly affected the NH3-N removal. The NH3-N removal increased with the increasing of temperature and decreased with the increasing of NH3-N loading. Besides, the optimal pH for Nitrification is from 7.27-7.89. The N element balance analysis indicated that NH_3-N was oxidized to NO_2-N by aerobic ammonia oxidizer firstly and then NO_2-N oxidized to dominant N_2 and a little of NO_3-N at the same time, by anaerobic ammonium oxidizing bacteria. The anaerobic ammonium oxidization was the main cause of nitrogen loss.
     The combined water-air backwashing could effectively remove the suspended pollutants and the unwanted non-active biofilm in BAF and backwashing only had a little negative impact on the removal of COD and nitrification by controlling proper condition such as backwashing intensity and backwash time. The removal function could be recoveried within shorter time after backwashing.
     The kinetic analysis of the reaction between ozone and organics indicated that the reactions were all one orders in 0-1.6, 1.6-16, 16-30 min and the kinetic constants were 0.0241, 0.00296, 0.000732 (L·mg-1·min-1), respectivly. Based on the exprimental and thoredical analysis, it was summarized that the removal of organic matter was attributed to biological oxidation, filtration, biological flocculation and the consumption in the food chain in BAF. It was found that the biofilm in the forepart of BAF is much thicker through microscope and the color is deeper, the hole between media particles is smaller.
     The diversities of microbial polulation and special characteristics of community sucession of BAF were observed. There were a lot of communities bacillus, filamentous, vorticella, algae, coccus and so on. The configuration of the biofilm and the composition of micorbial populaiton differed from different height of meida layer. On the whole, the distribution of heterotrophic bacteria and nitrobacter is related to the organics degradation and nitrification characteristics.
     An experiential model was established, which is only based on the organics concentration and height of the media layer. The model constants were calculated based on the experimental data. At last, the model was validated and it can be used as a reference for actual engineering design and operating management.
     In conclusion, the concentration of COD and NH3-N is lower than 20mg/L and 2 mg/L, respectively. O3/BAF is an effective as well as promising combined process for advanced treatment of the secondary effluent for reuse purpose.
引文
1 郑易生, 钱慧红. 中国问题报告-深度忧患-当代中国的可持续发展问题. 今日中国出版社. 1998: 99~140
    2 肖锦. 城市污水处理及回用技术. 化学工业出版社, 2002: 89~91
    3 张忠祥, 钱易. 城市可持续发展与水污染防治对策. 中国建筑工业出版社,1998: 112~115
    4 刘一平, 郭绍辉, 王嘉麟. 城市污水回用于工业的现状分析. 环境工程. 2005, 23 (3): 15~18
    5 中 国 环 境 状 况 公 报 . 国 家 环 保 总 局 , 2007: http://www.sepa.gov.cn/info/gw/gg/200703/t20070322_101932.htm-9.33k
    6 李为民. 污水深度处理后的回用. 节能与环保. 2007, (1): 37~39
    7 Angelakisan, Bontouxl. Wastewater Reclamation and Reuse in European Countries. Water Policy. 2001, 3 (1): 47~59
