倒向随机微分发展系统及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要讨论倒向随机微分发展系统及其应用.
     第一章考察一般的倒向重随机微分发展系统,建立关于Banach空间取值的倒向随机微分发展系统的Ito公式,利用基于单调算子理论的弱收敛方法证明解的存在唯一性.作为应用,给出拟线性倒向重随机偏微分方程弱解的存在唯一性定理,为后面的第四章做准备.
     第二章建立耦合的有限维正倒向随机微分系统与粘性不可压缩Navier-Stokes方程之间的联系,推广Feynman-Kac公式,为Navier-Stokes方程的解给出概率表示.而且,利用概率分析的方法证明这类正倒向随机微分系统局部解的存在唯一性;对于两维情形和小雷诺数情形,还进一步证明全局解的存在唯一性.
     第三章给出全空间上半线性超抛物型倒向随机偏微分方程的Lp理论及其比较定理.
     第四章中首先证明带有Sobolev空间系数的有界区域上拟线性倒向随机偏微分方程Dirichlet问题弱解的存在唯一性,然后使用De Giorgi迭代的技术证明其弱解满足最大值原理和局部最大模估计.
     最后,第五章考察2维倒向随机Navier-Stokes方程,在空间周期性边界约束条件下证明其强解的存在唯一性.
The present dissertation is concerned with backward stochastic differential evolutionary systems and their applications.
     Chapter1is concerned with general backward doubly stochastic differential evolutionary systems. An Ito formula is established for the Banach space-valued backward doubly stochastic differential evolutionary systems. Using the weak convergence method on basis of monotone operator theory, the existence and uniqueness of the solution is proved. As an application, the existence and uniqueness is studied on the weak solution for quasilinear backward doubly stochastic PDEs, which will be used in Chapter4.
     In Chapter2, the connections are addressed between a class of coupled forward-backward stochastic differential systems and the viscous incompressible Navier-Stokes equations, which generalizes the Feynman-Kac formula and gives a probabilistic representation for the solutions of Navier-Stokes equations. Moreover, a self-contained probabilistic proof is given for the existence and uniqueness of the local Hm-solution, and the local solution can be extended uniquely to be a global one for both cases of dimension2and small Reynolds number.
     In Chapter3, the LP theory and a comparison theorem are established for the semilinear super-parabolic backward stochastic PDEs on the whole space.
     In Chapter4, the existence and uniqueness is first shown for the weak solution for the Dirichlet problem of the quasilinear backward stochastic PDEs with Sobolev coefficients on bounded domains. Then the De Giorgi iteration scheme is used to prove the maximum princi-ples and the local maximum estimates.
     Finally in Chapter5,2-dimensional backward stochastic Navier-Stokes equation with nonlinear external forcing is investigated. The existence and uniqueness is shown for the strong solution under the spatially periodic boundary condition.
引文
[1]陈绍宽.欧氏空间和函数空间中的倒向随机方程.复旦大学博士学位论文,2010.
    [2]陈恕行.现代偏微分方程导论.科学出版社,1995.
    [3]杜恺.倒向随机偏微分方程及其应用.复旦大学博士学位论文,2011.
    [4]李大潜,秦铁虎.物理学与偏微分方程.高等教育出版社,2005.
    [5]李训经,雍炯敏,周渊.控制理论基础.高等教育出版社,2002.
    [6]孟庆欣.有跳跃的随机系统的最优控制.复旦大学博士学位论文,2010.
    [7]童裕孙.泛函分析教程.复旦大学出版社,2008.
    [8]严加安,彭实戈,方诗赞,吴黎明.随机分析选讲.科学出版社,1997.
    [9]应坚刚,金蒙伟.随机过程基础.复旦大学出版社,2005.
    [10]雍炯敏,楼红卫.最优控制理论简明教程.高等教育出版社,2006.
    [11]A. Al-Hussein. Backward stochastic partial differential equations driven by infinite dimen-sional martingale and applications. Stochastics,81:601-626,2009.
    [12]F. Antonelli. Backward-forward stochastic differential equations. The Annals of Applied Probability,3(3):777-793,1993.
