多氨基多硝基吡啶氮氧化物及其配方的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氨基多硝基吡啶氮氧化物的代表化合物2,6-二氨基-3,5-二硝基吡啶氮氧化物(ANPyO)和2,4,6-三氨基-3,5-二硝基吡啶氮氧化物(INPyO)是一类新型的含能材料,具有感度低,成本低,稳定性好,耐热性好以及较高的爆炸性能,是潜在的高能钝感炸药候选物,在含能材料领域具有广阔的应用前景。
     本论文分别以三氟乙酸(CF3COOH)、二甲基亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)为溶剂,采用重结晶法精制ANPyO或TNPyO,对精制后样品性能进行比较分析。结果表明:分别用CF3COOH重结晶的ANPyO和TNPyO平均粒径最小,比表面积分别为0.454m2·g-1和2.760m2·g-1;10℃·min-1温升速率时,热分解峰值温度分别为370.69°C和355.9℃,表观活化能分别为279.63kJ·mol-1和303.15kJ·mol-1;机械感度最低。CF3COOH是最佳的重结晶溶剂。结晶工艺条件对ANPyO的晶型和感度也有明显的影响。
     采用溶液-水悬浮-蒸馏法,分别以氟橡胶F2311和丁腈橡胶(NBR)包覆ANPyO和TNPyO,利用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、差示扫描量热法(DSC)、热重分析法(TG)和感度试验表征包覆前后ANPyO和TNPyO的结构和性能。试验结果表明:分别用F2311和NBR包覆后的ANPyO和TNPyO热分解峰值温度降低,分解热提高,分解深度减小;包覆后颗粒变大,红外光谱中N-H特征峰和氮杂原子的特征峰均发生偏移;机械感度均降低。包覆能改善ANPyO和TNPyO的能量和机械感度性能,其中以F2311包覆的ANPyO和TNPyO性能更优。
     根据ANPyO和TNPyO及其配方分别在不同升温速率下TG的分析结果,分析讨论了它们的热分解过程,用非线性等转化率积分法和Ozawa法计算了它们的热分解活化能、指前因子等动力学参数和机理函数。ANPyO和TNPyO及其配方的热分解机理均属于n=1的随机成核和随后生长。采用绝热加速量热仪对ANPyO和TNPyO及其配方进行绝热分析。利用速率常数法计算了它们绝热分解的活化能和指前因子等动力学参数。依据绝热分解过程的温度、压力、温升速率随时间的变化以及计算结果对它们的热安全性进行评价。
     采用热重-微商热重分析(TG-DTG)、热重与质谱联用(TG-MS)和原位热裂解快速扫描傅里叶变换红外等技术研究了ANPyO的热分解全过程,并通过跟踪测试热分解过程中气相和凝聚相产物及其变化情况提出了ANPyO的热分解机理。研究结果表明:ANPyO的热分解过程是分步进行的,首先是吡啶环上相邻的-NH2和-NO2发生环化反应放出NO;然后是吡啶环开环分解,放出CO、HCN、CO2等气体。
     制备以ANPyO、橡胶类粘结剂和增塑剂组成的耐热混合炸药,进行了耐热性、成形性、爆炸和感度性能测试。结果表明:以ANPyO为基耐热炸药有良好的耐热性能,可以在200~250℃温度条件下使用;成形+性能良好;机械感度均低于单质ANPyO。将ANPyO应用于石油射孔弹中,对其压药成形性、破甲性能和作功能力进行了测试分析,含NBR配方的成形性和破甲性能均最好。
     利用密度泛函理论对ANPyO晶体进行计算。导带较平伏,价带起伏较大且为非简并态。导带轨道主要由碳原子、氧原子和氨基N原子的原子轨道组成,而价带轨道由碳原子、氨基和硝基原子的原子轨道组成。当晶体沿a和c方向被压缩时,两者的电荷分布变化几乎相同;但沿b方向压缩时,产生不同的电荷分布,表明晶体被压缩时的各向异性。C-N(硝基)和N-O(氮氧化物)最弱,受外界影响最易断裂。经校正基组叠加误差后,ANPyO的晶格能为-166.03 kJ·mol-1。晶体中N-O (N-oxide)键的Mulliken布居数远小于分子中该键的Mulliken布居数,表明由于分子的堆积作用导致晶体中该键变弱。这与ANPyO撞击感度高于TATB的实测结果相一致。从分子水平揭示了ANPyO的低感度(但感度高于TATB)等性质。
     为了解ANPyO对硝胺炸药的降感效果,利用结晶包覆法制备了ANPyO/RDX和ANPyO/HMX的复合物,并与混合法制备的样品进行比较。利用SEM、DSC、感度和爆速测试等方法比较复合物样品的结构和性能。结果表明:结晶包覆法制备样品中ANPyO对硝胺炸药的包覆效果比混合法的包覆效果要好;样品的平均粒径均处于硝胺炸药与ANPyO之间;样品的分解峰值温度均低于硝胺炸药;样品的机械感度均比硝胺炸药低,结晶包覆法制备样品机械感度下降更显著。制备了以硝胺炸药为基,ANPyO为钝感剂,不同橡胶为粘结剂的高聚物粘结炸药造型粉样品,并且对其进行结构和性能测试,表明高聚物粘结炸药样品的机械感度明显低于硝胺炸药,爆速比ANPyO显著提高。
2,6-Diamino-3,5-dinitropyridine-l-oxide(ANPyO) and 2,4,6-triamino-3,5-dinitropyridine (TNPyO) are the representative compounds of polyamino and polynitro derivatives of pyridine and their N-oxides are novel energetic materials. ANPyO and TNPyO may be potential insensitive high energy explosive candidates with low mechanical sensitivity and cost, good stability and heat resistance, and high energy. They have a wide applied future in the energetic material field.