    8 聂梅生. 美国污水回用技术调研分析. 中国给水排水. 2001, 17 (9): 23~25
    9 王腾. 对美国污水回用的借鉴. 水利科技与经济. 2006, 12 (3): 138~140
    10 G. Shelef, Y. Azov. The Coming Area of Intensive Wastewater Reuse in the Mediterranean Region. Wat. Sci. Tech., 1996, 33 (10~11): 115~125
    11 J. Ganoulis, A. Papalopoulou. Risk Analysis of Wastewater Reclamation and Reuse. Wat. Sci. Tech., 1996, 33 (10~11): 297~302
    12 张杰, 丛广治. 水环境恢复与城市下水道. 苏州科技学院学报. 2003, 16 (2): 1~3
    13 齐中熙. 城市污水再生利用三项国家标准公布. 再生资源研究. 2003, (2): 45~45
    14 武红霞, 曹燕进, 刘裕明. 城市污水回用于循环冷却水水质变化研究. 工业水处理. 2006, 26 (8): 48~53
    15 李本高, 汪燮卿. 污水回用技术进展与发展趋势. 工业用水与废水. 2006, 37 (4): 1~6
    16 周律, 霍振远, 甘一萍等. 以二级出水作为景观补水和冷却水水源效益分析. 环境工程. 2006, 10 (5): 16~19
    17 王洪臣, 甘一萍, 周军. 城市污水再生利用现状分析. 全国城市污水再生利用经验交流和技术研讨会, 天津, 2003, 10
    18 潘芳. 城市污水再生利用现状及发展对策. 污染防治技术. 2006, 19 (6): 31~33
    19 白木. 推广中水回用及措施. 污染防治技术. 2004, 1 (3): 32~34
    20 聂梅生. 美国污水回用技术调研分析. 中国给水排水, 2001, 19 (9): 23~25
    21 D. Jolis, R. A. Hirano and P. A. Pitt, et al. Assessment of Tertiary Treatment Technology for Water Reclamation in San Francisco, California. Wat. Sci. Tech. 1996, 33 (10-11): 181~192
    22 G. Oron, L. Gillerman and A. Bick, et al. A Two Stage Membrane Treatment of Secondary Effluent Forunrestricted Reuse and Sustainable Agricultural Production. Desalination. 2006, 187: 335~345
    23 C. Lubello; R. Gori and A. M, et al. Ultrafiltration as Tertiary Treatment for Industrial Reuse. Water Supply. 2003, 3 (4): 161~168
    24 王璟, 杨宝红, 王正江等. 曝气生物滤池-气浮工艺处理电厂废水及回用. 工业水处理. 2002, 22 (12): 57~59
    25 S.-H. You, D.-H. Tseng and G.-L. Guo. A Case Study on the Wastewater Reclamation and Reuse in the Semiconductor Industry. Resources, Conservation and Recycling. 2001, 32: 73~81
    26 兰淑澄. 活性炭水处理技术. 中国环境科学出版社, 1999: 131~134
    27 C.-K. Lin, T.-Y. Tsai and J.-C. Liu, et al. Enhanced Biodegradation of Petrochemical Wastewater Using Ozonation and BAC Advanced Treatment System. Wat. Res. 2000, 35 (3): 699~704
    28 董秉直, 曹达文, 范瑾初. 膜技术应用于净水处理的研究和现状. 给水排水. 1999, 25 (1): 28~32
    29 汪洪生, 陆雍森. 国外膜技术进展及其在水处理中的应用. 膜科学与技术. 1999, 19 (4): 17~22
    30 J.Y. Hu, S.L. Ong and J.H. Shan, et al. Treatability of Organic Fractions Derived from Secondary Effluent by Reverse Osmosis Membrane. Wat. Res. 2003, 37: 4801~4809
    31 D. Abdessemed, G. Nezzal and R. Ben Aim. Ractionation of a Secondary Effluent with Membrane Separation. Desalination. 2002, 146: 433~437
    32 S. L. Kim, J. P. Chen and Y.P. Ting. Study on Feed Pretreatment for Membrane Filtration of Secondary Effluent. Separation and Purification Technology. 2002, 29: 171~179
    33 B. Balannec, G. GéSan-Guiziou and B. Chaufer, et al. Treatment of Dairy Process Waters by Membrane Operations for Water Reuse and Milk Constituents Concentration. Desalination. 2002, 147: 89~94
    34 J. Juan. and J. Victoria. Reuse of reverse Osmosis Membranes in Advanced Wastewater Treatment. Desalination. 2002, 150 (3): 219~225
    35 莫罹, 黄霞. 混凝-微滤膜净化微污染水源水的研究. 给水排水. 2001, 27 (8): 16~19
