RH真空精炼过程的数学物理模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RH真空精炼是一个涉及多相流、传热及不同化学反应的复杂冶金过程。在实际生产中,提高循环流量、缩短均混时间是提高RH精炼生产效率的重要手段。要充分发挥RH的精炼功效,降低生产成本,就必须对RH内传输过程进行深入研究。
     本文针对RH精炼装置内钢液流动、脱碳及夹杂物碰撞长大行为分别发展了相应的数学模型,研究了传统侧吹RH、侧底复吹RH和电磁RH内的传输行为;在此基础上针对底吹钢包内夹杂物碰撞聚合行为建立数学模型,研究了钢包底吹方式对夹杂物去除过程的影响,并对双孔底吹钢包的底吹位置进行了优化。研究成果概括如下:
     一、RH精炼过程中传输行为
     (1)建立了与RH精炼装置原型1:5.5比例的水模型,考察了不同工艺参数对循环流量、均混时间、顶吹溶氧及脱碳过程的影响,并根据实验数据回归得到循环流量、均混时间的表达式:
     (2)针对水平侧吹气体行为进行研究,推导了水平侧吹条件下气体穿透深度公式:
     建立了RH内气液两相流动行为数学模型,数值结果表明提升气量是决定含气率分布的关键因素。
     (3)发展了综合RH不同脱碳机理的三维数学模型及夹杂物碰撞长大行为的均相模型,讨论了不同工艺因素对夹杂物去除过程的影响;通过将Stokes碰撞应用于夹杂物数量及质量守恒模型,建立了RH装置内夹杂物碰撞长大行为的数学模型,给出了夹杂物数量密度及浓度的三维空间分布。
     二、侧底复吹及电磁RH精炼过程中传输行为
     (1)在钢包底吹条件下,当底吹位置和钢包中心连线与浸渍管中心连线的夹角θ=0时,循环流量随底吹位置至钢包中心距离L的增大先增大后减小,均混时间随L的增大而增大;当L=0.535m时,循环流量随夹角θ的增大而减小,均混时间随夹角θ的增大先减小后增大。
     (2)在施加行波磁场条件下,循环流量随励磁电流强度的增加而增大,均混时间随电流强度的增大而减小,并且二者与电流强度近似成线性关系;电流频率在10~30Hz变化时,循环流量随电流频率的增大而增大,均混时间随电流频率的增大而减小;在30~60Hz变化时,循环流量随电流频率的增大而减小,均混时间随电流频率的增大而增大;提升气量小于饱和值时,在上升管周围施加行波磁场优于在下降管周围施加行波磁场;提升气量大于饱和值时,二者效果等同;同时在上升管和下降管周围施加行波磁场的脱碳及夹杂物去除效率最高,仅在上升管周围施加行波磁场次之。
     三、底吹钢包内传输行为
     (1)在夹杂物数量及质量守恒模型中引入气泡吸附夹杂物模型,建立了钢包内夹杂物去除过程的三维数学模型,结果表明:底吹方式是影响夹杂物去除的重要因素;三孔底吹效果最好,双孔底吹次之,偏心底吹优于中心底吹;顶渣吸附是最重要的夹杂物去除方式,侧壁吸附次之,钢包底壁吸附可忽略不计。
     (2)针对双孔底吹钢包的底吹位置进行优化,结果表明:在底吹位置偏移中心距离一定的条件下,底吹位置与中心连线夹角存在一个最优值,反之亦然;回归实验数据可得双孔底吹钢包的均混时间表达式如下:
RH vacuum refining is a complicated metallurgical process which involves in multiphase flow, heat transfer and various chemical reactions. By increasing circulation flow rate and shortening mixing time, the RH production rate can be increased in actual system. Therefore, in order to take full advantage of the production efficiency of RH degasser and reduce production costs, it is necessary to have a deep insight into the transport process in RH.
     In present work, several mathematical models have been developed to study the gas-liquid flow, decarburization process and the collision and growth among inclusions. The transport behavior in RH with traditional side blowing, RH with side-bottom blowing and electromagnetic RH have been investigated by the above mathematical models. On this basis, the mathematical model concerning collision and coalescence among inclusions in gas-stirred ladle has been developed to study the effect of different types of bottom blowing on the inclusion removal process. In addition, the double bottom blowing locations in ladle have been optimized. The results are as follows:
     I. The transport behavior during RH vacuum refining process
     (1) A 1: 5.5 scale water modeling of the RH prototype has been developed and the effects of different operating parameters on the circulation flow rate, mixing time, top blowing oxygen absorption and decarburization process have been investigated. By regression on the base of experimental data, the empirical correlations for the circulation flow rate and mixing time are as follows:
     (2) The side-blowing gas behavior has been studied and the formula for the horizontally blowing gas penetration depth is as follows:
     A mathematical model of gas-liquid flow in RH degasser has been developed and the numerical results show that the lifting gas flow rate is the key factor to determine the distribution of gas holdup.
     (3) A three dimensional mathematical model considering different decarburization mechanisms and a homogeneous model concerning the collision and growth among inclusions in RH degasser have been developed to investigate the effects of different operating parameters on the inclusion removal process. By introducing the Stokes collision among inclusions into the inclusion mass and number conservation model, a mathematical model about inclusion behavior in RH degasser has been developed to give the three dimensional spatial distributions of inclusion number density and concentration in RH degasser.