     The fine samples of ANPyO or TNPyO were respectively prepared by recrystallization from the solvents of trifluoroacetic acid(CF3COOH), dimethyl sulfoxide(DMSO) and N,N-dimethyl formamide(DMF) in the paper. The properties of the samples of ANPyO and TNPyO were compared. Results show that the average particle sizes of ANPyO and TNPyO that were prepared by recrystallization from CF3COOH are the smallest, their BET specific surface area are respectively 0.454m2·g-1 and 2.760m2·g-1; The thermal analysis and thermal decomposition kinetics calculation indicate that the temperatures of the exothermic peaks of ANPyO(CF3COOH) and TNPyO(CF3COOH) are the highest, the results are respectively 370.69℃and 355.9℃at 10℃·min-1 heating rate, and their activation energy are respectively 279.63kJ-mol-1 and 303.15kJ·mol-1; Mechanical sensitivity of ANPyO and TNPyO that were prepared by recrystallization from CF3COOH are respectively the lowest.
     ANPyO and TNPyO were coated with fluorine rubber F2311 and nitrile-butadiene rubber(NBR) by means of solution-water suspending-distillation method. The structures and properties of ANPyO, TNPyO and coated samples were characterized by fourier transform infrared spectroscopy(FTIR), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermograimetry (TG), and mechanical sensitivity test. The results show that the decomposition peak temperatures of coated ANPyO and TNPyO are lower, decomposition heats are higher, decomposition depths are smaller than uncoated ANPyO and TNPyO; It is found that particles of ANPyO and ANPyO become bigger; In FTIR spectra, N-H and nitrogen atom in pyridine spectral characteristic absorption bands have shifted; Mechanical sensitivity of coated ANPyO and TNPyO become lower respectively. Energy and mechanical sensitivity performance of ANPyO and TNPyO can be improved by coating, the performance of ANPyO and TNPyO coated by F2311 are better than NBR.
     The thermal decomposition processes of ANPyO, TNPyO and their formulations were studied by TG curves at different heating rates. The thermal decomposition kinetic parameters, such as activation energy, pre-exponential factor and reaction order, and the mechanism functions of ANPyO, TNPyO and their formulations were obtained by the integral iso-conversional non-linear method and Ozawa's method. The results show that the thermal decomposition mechanism of ANPyO and TNPyO and their formulations are classified as random nucleation and growth of n=1. Adiabatic thermal decomposition of ANPyO, TNPyO and their formulations have been investigated using accelerating rate calorimetry. Kinetic parameters, such as activation energy, pre-exponential factor and reaction order are calculated using reaction rate method. Thermal safety of ANPyO, TNPyO and their formulations have been evaluated according to temperature, pressure and temperature rise rate in thermal decomposition and calculation results.