    36 李健, 李富元, 关代宇等. 天津开发区/双膜法污水再生回用示范工程. 给水排水. 2003, 29 (11): 29~33
    37 盛铭军, 詹健, 王秀英. 生物膜-沸石组合工艺深度处理城市二级出水. 南昌大学学报(工科版). 2003, 25 (4): 51~54
    38 丛广治, 白 宇, 张 杰等. 生物膜过滤技术处理污水厂二级出水. 中国给水排水. 2002, 18 (12): 48~50
    39 曹国民, 赵庆祥. 单级生物脱氮技术的进展. 中国给水排水. 2000, 16 (2): 20~23
    40 崔福义, 张兵, 唐利. 曝气生物滤池技术研究与应用进展. 环境污染治理技术与设备. 2005, 6 (10): 1~7
    41 M. Rebecca, Q. Joanne and S. Tom. The Effects of Media Size on the Performance of Biological Aerated Filters. Wat. Sci. Tech. 2001, 35 (10): 2514~2522
    42 A. Mann. Performance of Floating and Sunken Media Biological Aerated Filters under Unsteady State Condition. Wat. Res. 1999, 33 (4): 1108~1113
    43 王春荣, 李军, 王宝贞等. 两种不同填料曝气生物滤池处理生活污水的经验模型. 环境污染治理技术与设备. 2005, 6 (12): 56~60
    44 X. Zhao, Y. M. Wang and Z. F. Ye. Oil Field Wastewater Treatment in Biological Aerated Filter by Immobilized Microorganisms. Process Biochemistry. 2006, 41: 1475~1483
    45 胡静, 张林生. 生物活性炭技术在欧洲水处理中的应用研究与发展. 环境技术, 2002, (2): 33~36
    46 杜尔登, 刘翔, 王华等. 沸石曝气生物滤池去除氨氮性能及生物学特征分析. 环境污染治理技术与设备. 2006, 7 (9): 88~93
    47 王春荣, 李军, 王宝贞等. 两段曝气生物滤池处理生活污水的净化效能. 北京工业大学学报. 2006, 32 (12): 1071~1076
    48 张建. 曝气生物滤池处理化学药剂废水的试验研究及影响因素分析. 污染防治技术. 2006, 19 (5): 24~27
    49 Fahmi, W. Nishijima and M. Okada. Improvement of DOC Removal by Multi-Stage AOP-Biological Treatment. Chemosphere. 2003, 50: 1043~1048
    50 C. Zwienerm, F. H. Frimmel. Oxidative Treatment of Pharmaceuticals in Water. Wat. Res. 2000, 34: 1881~1885
    51 V. Fontaniera, V. Farinesa and J. Albeta, et al. Study of Catalyzed Ozonation for Advanced Treatment of Pulp and Paper Mill Effluents. Wat. Res. 2006, 40: 303~310
    52 I. A. Balc?o?lu, M. ?tker. Treatment of Pharmaceutical Wastewater Containing Antibiotics by O3 and O3/H2O2 Processes. Chemosphere. 2003, 50: 85~95
    53 H.-Y. Shu. Degradation of Dyehouse Effluent Containing C.I. Direct Blue 199 by Processes of Ozonation, UV/H2O2 and in Sequence of Ozonation with UV/H2O2. J. of Hazard. Mater. B. 2006, 133: 92~98
    54 D. Vognaa, R. Marottab and A. Napolitano, et al. Advanced Oxidation of the Pharmaceutical Drug Diclofenac with UV/H2O2 and Ozone. Wat. Res. 2004, 38: 414~422
    55 G.-S. Wang, S.-T. Hsieh and C.-S. Hong. Destruction of Humic Acid in Water by UV Light-Catalyzed Oxidation with Hydrogen Peroxide. Wat. Res. 2000, 34: 3882~3887
    56 Y. Takeuchi, K. Mochidzuki and N. Matsunobu, et al. Remobal of Organic Substances from Water by Ozone Treatment Followed by Biological Activated Carbon Treatment. Wat. Sci. Tech. 1997, 35 (7):171~178
    57 B. E. Rittmanna, D. Stilwella and J. C. Garside, et al. Treatment of a Colored Groundwater by Ozone-Biofiltration: Pilot Studies and Modeling Interpretation. Wat. Res. 2002, 36: 3387~3397
    58 X. J. Wang, X. Y. Gu and D. X. Lin, et al. Treatment of Acid Rose Dye Containing Wastewater by Ozonizing-Biological Aerated Filter. Dyes and Pigments. 2007, 74: 736~740
    59 L. S. Li, W. P. Zhu and P. Y. Zhang, et al. Comparison of AC/O3-BAC and O3-BAC Processes for Removing Organic Pollutants in Secondary Effluent. Chemosphere. 2006, 62: 1514~1522