     II. The transport behaviors during RH with side-bottom blowing and electromagnetic RH
     (1) For RH with bottom blowing, when the included angle of the line between bottom blowing location and ladle center and the line between two snorkels 0 is zero, the circulation flow rate increases with the increasing distance between bottom blowing location and ladle center L firstly, and then decreases. In addition, the mixing time increases with the increasing L. When L is equal to 0.535m, the circulation flow rate decreases with the increasing 6. In addition, the mixing time decreases with the increasing 9 firstly, and then increases.
     (2) For RH imposed by traveling magnetic field, with the increasing current density, the circulation flow rate increases linearly and the mixing time decreases linearly. If the current frequency lies in the range of 10~30Hz, with the increasing current frequency, the circulation flow rate increases while the mixing time decreases. If the current frequency lies in the range of 30~60Hz, with the increasing current frequency, the circulation flow rate decreases while the mixing time increases. In order to increase circulation flow rate and shorten mixing time, the most effective measure is to apply the traveling magnetic field near the up snorkel, and the second choice is to apply the traveling magnetic field near the down snorkel if the gas flow rate is smaller than the saturation value. However, such a difference disappears if the gas flow rate is greater than the saturation value. For decarburization and inclusion removal, the most effective measure is to apply the traveling magnetic field near the up and down snorkels, and to apply the traveling magnetic field near the up snorkel has the minor effect.
     III. The transport behavior in the gas-stirred ladle
     (1) By introducing the model of inclusion adhesion to gas bubble into the inclusion mass and number conservation model, a three dimensional mathematical model is developed to investigate the inclusion removal process in ladle. The numerical results show that the type of bottom blowing is the key factor for inclusion removal. The triple bottom blowing is the most effective method for inclusion removal, while the double bottom blowing has a minor effect and the eccentric bottom blowing is better than the centric bottom blowing. For inclusion removal, the absorption by the top slag is the main manner, the adhesion to the sidewall is the minor manner, and adhesion to the bottom wall can be negligible.
     (2) The double bottom blowing locations in ladle have also been optimized and the results show that there is a unique optimum offset of double blowing locations for a particular included angle and vice versa. The correction for the mixing time for the ladle with double bottom blowing can be expressed as:
引文
1.蒋国昌.纯净钢与二次精炼[M],上海:上海科学技术出版社,1996.
    2.刘春.论纯净钢及其生产技术[J],鞍钢技术,2002,5:30-33.
    3.龙杰.发挥炉外精炼优势促进高纯净钢生产[J],宽厚板,2000,6(4):11-13.
    4.徐曾启.炉外精炼[M],北京:冶金工业出版社,1994.
    5.张鉴.炉外精炼的理论与实践[M],北京:冶金工业出版社,1993.
    6.蔡开科,程士富.连续铸钢原理与工艺[M],北京:冶金工业出版社,1994.
    7.蔡开科.连续铸钢[M],北京:科学出版社,1991.
    8.刘浏,何平.二次精炼技术的发展与配置[J],特殊钢,1999,20(2):1-6.
    9.李中金,刘芳,王承宽.我国钢水二次精炼技术的发展[J],特殊钢,2002,23(3):29-31.
    10.殷瑞钰.我国炼钢.连铸技术发展和2010年展望[J],炼钢,2008,24(6):1-12.
    11.赵启云,李炳源.RH用氧技术的发展与应用[J],炼钢,2001,17(5):54-58.
    12.徐国群.RH精炼技术的应用与发展[J],炼钢,2006,22(1):12-15.
    13.刘浏.RH真空精炼工艺与装备技术的发展[J],钢铁,2006,41(8):1-11.
    14.朱苗勇,萧泽强.钢的精炼过程数学物理模拟[M],北京:冶金工业出版社,1998.
    15.Nakanishi K, Szekely J, Chang C W. Experimental and theoretical investigation of mixing phenomena in the RH-vacuum process[J], Ironmaking and Steelmaking, 1975, 2(5): 115-124.
