焦炭钝化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高炉大型化以及喷煤量的增加,对焦炭质量的要求越来越高,尤其是焦炭的热性质(CRI和CSR)。焦炭钝化就是采用喷洒或者是浸渍的方式对冷态焦炭进行处理,以改善焦炭的热性质。
     本文以工业生产焦炭为原料,采用3 %H3BO3溶液浸渍的方式对焦炭进行处理,然后按照GB/T 4000—1996对焦炭进行反应性和反应后强度的测试,发现钝化后焦炭的CRI和CSR都有不同程度的改善。
     用综合热失重分析仪来测定钝化前后焦炭的溶损反应率,然后运用未反应收缩核模型计算钝化前后焦炭溶损反应的各步骤阻力(外扩散,界面化学反应,内扩散),比较前后的差异得出钝化后溶损反应的控制步骤。计算结果表明:当反应温度为900℃~1000℃时,钝化前焦炭的溶损反应过程受内扩散的控制,而钝化后焦炭的溶损反应过程同样受内扩散控制;硼酸的加入对焦炭起到钝化作用,其机理在于提高溶损反应过程中的内扩散传质阻力,从而使得整个反应率降低。
     运用场发射扫描电子显微镜观察钝化前后焦炭(溶损反应后)的表面结构变化,其结果验证了动力学计算所得出的结论,并且当反应温度大于1100℃时,钝化后焦炭的溶损反应过程受界面化学反应控制,钝化机理也就是抑制界面化学反应。
The requirement for the coke's quality is more and more serious, especially for the thermal performance (CRI and CSR), along with the scaling up of blast furnace and increasing of the quantity of pulverized coal injection. The passivation of coke is to adopt the method of insufflation or infusion to dispose the coke under cold condition, to improve the thermal performance of coke.
     In this paper, the raw coke is from the industrial production and is infused in the H3BO3 solution whose concentration is 3 %. Then the determination of CRI and CSR of coke is carried out according to the GB/T 4000—1996, and the results show that the CRI and CSR are both improved in some extent. The solution loss reaction rate of coke before and after passivation is determined by using the thermo-gravimetry analyzer, and then the every step resistance of coke's solution loss reaction before and after passivation is calculated according to unreacted shrinking core model, including external diffusion, interfacial chemical reaction and internal diffusion. The calculated results show: when the reaction temperature is between 900℃and 1000℃, the processes of coke solution loss reaction before and after passivation are both controlled by the internal diffusion and the mechanism of passivation after addition of boric acid is increasing the resistance of internal diffusion during the solution loss reaction process, so the entire rate of reaction is decreased.
     The field emission SEM is used to observe the superficial structure change of coke before and after passivation (after solution loss reaction). The results prove the conclusion from kinetic calculation to be right and they also show that when the reaction temperature is above 1100℃, the process of coke solution loss reaction after passivation is controlled by the interfacial chemical reaction and the mechanism of passivation is restrianing the interfacial chemical reaction.
引文
[1] Tylecote R.F.A History of Metallurgy[M].London,1978,12—35.
    [2] 周师庸,赵俊国.炼焦煤性质与高炉焦炭质量[M].北京:冶金工业出版社,2005,58,59,73.
    [3] 傅永宁.高炉焦炭[M].北京:冶金工业出版社,1995,1.
    [4] Poos A.Recent advances in blast furnace iron-making in western Europe[J].ISIJ,1991,31(5):403—407.
    [5] Heribert Bertling.Coal and Coke for Blast Furnaces[J].ISIJ,1991,39(7):617—624.
    [6] 王建华,吴红山.焦炭在高炉中降解的原因浅析[J].太钢科技,2000,1:18—20.
    [7] Mamoru Kamishita,Takeshi Ogasawara,Hidetaro Tanihara.Degradation of Coke and Char during Solution Loss Reaction[J].ISIJ,1982,22(9):715—726.
    [8] Chow C.K,Lu W-K.Degradation of Coke in the Blast Furnace due to Alkali Vapours[J].Ironmaking Conference Proceedings,1979,5:201—205.
    [9] Yuji Iwanaga,Kouji Takatani.Degradation Behavior of Coke at High—temperature Zone[J].ISIJ,1988,28(12):990—998.
    [10] 杨杰康.昆钢炼铁焦炭的热态性能分析[J].炼铁,1999,18(6):40—41.
    [11] 江海涛,胡红玲,付利俊等.焦炭反应性(CRI)及反应后强度(CSR)和焦炭抗碱性试验研究[J].内蒙古科技与经济,2004,24:44—46.
    [12] 蔡克难,程相利,柴清风等.提高焦炭强度的研究与实践[J].钢铁,2005,40(7):22—24.