    60 徐新华, 赵伟荣. 水与废水的臭氧处理. 化学工业出版社, 2003: 94~119
    61 W. R. Haag, D. Yao. Rate Constants for Reaction of Hydroxyl Radiacls with Several Drinking Water Contaminants, Environ. Sci. Tech. 1992, 26: 1005~1013
    62 Heide. Principles and Developments of the Oxidation Ditch Processes. Oxidation Ditches, International Institute for Hydraulic and Environmental Engineering. Delft, 1991: 17~21
    63 J. Hoigné, H. Bader. Rate of Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Part Ⅰ. Non-Dissociating Organic Compounds. Wat. Res. 1983, 17: 173~185
    64 J. Hoigné, H. Bader. Rate of Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Part Ⅱ. Non-Dissociating Organic Compounds. Wat. Res. 1983, 17: 185~193
    65 D. Yao, W. R. Haag. Rate Constants for Direct Reactions of Ozone with Several Drinking Water Contaminants. Wat. Res. 1991, 25: 761~772
    66 J. Hoigné, H. Bader. The Role of Hydroxyl Radical Reacitons in Ozonations Processes in Aqueous Solutions. Wat. Res. 1976, 10: 377~386
    67 W. R. Hag, D. Yao. Rate of Constants for Reactions of Hydroxyl Radicals with Several Drinking Water Contaminants. Environ. Sci. and Tech., 1992, 26: 1005~1013
    68 T. E. Agustina, H. M. Ang and V. K. Vareek. A Review of Synergistic Effect of Photocatalysis and Ozonation on Wastewater Treatment. J. of Photochemistry and Photobiology C: Photochemistry Reviews. 2005, 6: 264~273
    69 王卫权, 张彭义, 王文娟. 造纸中段废水的混凝-臭氧氧化深度处理研究. 环境污染与防治. 2006, 28 (9): 686~689
    70 S. Barredo-Damas, M. I. Iborra-Clar and A. Bes-Pia, et al. Study of Preozonation Influence on the Physical-Chemical Treatment of Textile Wastewater. Desalination. 2005, 182: 267~274
    71 F. Cataldo, G. Angelini. Some Aspects of the Ozone Degradation of Poly (Vinyl Alcohol). Polymer Degradation and Stability. 2006, 91: 2793~2800
    72 M. Carbajo, F. J. Beltrán and O. Gimeno, et al. Ozonation of Phenolic Wastewaters in the Presence of a Perovskite Type Catalyst. Applied CatalysisB: Environmental. 2007, 74: 203~210
    73 C. H. M?bius, C. T.Maria. Enhanced Biodegradability by Oxidative and Radiative Wastewater Treatment. Wat. Sci. Tech.1997, 35 (2-3): 245~250
    74 Y.-C. Hsu, H.-C. Yang and J.-H. Chen. The Enhancement of the Biodegradability of Phenolic Solution Using Preozonation Based on High Ozone Utilization. Chemosphere. 2004, 56: 149~158
    75 A. A. Idil, A. E. Caglayan. Toxicity and Biodegradability Assessment of Raw and Ozonated Procaine Penicillin G Formulation Effluent. Ecotoxicology and Environmental Safety. 2006, 63: 131~140
    76 M. G. EI-Din, D. W. Smith. Ozonation of Kraft Pulp Mill Effluents: Process Dynamics. J. Enviorn. Eng. Sci. 2002. 1:45~57
    77 H. Zhou, D. W. Smith. Process Parameter Development for Ozonation of Kraft Pulp Mill Effluents. Water Sci. Tech., 1997. 35: 251~259
    78 E. Khan, H. Irwin and B. Levine, et al. Evaluation of Natural Organic Matter Removal by TOC, DOC, BDOC, and Ultimate Soluble BOD at a Water Reuse Pilot Plant. Abstracts of the Natural Organic Matter Workshorp, Poitiers, France, Paper, 1996, 23: 1~5