    [13]V. Arkin and M. Saksonov. Necessary optimality conditions for stochastic differential equa-tions. Soviet Math. Dokl.,20:1-5,1979.
    [14]D. G. Aronson and J. Serrin. Local behavior of solutions of quasilinear parabolic equations. Arch. Rational Mech. Anal.,25:81-122,1967.
    [15]P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent measures of risk. Mathematical Finance,9(3):203-228,1999.
    [16]J. S. Baras, R. J. Elliott, and M. Kohlmann. The partially observed stochastic minimum principle. SIAM J. Control Optim.,27:1279-1292,1989.
    [17]V. Barbu, A. Rascanu, and G. Tessitore. Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optim.,27:97-120,2003.
    [18]G. Barles and E. Lesigne. SDE, BSDE and PDE. In Backward Stochastic Differential Equa-tions, volume 364 of Pitman Research Notes in Mathematics Series, pages 47-80. Harlow: Longman,1997.
    [19]J. T. Beale, T. Kato, and A. Majda. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys.,94:61-66,1984.
    [20]A. Bensoussan. Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics,9:169-222,1983.
    [21]A. Bensoussan. Stochastic maximum principle for distributed parameter systems. J. Franklin Inst.,315:387-406,1983.
    [22]R. N. Bhattacharya, L. Chen, S. Dobson, R. B. Guenther, C. Orum, Mina Ossiander, Enrique Thomann, and Edward C. Waymire. Majorizing kernels and stochastic cascades with appli-cations to incompressible Navier-Stokes equations. Trans. Amer. Math. Soc.,355(12):5003-5040,2003.
    [23]I. Bihari. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Mathematica Hungarica,7(1):81-94,1956.
    [24]J. M. Bismut. Conjugate convex fuctions in optimal stochastic control.J. Math. Anal. Apl., 44:384-404,1973.
    [25]J. M. Bismut. Theorie Probabiliste du Controle des Diffusions, volume 176 of Mem. Amer. Math. Soc. Providence, Rhode Island,1973.
    [26]J. M. Bismut. Linear quadradic optimal stochastic control with random coefficients. SIAM J.control Optim.,14:414-444,1976.
    [27]J. M. Bismut. control des systemes lineares quatratiques. In Applications de L'integrale Stochastique, Seminaire de Probabilite Ⅻ, volume 649 of Lecture notes in Mathematics, pages 180-264. Berlin, Heidelberg, New York, Springer,1978.
    [28]J. M. Bismut. An introductory approach to duality in optimal stochastic control. SIAM Riew, 20:62-78,1978.
    [29]B. Boufoussi, J. V. Casteren, and N. Mrhardy. Generalized backward doubly stochastic dif-ferential equations and SPDEs with nonlinear neumann boundary conditions. Bernoulli, 13:423-446,2007.
    [30]N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de Gruyter Stud. in Math.14. Berlin:de Gruyter,1991.
    [31]P. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica. Lp solutions of backward stochastic differential equations. Stochastic Process. Appl.,108(4):604-618,2003.
    [32]F. E. Browder. Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc.,69:862-874,1963.
    [33]R. Buchdahn and J. Ma. Stochastic viscosity solutions for nonlinear stochastic. Part Ⅰ. Stochastic Processes and their Applications,93:181-204,2001.
    [34]R. Buckdahn and J. Ma. Pathwise stochastic talor expansions and stochastic viscosity solu-tions for fully nonlinear stochastic pdes. The Annals of Probability,30(3):1131-1171,2002.
    [35]B. Busnello. A probabilistic approach to the two-dimensional Navier-Stokes equations. Ann. Probab.,27(4):1750-1780,1999.
    [36]B. Busnello, F. Flandoli, and M. Romito. A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations. Froc. Edinb. Math. Soc.,48(2):295-336,2005.
    [37]M. Chang, Y. Pang, and J. Yong. Optimal stopping problem for stochastic differential equa-tions with random coefficients. SI AM J. Control Optim.,48(2):941-971,2009.
    [38]S. Chen and S. Tang. Semi-linear backward stochastic integral partial differential equa-tions driven by a brownian motion and a poisson point process.2010. arXⅳ:1007.3201v1 [math.PR].