    16.Shirabe K, Szekely J. A mathematical model of fluid flow and inclusion coalescence in the R-H vacuum degassing system[J], Transactions ISIJ, 1983, 23(3): 465-474.
    17.Tsujino R, Nakashima J, Hirai M, et al. Numerical analysis of molten steel flow in ladle of RH process[J], ISIJ International, 1989, 29(7): 589-595.
    18.Szatkowski M, Tsai M C. Turbulent flow and mixing phenomena in RH ladle[J], Iron and Steelmaker, 1991, 18(4): 65-71.
    19.Kato Y, Nakato H, Fujii T, et al. Fluid flow in ladle and its effect on decarburization rate in RH degasser[J], ISIJ International, 1993, 33(10): 1088-1094.
    20.朱苗勇,沙骏,黄宗泽.RH真空精炼装置内钢液流动行为的数值模拟[J],金属学报,2000,36(11):1175-1178.
    21.Castillejos A H, Brimacombe J K. Measurement of physical characteristics of bubbles in gas-liquid plumes: Part Ⅱ. Local properties of turbulent air-water plumes in vertically injected jets[J], Metallurgical Transactions B, 1987, 18B(4): 659-671.
    22.朱苗勇,沙骏,黄宗泽.真空脱碳精炼过程的模拟研究[J],金属学报,2001,37(1):91-94.
    23.耿佃桥,雷洪,赫冀成.不同浸渍管参数下RH精炼装置内钢液流动行为[J],钢铁,2008,43(2):35-40.
    24.Li B K, Tsukihashi F. Modeling of circulating flow in RH degassing vessel water model designed for two-and multi-legs operations[J], ISIJ International, 2000, 40(12): 1203-1209.
    25.Park Y G, Doo W C, Yi K W, et al. Numerical calculation of circulation flow rate in the degassing Rheinstahl-Heraeus process[J], ISIJ International, 2000, 40(8): 749-755.
    26.Themelis N J, Tarassoff P, Szekely J. Gas-liquid momentum transfer in a copper converter[J], Transactions of the Metallurgical Society of AIME, 1969, 245(12): 2425-2433.
    27.李宝宽,霍慧芳,栾叶君,等.RH真空精炼系统气液两相循环流动的均相流模型[J],金属学报,2005,41(1):60-61.
    28.Li B K, Tsukihashi F. Effect of rotating magnetic field on two-phase flow in RH vacuum degassing vessel[J], ISIJ International, 2005, 45(2): 972-978.
    29.Miki Y, Thomas B G. Model of inclusion removal during RH degassing of steel[J], Iron and Steelmaker, 1997, 24(8): 31-38.
    30.Wei J H, Hu H T. Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Mathematical model of the flow[J], Steel Research International, 2006, 77(1): 32-36.
    31.Wei J H, Hu H T. Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Application of the model and results[J], Steel Research International, 2006, 77(2): 91-96.
    32.Mendez C G, Nigro N, Cardona A. Drag and non-drag force influences in numerical simulations of metallurgical ladles[J], Journal of Materials Processing Technology, 2005,160(3): 296-305.
    33.Yamaguchi K, Kishimoto Y, Sakuraya T, et al. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser[J], ISIJ International, 1992,32(1): 126-135.
    34.Kleimt B, Ponten J, Matissik W, et al. Dynamic modeling and control of vacuum circulation process[J], Ironmaking and Steelmaking, 1993, 20(3): 390-395.
    35.Takahashi M, Matsumoto H, Satito T. Mechanism of decarburization in RH degasser[J], ISIJ International, 1995, 35(12): 1452-1458.
    36.Wei J H, Yu N W. Mathematical modelling of decarburization and degassing during vacuum circulation refining process of molten steel: Mathematical model of the process[J], Steel Research International, 2002, 73(4): 135-142.
    37.Park Y G, Yi K W. A new numerical model for predicting carbon concentration during RH degassing treatment[J], ISIJ International, 2003, 43(9): 1403-1409.
    38.胡汉涛.钢液RH精炼非平衡脱碳过程的数学模拟[D].上海:上海大学,2005.
    39.韩传基,刘柏松,艾立群,等.RH-MFB精炼过程脱碳数学模型及工艺研究[J],钢铁研究学报,2007,19(4):17-21.
    40.Kitamura T, Miyamoto K, Tsujino R, et al. Mathematical reaction model for nitrogen desorption and decarburization reaction in vacuum degasser[J], ISIJ International, 1996, 36(4): 395-401.
    41.Kleimt B, Kohle S, Johann K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing[J], Scandinavian Journal of Metallurgy, 2000, 29(5): 194-205.
    42.Treadgold C J. Behaviour of inclusions in RH vacuum degasser[J], Ironmaking and Steelmaking, 2003, 30(2): 120-124.