    79 W. Nishijima, Fahmi. DOC Removal by Multi-stage Ozonation-Biological Treatment. Wat. Res., 2003, 37: 150~154
    80 B. E. Rittmann, D. S. Stilwell. Treatment of a Colored Groundwater by Ozone-Biofiltration: Pilot Studies and Modeling Interpretation. Wat. Res. 2002, 36: 3387~3397
    81 甘莉, 蒋以元, 张昱等. 直接过滤-臭氧-生物活性炭工艺用于城市污水二级处理出水深度处理的研究. 环境污染治理技术与设备. 2006, 7 (10): 65~68
    82 袁志容, 王晓昌, 马正国. 臭氧-生物活性炭污水回用技术研究. 西南给排水. 2005, 27 (5): 1~4
    83 陈浩玺, 贾振民. 生物炭-臭氧技术在中水处理中的应用. 工业水处理. 2006, 26 (1): 76~78
    84 R. Narasimmalu, M. Osamu and I. Norifumi. Variation in Microbial Biomass and Community Structure in Sediments of Eutrophic Bays as Determined by Phospholipids Ester Linked Fatty Acids. Appl. Environ. Microbiol. 1992, 58 (2): 562~571
    85 于鑫, 张晓键, 王占生. 饮用水生物处理中生物量的脂磷法测定. 给水排水. 2002, 28 (5):1~6
    86 D. Urfer, P. M. Huck. Measurement of Biomass Activity in Dringking Water Biofilters Using a Respirometric Method. Wat. Res. 2001, 35(6): 1469~1477
    87 王建龙, 吴立波, 钱星. 用氧吸收速率(OUR)表征活性污泥硝化活性的研究. 环境科学学报. 1999, 19(3): 225~229
    88 A. J. Guwy, H. Buckland and F. R. Hawkes, et al. Active Biomass in Activated Sludge: Comparison of Resperometry with Catalase Activity Measured Using and on-Line Monitor. Wat. Res. 1998, 32(12): 3705~3712
    89 G. T. Bllis, D. S. Barbeau and B. F. Smets, et al. Respirometric Technique for Determination of Extant Kinetic Parameters Describing Biodegradation. Wat. Res. 1996, 68(5): 917~925
    90 P. Servais, A. Anzil. Simple method for determination of biodegradable dissolved organic carbon in water. Appl. Environ. Microbiol. 1989, 55(10): 2732~2734
    91 J. C. Joret, Y. Levi and C. Volk. Biodegradable Dissolved Organic Carbon (BDOC) Content of Drinking Water and Potential Regrowth of Bacteria. Wat. Sci. Tech. 1991, 24(2): 95~101
    92 Frias, Jorge, Ribas and Ferran, et al. Comparison of Methods for theMeasurement of Biodegradable Organic Carbon and Assimilable Organic Carbon in Water. Wat. Res. 1995, 19(12):2785~2788
    93 刘文君, 吴红伟, 王占生. 饮用水中 BDOC 测定动力学研究. 环境科学. 1999, 4(7): 20~23
    94 J. C. Block, L. Mathieu and P. Servais, et al. Indigenous Bacterial inocula for Measuring the Biodegradable Dissolved Organic Carbon (BDOC) in Waters. Wat. Res. 1992, 26(4): 481~486
    95 马放, 任南琪, 杨基先. 污染控制微生物学实验. 哈尔滨工业大学出版社, 2002: 34~55
    96 仝贵婵, 叶裕才. 城市污水深度处理中的有机物的去除. 环境科学. 2000, 21 (11): 73~76
    97 M. Karvelas, A. Katsoyiannis and C. Samara. Occurrence and Fate of Heavy Metals on the Wastewater Treatment Process. Chemosphere. 2003, 53: 1201~1210
    98 M. Petala, P. Samaras and A. Kungolos, et al. The Effect of Coagulation on the Toxicity and Mutagenicity of Reclaimed Municipal Effluents. Chemosphere. 2006, 65: 1007~1018
    99 何其虎. 水中有机物分子量分布的研究. 环境化学. 1991, 10 (6): 68~72
    100 A. Rozzi, F. Malpei, S. Colli and M. Uberti. Distribution of Absorbance in the Visible Spectrum Related to Molecular Size Fractions in Secondary and Tertiary Municipal-textile Effluent. Wat. Sci. Tech. 1998, 38(4): 473~480