    [39]Y. Chen. Parabolic Partial Differential Equations of Second Order. Peking University Press, Beijing,2005. in Chinese.
    [40]A. J. Chorin. Numerical study of slightly viscous flow.J. Fluid Mech.,57(4):785-796,1973.
    [41]P. Constantin and G. Iyer. A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations. Comm. Pure Appl. Math., LXI:0330-0345,2008.
    [42]P. Constantin and G. Iyer. A stochastic Lagrangian approach to the Navier-Stokes equations in domains with boundary. Annals of Applied Probability,21(4):1466-1492,2011. DOI: 10.1214/10-AAP731.
    [43]A. B. Cruzeiro and E. Shamarova. Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus. Stochastic Processes and their Applications, 119:4034-4060,2009.
    [44]R. W. R. Darling and E. Pardoux. Backwards SDE with random terminal time and applica-tions to semilinear elliptic PDE. The Annals of Probability,25(3):1135-1159,1997.
    [45]F. Delbaen and S. Tang. Harmonic analysis of stochastic equations and backward stochastic differential equations. Probab. Theory Relat. Fields,146:291-336,2010.
    [46]L. Denis. A general analytical result for non-linear SPDE's and applications. Electronic Journal of Probability,9(23):674-709,2004.
    [47]L. Denis. Solutions of stochastic partial differential equations considered as Dirichlet pro-cesses. Bernoulli,10(5):783-827,2004.
    [48]L. Denis, M. Hu, and S. Peng. Function spaces and capacity related to a sublinear expectation: Application to G-brownian motion paths. Potential Analysis,34(2):139-161,2011.
    [49]L. Denis and A. Matoussi. Maximum principle and comparison theorem for quasi-linear stochastic PDE's. Electronic Journal of probability,14(19):500-530,2009.
    [50]L. Denis, A. Matoussi, and L. Stoica. Lp estimates for the uniform norm of solutions of quasilinear SPDE's. Probab. Theory Relat. Fields,133:437-463,2005.
    [51]R. J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invert. Math.,98:511-547,1989.
    [52]N. Dokuchaev. Representation of functional of Ito processes and their first exit times. Stoch-asitcs,83(1):45-66,2011.
    [53]N. Dokuchaev. Backward parabolic Ito equations and second fundamental inequality.2010. arXiv:math/0606595v3.
    [54]K. Du. On semi-linear degenerate backward stochastic PDEs in Rd.2011. preprint.
    [55]K. Du and S. Chen. Semi-linear backward stochastic PDEs with quadratic growth in general domains.2011. preprint.
    [56]K. Du and Q. Meng. A revisit to Wn2-theory of super-parabolic backward stochastic partial differential equations in Rd. Stochastic Processes and their Applications,120:1996-2015, 2010.
    [57]K. Du, J. Qiu, and S. Tang. Lp theory for super-parabolic backward stochastic partial differ-ential equations in the whole space. Appl. Math. Optim.,65(2):175-219,2011.
    [58]K. Du and S. Tang. On the Dirichlet problem for backward parabolic stochastic partial differential equations in general smooth domains.2009. Arxiv preprint arXiv:0910.2289.
    [59]K. Du and S. Tang. Strong solution of backward stochastic partial differential equations in c2 domains. Probab. Theory Relat. Fields,2012. DOI:10.1007/s00440-011-0369-0.
    [60]D. Duffie and L. G. Epstein. Stochastic differential utility. Econometrica,60(2):353-394, 1992.
    [61]N. El Karoui, C. Kapoudjian, E. Paudoux, S. Peng, and M. C. Quenez. Reflected solutions of backward SDE's, and related obstacle problems for PDE's. Ann. Probab.,25(2):702-737, 1997.
    [62]N. El Karoui and L. Mazliak. Backward Stochastic Differential Equations. Longman, Har-low, HK,,1997.
    [63]N El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance,7(1):1-71,1997.
    [64]K. D. Elworthy and X. Li. Formulae for the derivatives of heat semigroups. J. Funct. Anal., 125:252-286,1994.