     Thermal decomposition processes of ANPyO were investigated by using, TG-DTG, TG-MS, coupling techniques and in-situ thermolysis rapid scan-FTIR coupling technique. Mechanism of ANPyO thermal decomposition was presented by tracking test gaseous and agglomerate productions and their change in the thermal decomposition. The results show that the thermal decomposition process of ANPyO can be divided into steps, the ring reaction occur between-NH2 and adjacent-NO2 of pyridine ring, and releasing NO in the first step, and then pyridine ring decompose and release CO, HCN and CO2 etc gases.
     Some heat resistant composite explosives composed of ANPyO, some polymer binders containing fluorin and little heat resistant plasticizer were prepared. The performance tests were conducted by measuring the heat resistance, formability, explosion energy and sensitivity. The results show that the ANPyO-based heat resistant composite explosives have good heat resistance and formability, indicating that heat resistant composite explosives can be used in the temperature range of 200~250℃; Their mechanical sensitivity is vicinal and lower than that of ANPyO individual explosive. Performance of formability, penetration and power capability of ANPyO applied in the petroleum perforator were tested, performance formability and penetration of formulations containing NBR are the best among the all formulations.
     Density functional theory calculations were performed on crystalline ANPyO. The conduct bands are generally quite flat, while the valence bands are degenerate. The carbon, oxygen and amino nitrogen atoms make up the narrow lower energy bands. While the carbon, amino nitrogen and atoms in nitro group make up the higher energy bands. Change of electronic charges for the decrease of the cell edge a and c are almost the same, but different from the decrease of the cell edge b, indicating an anisotropic effect related to compressions. The C-Nitro and the N-0 (N-oxide) bonds are the weakest, and tend to rupture upon external stimulation. The crystal lattice energy is predicted to be-166.03kJ/mol, after being corrected for basis set superposition error. The Mulliken population for the N-0 (N-oxide) bond in crystal is much smaller than that in molecule, indicating that the molecular packing weakens this bond. Judged by the fact of N-0 (N-oxide) bond being weaker than C-Nitro bond, ANPyO is sensitive to mechanic impact than 1,3,5-triamino-2,4,6-trinitrobenzene, which is in good agreement with experiment. The performances of ANPyO such as low sensitivity were illuminated from molecular level.
     In order to know the desensitizing efficiency of ANPyO on nitroamine explosives, ANPyO/RDX and ANPyO/HMX composites were prepared by crystal coating and mixing method respectively. The structures and properties of the samples were characterized by SEM, DSC, mechanical sensitivity and detonation velocity tests. Results show that ANPyO has a better coating on nitromine explosives in crystal coating than mixing method; The average particle sizes of the samples are situated between ANPyO and nitromine explosives; The decomposition peak temperatures of the samples are lower than that of nitromine explosives; Mechanical sensitivity of the samples are lower than that of nitromine explosives, and mechanical sensitivity of the samples in crystal coating decreased more significant. The nitromine explosives-based polymer bonder explosive(PBX) samples were manufactured with ANPyO deterrent and different rubber binder. The structures and properties of the samples were tested. Results show that mechanical sensitivity of PBX samples are lower than that of nitromine explosives, detonation velocity of PBX samples are distinct higher than ANPyO.