    101 J.K. Edzwald, J.E. Tobiason. Enhanced coagulation: US requirements and a broader view. Wat. Sci Tech. 1999, 40 (9): 63~70
    102 董秉直, 李伟英, 陈艳等. 用有机物分子量分布变化评价不同处理方法去除有机物的效果. 水处理技术. 2003, 3 (6): 155~158
    103 戴树桂, 游道新. 城市污水有色物质的分离鉴定. 环境化学. 1993, 12 (3):225~229
    104 W.-H. Ding, S.-H. Tzing. Analysis of Nonylphenol Polyethoxylates and Their Degradation Products in River Water and Sewage Effluent by Gas Chromatography-Ion Trap (Tandem) Mass Spectrometry with Electron Impact and Chemical Ionization. J. of Chromatography A. 1998, 824: 79~90
    105 T. K.uchler,H. Brzezinski. Application of GC-MS/MS for the Analysis of PCDD/Fs in Sewage Efflluent. Chemosphere. 2000, 40: 213~220
    106 M. J. Hilton, K. V. Thomas. Determination of Selected Human Pharmaceutical Compounds in Effluent and Surface Water Samples by High-Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry. J. of Chromatography A. 2003, 1015: 129~141
    107 I. Rodryguez, J. B. Quintana and J. Carpinteiro, et al. Determination of Acidic Drugs in Sewage Water by Gas Chromatography-Mass Spectrometry as Tert-Butyldimethylsilyl Derivatives. J. of Chromatography A, 2003, 985: 265~274
    108 L. I. Osemwengie, S. Steinberg. On-site Solid-Phase Extraction and Laboratory Analysis of Ultra-Trace Synthetic Musks in Municipal Sewage Effluent Using Gas Chromatography-Mass Spectrometry in the Full-Scan Mode. J. of Chromatography A. 2001, 932: 107~118
    109 M.A 谢甫钦柯, B.B 利荣诺夫(苏)著. 刘存礼译. 臭氧化法水处理工艺学. 清华大学出版社, 1987: 40
    110 储金宇, 吴春笃, 陈万金等. 臭氧技术及应用. 化学工业出版社, 2002: 55
    111 刘雨, 赵庆良, 郑兴灿. 生物膜法污水处理技术. 中国建筑工业出版, 2000: 128~143
    112 郑俊, 吴浩汀. 曝气生物滤池工艺的理论与工程应用. 化学工业出版社, 2005: 34~37
    113 G.. Bacquet, J. C. Joret and F. Rogalla. Biofilm Start-Up and Control in Aerated Filter. Environ. Technol. 1991, 12: 747~756
    114 A. J. Smith, J. J. Quin and P. J. Hardy. The Development of an Aereated Filter Package Plant. 1st Int. Conf. Advanced in Wat. Treat. and Environ. Man. Lyon, 1990: 27~29
    115 顾国维. 水污染治理技术研究. 同济大学出版社, 1997: 185~181
    116 白爱民, p. Harremoes. 如何测量生物膜内氧浓度曲线. 重庆环境科学. 1996, 18(1): 40~42
    117 涂保华. 张洁, 张雁秋. 影响短程硝化反硝化的因素. 工业安全与环保. 2004, 30 (1): 12~14
    118 C. P. Leslie Grady, Jr. Glen T. Daigger and Henry C. Lim. Biological Wastewater Treatment (废水生物处理). 张锡辉, 刘勇弟译. 化学工业出版社, 2003: 48~69
    119 张自杰. 排水工程(下). 中国建筑工业出版社, 1987: 129-138
    120 M. Rodger. Organic Carbon Removal Using a New Biofilm Reactor. Wat. Sci. Tech. 1999, 33 (6): 1495~1499
    121 K. Rezaei, F. Temelli and E. Jenab. Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnology Advances. 2007, 25: 272~280
    122 沈同, 王镜岩, 赵邦梯. 生物化学. 高等教育出版社, 1984: 122~123
    123 J. Kern, C. Idler. Treatment of domestic and agricultural wastewater by reed bed systems. Ecological Engineering. 1999, 12: 13~25
    124 T. Knin, A. P. Annachhatre. Novel Microbial Nitrogen Removal Processes. Biotechnology Advances. 2004, 22 (7): 519~532