    43.Zhu M, Zheng S, Huang Z, et al. Numerical simulation of nonmetallic inclusions behavior in gas-stirred ladles[J], Steel Research International, 2005, 76 (10): 718-722.
    44.赵连刚,刘坤.连铸中间包内钢水夹杂物运动行为的数学模拟[J],钢铁研究学报,2002,14(6):19-24.
    45.Zhang L, Taniguchi S, Cai K. Fluid flow and inclusion removal in continuous casting tundish[J], Metallurgical and Materials Transactions B, 2000, 31B(2): 253-266.
    46.Lei H, Wang L, Wu Z, et al. Collision and coalescence of alumina particles in the vertical bending continuous caster[J], ISIJ International, 2002, 42(7): 717-725.
    47.Katoh T, OkamotoT. Mixing of molten steel in a ladle with RH reactor by water model experiemnt[J], Electric Furnace Steel, 1979, 50(2): 128-137.
    48.Hanna R K, Jones T, Blake R I, et al. Water modelling to aid improvement of degasser performance for production of ultralow carbon interstitial free steels[J], Ironmaking and Steelmaking. 1994,21(1): 37-43.
    49.舒宏富,宋超,张晓峰,等.RH-MFB真空精炼过程中循环流量的物理模拟研究[J],材料与冶金学报,2004,3(2):107-112.
    50.彭一川,李洪利,刘爱华,等.RH水模型的理论和实验研究[J],钢铁,1994,29(12):15-18.
    51.Kamata C, Matsumura H, Miyasaka H, et al. Cold model experiments on the circulation flow in RH reactor using a laser doppler velocimeter[A], Steelmaking Conference Proceedings[C], ISS-AIME, 1998, 606-616.
    52.Nakanishi K, Szekely J, Chang C W. Experimental and theoretical investigation of mixing phenomena in the RH-vacuum process[J], Ironmaking and Steelmaking, 1975,2(5): 115-124.
    53.Wei J H, Yu N W, Fan Y Y, et al. Study on flow and mixing characteristics of molten steel in RH and RH-KTB refining processes[J], Journal of Shanghai University (English Edition), 2002, 6(2): 167-175.
    54.杜成武,朱苗勇,潘时松,等.RH-PTB真空精炼装置内粉剂混合特性的水模型研究研究[J],特殊钢,2005,26(5):16-18.
    55.Seshadri V, De Souza Costa S L. Cold model studies of RH degassing process[J], Transactions ISIJ, 1986, 26(2): 133-138.
    56.Ajmani S K, Dash S K, Chandra S, et al. Mixing evaluation in the RH process using mathematical modelling[J], ISIJ International, 2004, 44(1): 82-90.
    57.金永刚,许海虹,朱苗勇.RH-KTB精炼中钢液溶氧过程动力学的水模拟研究[J],钢铁研究学报,2001,13(3):1-5.
    58.舒宏富,张建平,宋超,等.RH-MFB传质特性的物理模拟研究[J],炼钢,2005,21(6):37-40.
    59.Inoue S, Furuno Y, Usui T, et al. Acceleration of decarburization in RH vacuum degassing process[J], ISIJ International, 1992, 32(1): 120-125.
    60.Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: part Ⅰ. Physical modeling[J], Metallurgical and Materials Transactions B, 2000, 31B(6): 1447-1455.
    61.Kim S H, Fruehan R J. Physical modeling of gas/liquid mass transfer in a gas stirred ladle[J], Metallurgical Transactions B, 1987, 18B(2): 673-668.
    62.Zong J H, Park H K, Yoon J K. The cold model study on the decarburization rate in oxygen steelmaking processes by CO_2/KOH system[J], ISIJ International, 1990, 30(9): 748-755.
    63.郑淑国,朱苗勇,潘时松.RH真空精炼装置内夹杂物行为的实验研究[J],金属学报,2006,42(16):657-661.
    64.Kwon Y, Zhang J, Lee H G. Water model and CFD studies of bubbles dispersion and inclusins removal in continuous casting mold of steel[J], ISIJ International, 2006, 46(2):257-266.
    65.Taniguchi S, Kikuchi A. Model experiment on the motion of fine particles of inclusion in liquid steel[J], Tetsu-to-Hagane, 1992, 78(3): 423-430.
    66.Cho J S, Lee H G. Cold model study on inclusion removal from liquid steel using fine gas bubbles[J], ISIJ International, 2001, 41(2): 151-157.
    67.Zhang L, Taniguchi S, Matsumoto K. Water model study on inclusion removal from molten steel by bubble flotation under turbulent conditions[J], Ironmaking and Steelmaking, 2002, 29(5): 326-336 .
    68. Arai H, Iida N, Matsumoto K, et al. Characteristics of adhesion and removal of suspended particle in liquid by bubble-effect of particle contact angle[J], Tetsu-to-Hagane, 2007, 93(1): 1-8.
    