引文
[1]魏锐强.现代技术条件下炸药发展趋势[J].军械维修工程研究.1999,3:62-63
    [2]赵壮华.积极开展低易损性火炸药和弹药的研究[J].火炸药学报.1989,3:21-23
    [3]Sanghavi R R, Kamale P J, Shelar M A, Kumar K S, Singh A. HMX based enhanced energy LOVA gun propellant[J]. J Hazard Mater.2007,143:532-534
    [4]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995
    [5]孙业斌,许桂珍.从炸药装药装备现状看21世纪发展趋势[J].火炸药学报.2001,1:69-72
    [6]王昕.美国不敏感混合炸药的发展现状[J].火炸药学报.2007,30(2):78-80
    [7]王振宇.国外近年研制的新型不敏感单质炸药[J].含能材料.2003,11(4):227-230
    [8]张春海.不敏感弹药,让士兵和武器更安全[J].现在军事.2006,2:54-59
    [9]曹欣茂.外军不敏感炸药发展述评[J].火炸药.1992,1:13-18
    [10]吕春绪.耐热硝基芳烃化学[M].北京:兵器工业出版社,2000
    [11]孙荣康,魏运洋.硝基化合物炸药化学与工艺学[M].北京:兵器工业出版社,1992
    [12]魏运洋.1,3,5-三氨基-2,4,6-三硝基苯的合成新法[J].应用化学.1990,7(1):70-71
    [13]Lee K Y, Mary M, Stinecipher. Synthesis and initial characterization of amine salts of 3-nitro-1,2,4-triazol-5-one [J]. Prop Explo Pyrotech.2004,14(6):241-244
    [14]Becuwe A, Delclos A. Low-sensitivity explosive compounds for low vulnerability warheads [J]. Prop Explo Pyrotech.2004,18(1):1-10
    [15]Ostmark H, Bergman H, Bermm U, Goede P, Holmgren E, Johansson M, Langlet A, Latypov N V, Pettersson A, Petterson M L, Wingborg N, Vorde C, Stenmark H, Karlsson L, Hohkio M.2,2-Dinitro-ethene-1,1-diamine(FOX-7) — properties, analysis and scale-up [A]. Proceedings of the 32nd International Annual Conference of ICT Karlsruhe [C]. Germany,2001
    [16]Janzon B, Bergman H, Eldsater C, Lamnevik C, Ostmark H. FOX-7 — a novel, high performance, low vulnerability high explosive for warhead applications [A]. Proceedings of the 20th International Symposium on Ballistics Orlando [C]. USA,2002
    [17]Latypov N V, Bergman J. Synthesis and reactions of 1,1-diamino-2,2-dinitroethy-lene [J]. Tetrahedron.1998,54:11525-11536
    [18]Ostmark H, Langlet A, Bergman H, Wingborg N, Wellmar U, Bemm U. FOX-7 —a new explosive with low sensitivity and high performance [A].11th Symposium with (International) on Detonation [C]. USA,1998
    [19]Pagoria P, Mitchell A, Schmidt R, Simpson R, Garcia F, Forbes J, Cutting J, Lee R, Swansiger R, Hoffman D. Synthesis, scale-up and experimental testing of LLM-105(2,6-diaminno-3,5-dinitropyrazine-l-oxide) [A]. ADPA International Symposium on Energetics and IM Technology [C]. USA,1998
    [20]Kerth J, Kuglstatter W. Synthesis and characterization of 2,6-diamino-3,5-dinitro pyrazine-l-oxide(NPEX-1) [A]. Proceedings of the 32nd Int Annual Conference of ICT [C]. Germany,2001
    [21]Tran T D, Pagoria P, Hoffman D, Cutting J, Lee R, Simpson R. Characterization of 2,6-diamino-3,5-dinitropyrazine-l-oxide(LLM-105) as an insensitive high explosive material [A].33rd International Annual Conference of ICT on Energetic Materials Synthesis, Production and Application [C]. USA 2002
    [22]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis [J]. Thermochim Acta.2002,384(1):187-204
    [23]Anderson K L, Merwin L H, Wilson W S, Faceli J C. 15N chemical shifts in energetic materials:CP/MAS and ab Initio studies of aminonitropyridines, aminonitropyrimidines, and their N-oxides [J]. Int J Mol Sci.2002,3:858-872
    [24]李金山,黄亦刚,董海山.多硝基吡啶及其氮氧化物性能的理论预测[J].含能材料.2003,12:576-579
    [25]李金山,黄亦刚,董海山,杨光成.多硝基吡啶的密度泛函理论研究[J].含能材料.2003,11(4):178-180
    [26]成健,姚其正,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法[J].含能材料.2009,17(2):166-168