    125 C. Hellinga, A. A. J. C. Schellen and J. W. Mulder, et al. The SHARON Process: an Innovative Method for Nitrogen Removal from Ammonium-Rich Wastewater. Wat. Sci. Tech. 1998, 37 (9): 135~142
    126 W. Verstraete, S. Philips. Nitrification-Denitrification Processes andTechnologies in New Contexts. Environ. Poll. 1998, 102 (31): 717~726
    127 U. Van Dongen, M. S. M. Jetten and M. C. M. Van Loosdrecht. The SHARON-Anammox Process for Treatment of Ammonium Rich Wastewater. Water Science and Technology. 2001, 44 (1): 153~160
    128 I. Schmidt, O. Sliekers and M. Schmid, et al. New Concepts of Microbial Treatment Processes for the Nitrogen Removal in Waterwater. FEMS Microbiology Reviews. 2003, 27 (4): 481~492
    129 孙晓杰, 彭永臻, 于德爽. 温度对不同水质条件下生活污水短程硝化的影响. 青岛理工大学学报. 2006, 27 (2): 68~71
    130 高大文, 彭永臻, 王淑莹. 控制 pH 实现短程硝化反硝化生物脱氮技术. 哈尔滨工业大学学报. 2005 , 37 (2): 1664~16663
    131 支霞辉, 丁峰, 彭永臻等. 常温条件下短程硝化反硝化生物脱氮影响因素的研究. 环境污染与防治. 2006, 28 (4): 254~257
    132 邱立平, 马 军. 气生物滤池的短程硝化反硝化机理研究. 中国给水排水. 2002, 18 (11): 1~4
    133 赵志宏, 李晓明, 廖德祥. 菌的微生物学研究进展. 微生物学通报. 2007, 34 (1): 138~142
    134 M. S. M. Jetten, M. Strous and K. T. Van De Pas-Schooner, et al. The Anaerobic Oxidation of Ammonium. FEMS Microbiology Reviews. 1999, 22 (5): 421~437
    135 A. O. Sliekersa, N. Derworta and J. L. C. Gomez, et al. Completely Autotrophic Nitrogen Removal over Nitrite in One Singe Reactor. Wat. Res. 2002, 36 (10): 2475~2482
    136 A. A. Van De Graaf, P. De Bruijn and L. A. Robertson, et al. Autotrophic Growth of Anaerobic Ammonium Oxidizing Microorganisms in a Fluidized Bed Reactor. Microbiology. 1996, 142 (8): 2187~2196
    137 M. strous, J. J. Heijnen and J. G. Kuenen, et al.The Sequencing Batch Reactor as a Powerful Tool for the Study of Slowly Growing Anaerobic Ammonium-Oxidizing Microorganisms. App. Microbio. Biotech. 1998, 50 (5): 589~596
    138 胡宝兰, 郑平, 管丽莉. Anammox 反应器中氨氧化菌的分离鉴定及特性研究. 浙江大学学报(农业与生命科学版). 2001, 27(3): 314~316
    139 K. M. Udert, C. Fux and M. Munster, et al. Nitrification and Autotrophic Denitrification of Source-Separated Urine. Water Science and Technology.2003, 48 (1): 119~130
    140 C. Fux, M. Boehler and P. Huber, et al. Biological Treatment of Ammonium-Rich Wastewater by Partial Nitritation and Subsequent Anaerobic Ammonium Oxidation (Anammox) in a Pilot Plant. J. of Biotech. 2002, 99 (3): 295~306
    141 A. O. Sliekers, K. A. Third and W. Abma, et al. CANON and Anammox in a Gas-lift Reactor. FEMS Microbiology Letters. 2003, 218 (2): 339~344
    142 P. Lam, J. P. Cowen and R. D. Jones. Autotrophic Ammonia Oxidation in a Deep-Sea Hydrothermal Plume. FEMS Microbiology Ecology. 2004, 47 (2): 191~206
    143 K. A. Third, A. Sliekers and J. G. Kuenen, et al. The CANON system under ammonium limitation: interaction and competition between three groups of bacteria. Systematic and App. Microbio. 2001, 24 (4): 588~596
    144 姚重华. 废水处理计量学导论. 化学工业出版社, 2002: 164
    145 潘杨, 黄勇, 李勇. 单级生物膜法脱氮机理及影响因素. 苏州城建环保学院学报. 2000, 13 (4): 89~93