    [13] Thomas J.M,Roscoe C.The influence of structural faults on the nonuniform oxidation of boronated graphite[J].Carbon,1968,6(2):224.
    [14] Thomas J.M,Roscoe C.Non-basal glide graphite[J].Journal of Nuclear Materials,1965,15(3):245—246.
    [15] Allardice D.J,Walker P.L.The effect of substitutional boron on the kinetics of the carbon-carbon dioxide reaction[J].Carbon,1970,8(6):773—780.
    [16] 糜克勤,李家新.焦炭钝化处理的探索[J].华东冶金学院学报,1994,11(4):22—26.
    [17] 胡新亮. 焦炭钝化的试验研究[J].燃料与化工,2003,34(6):292—294.
    [18] 余水生,游坚,余轶峰等.硼酸基钝化剂钝化柳钢焦炭的研究试验[J].柳钢科技,2005,4:4—10.
    [19] 王存政,廖洪强,薛立民等.焦炭钝化技术的研究[J].煤炭科学技术,2006,34(4):71—73.
    [20] 崔平,杨敏,彭静等.焦炭反应性的多元素催化研究[J].钢铁,2006,41(3):16—19.
    [21] 史世庄,周尽晖,乔国强等.对干、湿法熄焦焦炭的催化性能研究[J].燃料与化工,2006,33(9):18—21.
    [22] 朱子宗,沈勇玲,苗铁岭等.ZBS 添加剂与安钢焦炭作用行为研究[J].河南冶金,2003,11(4):13—15.
    [23] 朱子宗,沈勇玲,徐红阳等.改善安钢焦炭热性能工业试验研究[J].钢铁,2004,39(2):5—7.
    [24] 杨云峰,高芸祥,李铁等.一种改善焦炭热态性能的方法与实践[J].炼铁,2006,25(4): 55—58.
    [25] John S,Goscinski.CSR control—a coal producers point of view[C].Ironmaking Conference Proceedings,1990,49:53—74.
    [26] Sakawa M , Sakurai Y , Hara Y . Influence of coal characteristics on CO2 gasification[J].Fuel,1982,61(7):717—720.
    [27] Grigore M,Sakurovs R,French D,et al.Influence of mineral matter on coke reactivity with carbon dioxide[J].ISIJ,2006,46(4):503—512.
    [28] 杨俊和,冯安祖,杜鹤桂.矿物质对焦炭热性质影响的研究现状[J].冶金能源,1999,18(2):12—18.
    [29] 杨俊和,冯安祖,杜鹤桂.矿物质催化指数与焦炭反应性关系[J].钢铁,2001,36(6):5—10.
    [30] 杜鹤桂,杨俊和.矿物质对高炉焦炭溶损反应的催化作用[J].炼铁,2002,21(1):22—24.
    [31] 杨俊和,吴信慈,张群等.煤中加入负催化剂对焦炭热强度作用研究[J].煤炭转化,2004,27(4):69—76.
    [32] 周尽晖,王鹏.添加炭素物料改善焦炭性能的研究[J].炭素技术,2003,1:5—8.
    [33] 邹德余,何生平,许原.添加剂对焦炭反应性的影响[J].钢铁,2002,37(6):1—3.
    [34] Ma X,Wang Q,Chen L-Q,et al.Semi-empirical studies on electronic structures of a boron – doped grapheme layer-implications on the oxidation mechanism[J].Carbon,1997,35(2):1517—1523.
    [35] Wentzcovitch R.M,Cohen M.L,Louie S.G,et a.σ-states contribution to the conductivity of BC3[J].Solid State Communications,1988,67(5):515—518.
    [36] Fukui K,Yonezawa T,Shingu H.A molecular orbital theory of reactivity in aromatic hydrocarbons[J].Journal of Chemical Physics,1952,20:722.
    [37] Fukui K,Yonezawa T,Nagata C,et al.Molecular orbital theory of orientation in aromatic,heteroaromatic,and other conjugated moleculars[J].Journal of Chemical Physics,1954,22:1433.
    [38] Young-Jae L,Ljubisa R.R.Oxidation inhibition effects of phosphorus and boron in different carbon fabrics[J].Carbon,2003,41(10):1987—1997.
    [39] Ljubisa R.R,Murthy K,Kristina S,et al.The role of substitutional boron in carbon oxidation[J].Carbon,1998,36(12):1841—1854.
    [40] 李广田,吴国玺,杜成武等.炭素材料高温氧化保护研究[J].炭素材料,1999,104(6): 6—9.
    [41] Buchanan F.J,Little J.A.Glass sealant for carbon-carbon composites[J].Journal of Materials Science,1993,28(9):2324—2330.