    [65]N. Englezos and I. Karatzas. Utility Maximization with Habit Formation:Dynamic Pro-gramming and Stochastic PDEs. SIAM J. Control Optim.,48(2):481-520,2009.
    [66]R. Esposito and R. Marra. Three-dimensional stochastic vortex flows. Math. Methods Appl. Sci.,Ⅱ:431-445,1989.
    [67]R. Esposito, R. Marra, M. Pulvirenti, and C. Sciarretta. A stochastic Lagrangian picture for the three dimensional Navier-Stokes equations. Comm. Partial Diff. Eq.,13(12):1601-1610, 1988.
    [68]C. L. Fefferman. Existence and smoothness of the Navier-Stokes equations. Paper available at http://www.claymath.org/millennium/Navier-Stokes Equations/.
    [69]A. Friedman. Partial Differential Equations. Holt, Rinehart and Winston, New York,1969.
    [70]M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Pro-cesses. de Gruyter Stud. in Math.19. Berlin:de Gruyter,1994.
    [71]D. Gilbarg and N. S. Trudinger. Partial Differential Equations of Second Order, volume 224 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition edition,1983.
    [72]G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press,1992.
    [73]G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press,1992.
    [74]L. Grafakos. Classical and Modern Fourier Analysis. China Machine Press,2005.
    [75]Y. Han, S. Peng, and Z. Wu. Maximum principle for backward doubly stochastic control systems with applications. SIAM J. Control. Optim.,48(7):4224-4241,2010.
    [76]U. G. Haussmann. The maximum principle for optimal control of diffusions with partial information. SIAM J. Control Optim.,25(341-361),1987.
    [77]Y. Hu, J. Ma, and J. Yong. On semi-linear degenerate backward stochastic partial differential equations. Probab. Theory Relat. Fields,123:381-411,2002.
    [78]Y Hu and S. Peng. Adapted solution of a backward semilinear stochastic evolution equations. Stoch Anal. Appl.,9:445-459,1991.
    [79]Y Hu and S. Peng. Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields,103:273-283,1995.
    [80]N. Ichihara. Homogenization problem for stochastic partial differential equations of Zakai type. Stochastics and Stochastics Reports,76(3):243-266, June 2004.
    [81]K. Ito. Differential equations determing Markov processes (in Japanese). Zenkoku Shijo Sugaku Danwakai,1077:1352-1400,1944.
    [82]K. Ito. Stochastic integral. Proc. Imp. Acad.,20(8):519-524,1944.
    [83]K. Ito. On stochastic differential equations. Mem. Amer. Math. Soc.,4:1-51,1951.
    [84]G.Iyer. A stochastic perturbation of inviscid flows. Comm. Math. Phys.,266(3):631-645, 2006.
    [85]G. Iyer. A Stochastic Lagrangian Formulation of the Navier-Stokes and Related Transport Equations. Doctoral dissertation, University of Chicago,2006.
    [86]G. Iyer. A stochastic Lagrangian proof of global existence of the Navier-Stokes equations for flows with small reynolds number. Ann. I. H. Poincare-AN,26:181-189,2009.
    [87]Y. Le Jan and A. S. Sznitman. Stochastic cascades and 3-dimensional Navier-Stokes equa-tions. Probab. Theory Relat. Fields,109:343-366,1997.
    [88]W. B. Johnson and J. Lindenstrauss, editors. Handbook of the Geometry of Banach Spaces, volume 1. North-Holland,2001.
    [89]Y. Kabanov. On the Pontryagin maximum principle for the linear stochastic differential equations. In Probabilistic Models and Control of Economical Processes. CEMI,1978.
    [90]T. Kato. Nonstationary flows of viscous and ideal fluids in R3. Journal of Functional Anasy-sis,9:296-305,1972.
    [91]M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability,28(2):558-602,2000.
    [92]N. V. Krylov. A Generalization of the Littlewood-Paley Inequality with Applications to Parabolic Equations. Ulam Quarterly,2:16-26,1994.
    [93]N. V. Krylov. On Lp-theory of stochastic partial differential equations. SIAM J. Math. Anal., 27:313-340,1996.