    69. Park Y G, Yi K W, Ahn S B. The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations[J], ISIJ International, 2001, 41(5): 403-409.
    
    70. Kuwabara T, Umezawa K, Mori K, et al. Investigation of decarburization behavior in RH-reactor and its operation improvement[J], Transactions ISIJ, 1988, 28(4): 305-313.
    
    71. Saint-Raymond H, Huin D, Stouvenot F. Mechanisms and modeling of liquid steel decarburization below 10ppm carbon[J], Materials Transactions, JIM, 2000, 41(1): 17-21.
    
    72. Themelis N J, Tarassoff P, Szekely J. Gas-liquid momentum transfer in a copper converter[J], Transactions of the Metallurgical Society of AIME, 1969, 245(11): 2425-2433.
    
    73. Hoefele E O, Brimacombe J K. Flow regimes in submerged gas injection[J], Metallurgical Transactions B, 1979, 10B(4): 631-648.
    
    74.韩旭.熔池中气粉两相流喷吹行为的研究[D],沈阳:东北大学,1995.
    
    75. Kubo N, Ishii T, Kubota J, et al. Two-phase flow numerical simulation of molten steel and argon gas in a continuous casting mold[J], ISIJ International, 2002, 42(11): 1251-1258.
    
    76. Ramos-Banderas A, Morales R D, Garcia-Demedices L, et al. Mathematical simulation and modeling of steel flow with gas bubbling in trough type tundishes[J], ISIJ International, 2003, 43(5): 653-662.
    