    [42] Youm H.N,et al.Effect of addition of boron carbide on the graphitization and oxidation resistance of raw cokes[J].Yoop Hokhoechi,1997,34(4):413—419.
    [43] Xianxian W,Ljubisa R.R.Inhibition of catalytic oxidation of carbon/carbon composites by boron-doping[J].Carbon,2005,43(8):1768—1777.
    [44] Petersen E.E.Reaction of porous solids[J].AIChEJ,1957,3(4):443—448.
    [45] Hashimoto K , Silveston P . L . Gasification : Part Ⅱ . Extension to diffusion control[J].AIChEJ,1973,19(2):268—277.
    [46] 鞭岩,森山昭.冶金反应工程[M].蔡志鹏,谢裕生译.北京:冶金工业出版社,1981,284—285.
    [47] Szekely J,Aderibigbe D.A.Structural changes and reactivity of conventional coke and from coke during reaction with CO-CO2 gas mixture at 1000℃[J].Ironmaking and Steelmaking,1982,9(3):130—135.
    [48] 李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001,242.
    [49] 郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003,417.
    [50] 肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997,16.
    [51] Sohn H.Y,Wadsworth M.E.提取冶金速率过程[M].郑蒂基译.北京:冶金工业出版社,1984,11.
    [52] Shunji H,Shinji O,Jiro K,et al.Gas-solid reaction model for a shringking spherical particle with unreacted shrinking core[J].Chemical Engineering Science,2005,60(18):4971—4980.
    [53] Turkdogan E.T, Olsson R.G.,Vinters J.V.Pore characteristics of carbons[J].Carbon,1970,8(4):39.
    [54] Ergun S.Kinetics of the Reaction of Carbon with Carbon Dioxide[J].Journal of Physical Chemistry,1956,60(4):480—485.
    [55] 鞍山钢铁公司钢铁研究所.高炉内现象及其解析[M].北京:冶金工业出版社,1985,244.
    [56] Hedden K,L?we A.über die Vergasung von Reaktorgraphit mit Kohlendioxid und Wasserdampf[J].Carbon,1967,5(4):339—353.
    [57] Zamalloa M,Ma D,Utigard T.A.Oxidation rates of industrial cokes with CO2 and air[J].ISIJ,1995,35(5):458—463.
    [58] 薛正良.焦炭溶损反应动力学研究[J].武汉科技大学学报(自然科学版),1993,16(1):1—7.
    [59] 崔平,张磊,杨敏等.焦炭溶损动力学及其模型研究[J].燃料化学学报,2006,34(3):280—284.
    [60] Ranz W.E,Marshall W.R.Evaporation,PartⅠ[J].Chemical Engineering Progress,1952,48(3):141—146.
    [61] Ranz W.E,Marshall W.R.Evaporation,PartⅡ[J].Chemical Engineering Progress,1952,48(4):173—180.
    [62] 盖格 G.H,波伊里尔 D.H.冶金中的传热传质现象[M].俞景禄,魏季和译.北京:冶金工业出版社,1981,10.
    [63] Wilke C.R.A viscosity equation for gas mixture[J].Journal of Chemical Physics,1950,18(4):517—519.
    [64] Chapman S,Cowling T.G.Mathematical theory of non-uniform gases[M].Cambridge University Press,1970,Chapters 10,14.
    [65] Hirschfelder C.F,Curtiss C.F,Bird R.B.Molecular theory of gases and liquids[M].New York:Wiley,1954,539.
    [66] Douglas M.R.Principles of adsorption and adsorption processes[M].New York:Wiley,1984,135.
    [67] 吉林化学工业公司设计院.化工工艺算图(物性数据计算)[M].北京:化学工业出版社,1983,179.
    [68] 博德 R.B,斯图沃特 W.E,莱特福特 E.N.传递现象[M].戴干策,戎顺熙,石炎福译.北京:化学工业出版社,2004,785—786.
    [69] Wicke E,Kopper H.H,Wurzbacher G.X-ray strucrure and chemical reactivity of various carbon samples[J].Journal of Chemical Physics,1961,58(1):25—33.
    [70] 沈峰满,施月循.高炉内气—固反应动力学[M].北京:冶金工业出版社,1996,171—176.
    [71] 黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1981,29.
    [72] 陈绍芬.化学与催化反应工程[M].北京:化学工业出版社,1995.
    [73] 崔平,杨敏,康士刚等.焦炭的钝化处理及其机理[J].钢铁研究学报,2007,19(3):6—10.
    [74] 朱子宗,戎晨阳,徐红阳.ZBS 改性剂对焦炭微观结构的性能的影响[J].重庆大学学报(自然科学版),2006,29(7):69—72..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700