    [94]N. V. Krylov. An analytic approach to SPDEs. In Stochastic Partial Differential Equations: Six Perspectives, volume 64 of Mathematic Surveys and Monographs, pages 185-242. AMS, Providence, RI,1999.
    [95]N. V. Krylov. On the Ito-Wentzell formula for distribution-valued processes and related topics.2009. arXiv:0904.2752v1.
    [96]N. V. Krylov and B. L. Rozovskii. Stochastic evolution equations.J. Sov. Math.,16(4):1233-1277,1981.
    [97]H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, World Publishing Corp,1990.
    [98]O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva. Linear and Quasi-linear Equa-tions of Parabolic Type. AMS, Providence,1968.
    [99]X. Li and S. Tang. General necessary conditions for partially observed optimal stochastic controls. J. Appl. Prob.,32:1118-1137,1995.
    [100]G. M. Lieberman. Second Order Parabolic Differential Equations. World Scientific,1996.
    [101]W. Liu and M. Rockner. Spde in hilbert space with locally monotone coefficients. Journal of Functional Analysis,259(11):2902-2922,2010.
    [102]J. Ma, P. Protter, and J. Yong. Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Relat. Fields,98:339-359,1994.
    [103]J. Ma, J. Zhang, and Z. Zheng. Weak solutions for forward (?)backward SDEs-a martingale problem approach. Ann. Probab.,36(6):2092-2125,2008.
    [104]Z. M. Ma and M. Rockner. Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin-New York,1992.
    [105]A. M. Marquez-Duran and J. Real. Some results on nonlinear backward stochastic evolution equations. Stochastic Analysis and Applications,22(5):1273-1293,2004.
    [106]A. J. Majda and A. L. Bertozzi. Vorticity and Incompressible Flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge,2002.
    [107]A. Matoussi and L. Stoica. The obstacle problem for quasilinear stochastic pdes. The Annals of Probability,38(3):1143-1179,2010.
    [108]R. Mikulevicius and B. Rozovskii. A note on Krylov's Lp-theory for systems of SPDEs. Electronic Journal of Probability,6(12):1-35,2001.
    [109]R. Mikulevicius and B. L. Rozovskii. Stochastic navier-stokes equations for tuebulent flows. SIAM J. Math. Anal.,35:1250-1310,2004.
    [110]R. Mikulevicius and B. L. Rozovskii. Globa l2-solutions of stochastic navier-stokes equa-tions. The Annals of Probability,33:137-176,2005.
    [111]G. J. Minty. Monotone (nonlinear) operators in hilbert space. Duke. Math. J.,29:341-346, 1962.
    [112]L. Nirenberg. On elliptic partial differential equations. Annali della Scoula Norm. Sup. Pisa, 13:115-162,1959.
    [113]D. Nualart and E. Pardoux. Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields,78:535-581,1988.
    [114]M. Ossiander. A probabilistic representation of solutions of the incompressible Navier-Stokes equations in R3. Probab. Theory Relat. Fields,133:267-298,2005.
    [115]E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes. Stochastic., pages 127-167,1979.
    [116]E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems Control Lett.,14(1):55-61,1990.
    [117]E. Pardoux and S. Peng. Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields,98:209-227,1994.
    [118]E. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear parabolic partial differential equations. In B. L. Rozovskii and R. S. Sowers, editors, Stochastic Partial Differential Equations and Their Applications, volume 176 of Lect. Notes Control Inf. Sci., pages 200-217. Berlin Heidelberg New York:Springer,1992.
    [119]E. Pardoux and S. Tang. Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields,114:123-150,1999.
    [120]E. Pardoux and S. Zhang. Generalized BSDEs and nonlinear Neumann boundary value prob-lem. Probab. Theory Relat. Fields,110:535-558,1998.
    [121]S. Peng. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics and Stochastics Reports,37:61-74,1991.
    [122]S.Peng. Stochastic Hamilton-Jacob i-B el lman equations. SIAM J. Control Optim.,30:284-304,1992.
    [123]S. Peng. Nonlinear expectations, nonlinear evaluations and risk measures. In Stochastic Methods in Finance, volume 1856/2004 of Lecture Notes in Mathematics. Springer,2004.