    77. Yu H, Zhu M. Numerical simulation of the effects of electromagnetic brake and argon gas injection on the three-dimensional multiphase flow and heat transfer in slab continuous casting mold[J], ISIJ International, 2008, 48(5): 584-591.
    
    78. Kubo N, Ishii T, Kubota J, et al. Numerical simulation of molten steel flow under a magnetic field with argon gas bubbling in a continuous casting mold[J], ISIJ International, 2004, 44(3): 556-564.
    
    79. Iguchi M, Tokunaga H. Molten wood's-metal flow in a cylindrical bath agitated by cold bottom-gas injection[J], Metallurgical and Materials Transactions B, 2002, 33B(5): 695-702.
    
    80. Iguchi M, Morita Z, Tokunaga H, et al. Heat transfer between bubbles and liquid during cold gas injection[J], ISIJ International, 1992, 32(7): 865-872.
    
    81. Manninen M, Taivassalo V. On the mixture model for multiphase flow, VTT Publications 288, Technical Research Center of Finland, 1996.
    
    82. Chen P, Sanyal J, Dudukovic M P. CFD modeling of bubble columns flows: Implementation of population balance[J], Chemical Engineering Science, 2004, 59(22): 5201-5207.
    
    83. Sanyal J, Vasquez S, Roy S, et al. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors[J], Chemical Engineering Science, 1999, 54(51): 5071-5083.
    
    84. Chen P, Dudukovic M P, Sanyal J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup[J], AIChE Journal, 2005, 51(3): 696-712.
    
    85. Kim M, Kim O S, Lee D H, et al. Numerical and experimental investigations of gas-liquid dispersion in an ejector[J], Chemical Engineering Science, 2007, 62(24): 7133-7139.
    