    146 D. Mcnevin, J. Barford. Inter-Relationship between Adsorption and pH in Peat Biofilters in the Ccontext of a Cation-Exchange Mechanism. Wat. Res. 2001, 35 (3): 736~744
    147 S. Villaverde, P. A. García-Encina and F. Fdz-Polanco. Influence of pH Over Nitrifying Biofim Activity in Submerged Biofilters. Wat. Res. 1997, 31 (5): 1180~1186
    148 S. Villaverde, F. Fdz-Polanco, P. A. Garcí. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters Start-Up Influence. Wat. Res. 2000, 34 (2): 602~610
    149 S. Villaverde, P. A. Garcia-Encina and F. Fdz-Polanco. Influence of pH over Nitrifying Biofilm Activity in Submerged Biofilters. War. Res. 1997, 31: 1180~1186
    150 A. Pommerening-R?ser, K. Hans-Peter. Environmental Ph as an Important Factor for the Distribution of Urease Positive Ammonia-Oxidizing Bacteria. Microbio. Res. 2005, 160: 27~35
    151 E. Guillen-Jimenez, P. Alvarez-Mateos and M. F. Romero-Guzman, et al. Bio-Mineralization of Organic Matter in Dairy Wastewater, as Affected bypH. The Evolution of Ammonium and Phosphates. Wat. Res. 2000, 34: 1215~1224
    152 A. C. Anthonisen, R. C. Loehr, T. B. S. Prakasam, et al. Inhibition of Nitrificaiton by Ammonia and Nitrous Acid. J. W. P. C. F. 1976, 48 (5): 835~852
    153 U. Aveling, C. F. Seyfried. Anaerobic-Aerobic Treatment of High-Strength Ammonium Wastewater Nitrogen Removal via Nitrite. Wat. Sci. Tech. 1992, 26 (5-6): 1007~1015
    154 方士, 李筱焕. 高氨氮味精废水的亚硝化/反硝化脱氮研究. 环境科学学报. 2001, 21 (1): 79~82
    155 J. Staehelin, and J, Hoigne. Decomposition of Ozone in Water in Presence of Organic Solutes Acting as Promotors and Inhibitors of Radical Chain Reactions. Environ. Sci. Tech. 1985, 19: 120~126
    156 H. Tomiyasu, H. Fukutomi. and G. Gordon. Kinetics and Mechnism of Ozone Decomposition in Basic Aqueous Solution. Inorg. Chem. 1985, 24: 2962~2966
    157 J. Staelelin, J. Hoigné. Decomposition of Ozone in Water: Rate of Initialtion by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Tech. 1982, 16: 676-681
    158 王晟, 王晓昌, 张先玉等. 污水厂二级出水的臭氧反应动力学研究. 中国给水排水. 2003, 19 (7): 56~57
    159 白羽, 张杰, 陈淑芳. 生物滤池反冲洗过程中生物量和生物活性分析. 化工学报. 2004, 55 (10): 1690~1695
    160 乔铁军, 张晓健. 原位基质摄取速率法检测微生物活性. 中国给水排水. 2003, 19 (13): 77~80
    161 M. D. Sinkoff, R. Porges, J. J. Mcdermott. Mean Residence Time of a Liquid In a Trickling Filter. J. San. Enging. Div. Am. Soc. Civil. Engrs. 1959, 85 (SA6): 51~60
    162 A. Mann, C. S. Fitzpatrick and T. Stephenson. A Comparison of Floating and Sunken Media Biological Aerated Filters Using Tracer Study Techniquies. Transactions of Institution Chemical Engineers Part B. 1995, 73: 137~143
    163 A.T. Mann, T. Stephenson. Modeling Biological Aerated Filters for Wastewater Treatment. Wat. Res. 1997, 31 (10): 2443~2448
    164 汤国桢. Eckenfelder 模式在微生物减速增长时的解析解. 中国给水排水. 1999, 15 (5): 1~5
    165 Jr. W. W. Eckenfelder and E. E. Barnhart. Performance of a High Rate Trickling Filter Using Selected Media. J. of Water Pollution Control Federation. 1963, 35: 1535~1551

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700