    [124]C. Prevot and M. Rockner. A Concise Course on Stochastic Partial Differential Equations, volume 1905 of Lecture Notes in Mathematics. Springer,2007.
    [125]J. Qiu and S. Tang. On backward doubly stochastic differential evolutionary system.2010. preprint.
    [126]J. Qiu and S. Tang. Backward stochastic partial differential equations with degenerate, un-bounded and irregular coefficients.2011. preprint.
    [127]J. Qiu and S. Tang. Maximum principles for backward stochastic partial differential equa-tions. Journal of Functional Analysis,262:2436-2480,2012.
    [128]J. Qiu, S. Tang, and Y. You.2D backward stochastic Navier-Stokes equations with nonlinear forcing. Stochastic Processes and their Applications,122:334-356,2012.
    [129]J. Ren, M. Rockner, and F. Wang. Stochastic generalized porous media and fast diffusion equations. Journal of Differential Equations,238:118-152,2007.
    [130]G. R. Sell and Y. You. Dynamics of Evolutionary Equations. Springer, New York,2002.
    [131]R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society,1996.
    [132]E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton,1970.
    [133]P. Sundar and H. Yin. Existence and uniqueness of solutions to the backward stochastic lorenz system. Comm. Stochastic Analysis,1(473-483),2007.
    [134]P. Sundar and H. Yin. Existence and uniqueness of solutions to the backward 2d stochastic navier-stokes equations. Stochastic Process. Appl.,119(1216-1234),2009.
    [135]S. Tang. The maximum principle for partially observed optimal control of stochastic differ-ential equations. SIAM J. Control Optim.,36:1596-1617,1998.
    [136]S. Tang. Semi-linear systems of backward stochastic partial differential equations in Rn. Chinese Annals of Mathematics,26B(3):437-456,2005.
    [137]S. Tang and X. Zhang. Null controllability for forward and backward stochastic parabolic equations. SI AM Journal on Control and Optimization,48(4):2191-2216,2009.
    [138]S. Tang. On backward stochastic partial differential equations. Technical report,34th SPA Conference, Osaka, September 2010.
    [139]R. Temam. Navier-Stokes Equations. North-Holland, Amsterdam,1984.
    [140]R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York,1988.
    [141]R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis. Society for Indus-trial and Applied mathematics,2 edition,1995.
    [142]R. Temam. Navier-Stokes Equations:Theory and Numerical Analysis. North-Holland-Amsterdam, New York, Oxford, third edition,1984.
    [143]G. Tessitore. Existence, uniqueness and space regularity of the adapted solutions of a back-ward SPDE. Stochastic Analysis and Applications,14(4):461-486,1996.
    [144]H. Triebel. Theory of Function Spaces, volume 78 of Monographs in Mathematics. Birkhauser, Basel, Boston, Stuttgart,1983.
    [145]H. Triebel. Theory of Function Spaces Ⅱ, volume 84 of Monographs in Mathematics. Birkhauser, Basel, Boston, Stuttgart,1992.
    [146]G. Wang. Harnack inequalities for functions in De Giorgi parabolic class. Lecture Notes in Math.,1306:182-201,1986.
    [147]J. Yong. Finding adapted solutions of forward-backward stochastic differential equations: Method of continuation. Probab. Theory Relat. Fields,107:537-572,1997.
    [148]E. Zeidler. Nonlinear Functional Analysis and its Applications Ⅱ/B:Nonlinear Monotone Operators. Springer,1990.
    [149]Q. Zhang and H. Zhao. Stationary solutions of SPDEs and infinite horizon bdsdes.J. Funct. Anal.,252:171-219,2007.
    [150]X. Zhang. On stochastic evolution equations with non-lipschitz coefficients. Stochastics and Dynamics,9:549-595,2009.
    [151]X. Zhang. A stochastic representation for backward incompressible Navier-Stokes equations. Probab. Theory Relat. Fields,148:305-332,2010.
    [152]X. Zhou. A duality analysis on stochastic partial differential equations. Journal of Functional Analysis,103:275-293,1992.
    [153]X. Zhou. On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim.,31(6):1462-1478,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700