    86. Qian F, Huang Z, Chen G, et al. Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations [J], Computers and Chemical Engineering, 2007, 31(9): 1111-1122.
    87.Altway A, Setyawan H, Margono, et al. Effect of particle size on simulation of three-dimensional solid dispersion in stirred tank[J], Chemical Engineering Research and Design, 2001, 79(8): 1011-1016.
    88.Bai Z S, Wang H L. Numerical simulation of the separating performance of hydrocyclones[J], 2006,29(10): 1161-1166.
    89.Ling J, Skudarnov P V, Lin C X, et al. Numerical investigations of liquid-solid slurry flows in a fully developed turbulent flow region[J], International Journal of Heat and Fluid Flow, 2003, 24(3): 389-398.
    90.Lin C X, Ebadian M A. A numerical study of developing slurry flow in the entrance region of a horizontal pipe[J], Computers and Fluids, 2008, 37(8): 965-974.
    91.Kishan P A, Dash S K. Mixing time in RH ladle with upleg size and immersion depth: A new correlation[J], ISIJ International, 2007, 47(10): 1549-1551.
    92.Ahrenhold F, Pluschkell W. Mixing phenomena inside the ladle during RH decarburization of steel melts[J], Steel Research International, 1999, 70(8): 314-318.
    93.Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J], International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806.
    94.Crowe C T, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles[M], New York: CRC Press, 1998.
    95.Clift R, Grace J R, Weber M E. Bubbles, drops, and particles[M], New York: Academic Press, 1978.
    96.Drew D A, Passman S L, Theory of multicomponent fluids[M], New York: Springer Press, 1998.
    97.Turkoglu H, Farouk B. Numerical computations of fluid flow and heat transfer in a gas-stirred liquid bath[J], Metallurgical Transactions B, 1990, 21B(4): 771-781.
    98.Tatsuoka T, Kamata C, Ito K. Expansion of injected gas bubble and its effects on bath mixing under reduced pressure[J], ISIJ International, 1997, 37(6): 557-561.
    99.Sano M, Mori K. Size of bubbles in energetic gas injection into liquid metal[J], Transactions ISIJ, 1980, 20(10): 675-681.
    100.朱卫民,金大中,李炳源,等.300吨RH脱氧效果的工艺研究[J],钢铁,1992,27(4):23-25.
    101.周有预,袁儿成,马勤学.转炉-RH-连铸工艺生产高压气瓶用钢洁净度的研究[J],钢铁,2001,36(2):16-19.
    102.朱卫民,金大中,李炳源.RH处理去除钢中夹杂物[J],钢铁,1991,26(2):22-25.
    103.郭艳永,柳向春,蔡开科,等.BOF-RH-CC工艺生产无取向硅钢过程中夹杂物行为的研究[J],钢铁,2005,40(4):24-27.
    104.Murai T, Matsuno H, Sakurai E, et al. Separation mechanism of inclusion from molten steel during RH treatment[J], Tetsu-to-Hagane, 1998, 84(1): 13-18.
    105.汪明东.130tRH脱碳模型建立及超低碳钢处理工艺优化[J],炼钢,2003,19(3):115-118.
    106.Saffman P G, Turner J S. On the collision of drops in turbulent clouds[J], Journal of Fluid Mechanics, 1956, 1: 16-30.
    107.Lindborg U, Torssell K. A collision model for the growth and separation of deoxidation products[J], Transactions of the Metallurgical Society of AIME, 1968, 242(1): 94-102.
    108.Friedlander S K, Lai F S, Hidy G M, et al. The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime[J], Journal of Colloid and Interface Science, 1972, 39(2): 395-405.
    109.Taniguchi S, Kikuchi A, Ise T, et al. Model experiment on the coagulation of inclusion particles in liquid steel[J], ISIJ International, 1996, 36: S117-120.
    110. Nakaoka T, Taniguchi S, Matsumoto K, et al. Particle-size-grouping method of inclusion agglomeration and its application to water model experiments[J], ISIJ International, 2001, 41(10): 1103-1111.
    111. Yin H, Shibata H, Emi T, et al. "In-situ" observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts[J], ISIJ International, 1997, 37(10): 936-945.
    112. Tozawa H, Kato Y, Sorimachi K, et al. Agglomeration and flotation of alumina clusters in molten steel[J], ISIJ International, 1999, 39(5): 426-434.
    113. Nakanishi K, Szekely J. Deoxidation kinetics in a turbulent flow field[J], Transactions ISIJ, 1975, 15(10): 522-530.
    114. Linder S. Hydrodynamics and collisions of small particles in a turbulent metallic melt with special reference to deoxidation of steel[J], Scandinavian Journal of Metallurgy, 1974,3(4): 137-150.
    115. Lei H, He J C. Numerical simulation for collision and aggregation of inclusions in a slab continuous caster[J], Steel Research International, 2007, 78(9): 704-707.
    116. 韩至成.电磁冶金学[M],北京:冶金工业出版社,2001.
    117. 张宏丽.线性电磁搅拌在钢液凝固过程中的作用规律[D],沈阳:东北大学,2002.
    118. Gliere A, Masse P. A finite element-finite difference computation of magnetic and turbulent flow coupled problem[J], IEEE Transactions on Magnetics, 1988, 24(1): 252-255.
    119. Chung S I, Shin Y H, Yoon J K. Flow characteristics by induction and gas stirring in ASEA-SKF ladle[J], Transactions ISIJ, 1992, 32(12): 1287-1296.
    120. 杨晓东.大方坯结晶器电磁搅拌电磁场的数值模拟[D].沈阳:东北大学,2007.
    121. Lopez-Ramirez S, Barreto J J, Palafox-Ramos J, et al. Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes[J], Metallurgical and Materials Transactions B, 2001, 32B(2):615-627.
    122. Santis M D, Ferretti A. Thermo-fluid-dynamics modelling of the solidification process and behaviour of non-metallic inclusions in the continuous casting slabs[J], ISIJ International, 1996, 36(6): 673-680.
    123. Yuan Q, Thomas B G, Vanka S P. Study of transient flow and particle transport in continuous steel caster molds: Part Ⅱ. Particle transport[J], Metallurgical and Materials Transactions B, 2004, 35B(4): 703-714.
    124. Zhang L. Heat transfer and inclusion motion in a four-strand billet continuous casting tundish[J], Steel Research International, 2005, 76(11): 784-796.
    125. Joo S, Han J W, Guthrie R I L. Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations: Part Ⅱ. Mathematical model for liquid steel in tundishes[J], Metallurgical Transactions B, 1993, 24B(5): 767-777.
    126. Javurek M, Gittler P, Rossler R, et al. Simulation of nonmetallic inclusions in a continuous casting strand[J], Steel Research International, 2005, 76(1): 64-70.
    127. Sinha A K, Sahai Y. Mathematical modeling of inclusion transport and removal in continuous casting tundishes[J], ISIJ International, 1993, 33(5): 556-566.
    128. Sheng D Y, Soder M, Jonsson P, et al. Modeling micro-inclusion growth and separation in gas-stirred ladles[J], Scandinavian Journal of Metallurgy, 2002, 31(2): 134-147.
    129. Wang L T, Zhang Q Y, Peng S H, et al. Mathematical model for growth and removal of inclusion in a multi-tuyere ladle during gas-stirring[J], ISIJ International, 2005, 45(3): 331-337.
    130. Soder M, Jonsson P, Jonsson L. Inclusion growth and removal in gas-stirred ladles[J], Steel Research International, 2004, 75(2): 128-138.
    131. Warzecha M, Jowsa J, Warzecha P, et al. Numerical and experimental investigations of steel mixing time in a 130-t ladle[J], Steel Research International, 2008, 79(11): 852-860.
    132. Mazumdar D, Evans J W. Macroscopic models for gas stirred ladles[J], ISIJ International, 2004, 44(3): 447-461.
    133. Joo S, Guthrie R I L. Modeling flows and mixing in steelmaking ladles designed for single- and dual-plug bubbling operations[J], Metallurgical Transactions B, 1992,23B(6): 765-778.
    134. Zhu M Y, Inomoto T, Sawada I, et al. Fluid flow and mixing phenomena in the ladle stirred by argon through multi-tuyere[J], ISIJ International, 1995, 35(5): 472-479.
    135. Mandal J, Patil S, Madan M, et al. Mixing time and correlation for ladles stirred with dual porous plugs[J], Metallurgical and Materials Transactions B, 2005, 36B(4): 479-487.
    136. Madan M, Satish D, Mazumdar D. Modeling of mixing in ladles fitted with dual plugs[J], ISIJ International, 2005, 45(5): 677-685.
    137. 钟晓丹,王楠,邹宗树,等.LF双孔底吹优化布置的水模型研究[J],材料与冶金学报,2006,5(2):101-104.
    138. Zhang L, Thomas B G. Evaluation and control of steel cleanliness-review[A],Steelmaking Conference Proceedings[C], ISS-AIME, 2002, 431-452.
    139. Zhang L, Thomas B G. State of the art in evaluation and control of steel cleanliness[J], ISIJ International, 2003, 43(3): 271-291.
    140. Kwon Y J, Zhang J, Lee H G. A CFD-based nucleation-growth-removal model for inclusion behavior in a gas-agitated ladle during molten steel deoxidation[J], ISIJ International, 2008, 48(7): 891-900.
    141. 薛正良,王义芳,王立涛,等.用小气泡从钢液中去除夹杂物颗粒[J],金属学报,2003,39(4):431-434.
    142. Wang L, Lee H G, Hayes P. Prediction of the optimum bubble size by flotation for inclusion removal from molten steel[J], ISIJ International, 1996, 36(1): 7-16.
    143. Wang L T, Zhang Q Y, Deng C H, et al. Mathematical model for removal of inclusion in molten steel by injecting gas at ladle shroud[J], ISIJ International, 2005, 45(8):1138-1144.
    144. Zhang L, Aoki J, Thomas B G. Inclusion removal by bubble flotation in a continuous casting mold[J], Metallurgical and Materials Transactions B, 2006, 37B(3): 361-379.
    145. Schulze H J. Hydrodynamics of bubble-mineral particle collisions[J], Mineral Processing and Extractive Metallurgy Review, 1989, 5: 43-76.
    146. Yoon R H, Luttrell G H. The effect of bubble size on fine particle flotation[J], Mineral Processing and Extractive Metallurgy Review, 1989, 5: 101-122.
    147. 赵连刚.吹气搅拌钢包体系传输现象数学物理模拟研究[D].沈阳:东北大学,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700