    [27]王艳红,宋元军,胡桢,景介辉,孟祥丽,黄玉东.一个简易的2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成方法[J].有机化学.2009,29(5):780-783
    [28]Ritter H, Licht H. Review of energetic materials synthesis [J]. J Heterocycl Chem.1995, 32:585-590
    [29]成健,周新利,姚其正,乔珍,刘祖亮.2,6-二氨基-3,5-二硝基吡啶及其氧化物的氧化胺化反应[J].含能材料.2009,17(3):296-299
    [30]Hollins R A, Merwin L M, Nissan R A. Aminonitropyridines and their N-oxides [J]. Heterocycl Chem.1996,33:895-904
    [31]Hollins R A, Nissan R A, Wilson W S, Gilardi R D.2,6-diamino-3,5-dinitro-pyridine-1-oxide:a new insensitive explosive [R]. China Lake, CA:NAWCWPNS Technical Publication,1995
    [32]Mermin L H, Nissan R A, Wilson W S, Gilardi R D. Synthesis, characterization and explosive properties of 3,5-dinitro-2,4,6-triaminopyridine and its 1-oxide [R]. China Lake, CA:NAWCWPNS Technical Publication,1995
    [33]耿俊峰,劳允亮.对高分子塑性耐热炸药的界面化学研究[J].北京理工大学学报(自然科学版).1991,11(2):90-96
    [34]陈洪伟,吴晓青,吴艳光.硝胺类炸药颗粒包覆研究及其进展[J].天津化工.2009,23(3):9-12
    [35]安崇伟,宋小兰,王毅,郭效德,李凤生.硝胺类炸药颗粒表面包覆的研究进[J].含能材料.2007,15(2):188-192
    [36]王瑾,马志钢,刘治兵.水胶炸药的热分解动力学[J].火炸药学报.2007,30(3):52-54
    [37]马平,李国仲.粉状乳化炸药热分解动力学研究[J].爆破器材.2009,38(3):1-3
    [38]胡荣祖,赵凤起,高红旭,张海,松全才.非线性等转化率的微、积分法及其在含能材料物理化学研究中的应用——I.理论和数值方法[J].含能材料.2007,15(2):97-100
    [39]Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull Chem Soc Jpn. 1965,38(11):1881-1886
    [40]Doyle C D. Kinetic analysis of thermogravimetric data [J]. J Appl Polym Sci.1961, 5(15):285-292
    [41]Townsend D I, Tou J C. Thermal hazard evaluation by accelerating rate calorimeter [J]. Thermochim Acta.1980,37:1-30
    [42]Chen L, Feng C G. Theory and application of energetic materials[M]. Beijing:China Science and Technology Press,2001
    [43]Coates C F. The ARC in chemical hazard evaluation [J]. Thermochim Acta.1985,86: 369-372
    [44]Atsumi M, Motohiko S, Yasushi O. Prediction and evaluation of the ractivity of self-reactive suances using microcalorimetries [J]. Thermochim Acta.2000,352: 181-188.
    [45]刘子如.含能材料热分析[M].北京:国防工业出版社,2008
    [46]金朋刚,常海,陈智群,潘清,汪渊.PYX红外热行为研究[J].火炸药学报.2006,29(2):69-71
    [47]王军,黄靖伦,廖龙渝,李洪珍,聂福德,黄黎明,李金山.一种PYX制备技术[J].含能材料.2008,16(4):480-481
    [48]封雪松.高聚物粘结耐热炸药HNS的配方研制及表面界面性能的研究[D].南京:南京理工大学,2001
    [49]成建龙,孙宪宏,乔晓光,艾晓莉.油气井用火药的耐高温性能研究[J].测井技术.2008,32(2):95-99
    [50]欧育湘.炸药学[M].北京:北京理工大学出版社,2006
    [51]肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计[M].北京:科学出版社,2008
    [52]胡庆贤,吕子剑.TATB、石蜡、石墨钝感作用的讨论[J].含能材料.2004,12(1):26-29
    [53]徐容,田野,刘春.TATB对CL-20降感研究[J].能材料.2003,11(4):219-221
    [1]Ulrich T.含能材料[M].北京:国防工业出版社,2009
    [2]王相元,李伟明,王建龙.炸药结晶晶型控制技术研究进展[J].山西化工.2009,29(1):29-32
    [3]叶毓鹏,曹欣茂,叶玲,庞小萍.炸药结晶工艺学及其应用[M].北京:兵器工业出版社,1995
    [4]Heijden A V D. Crystallization and characterization of energetic materials [M]. Poojopura: Trends in Chemical engineering, Research Trends,1998
    [5]Meulenbrugge J J, Steen A V D, Heijden A V D. Crystallization of energetic materials, the effect stability, sensitivity and processing properties [M]. Phoenix:Int Symp on Energetic Materials Technology,1995
    [6]Sanghavi R R, Kamale P J, Shelar M A, Kumar K S, Singh A. HMX based enhanced energy LOVA gun propellant[J]. J Hazard Mater.2007,143:532-534
    [7]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis [J]. Thermochim Acta.2002,384(1):187-204
    [8]Anderson K L, Merwin L H, Wilson W S, Faceli J C.15N chemical shifts in energetic materials:CP/MAS and ab Initio studies of aminonitropyridines, aminonitropyrimidines, and their N-oxides [J]. Int J Mol Sci.2002,3:858-872
    [9]Ritter H, Licht H. Review of energetic materials synthesis [J]. J Heterocycl Chem.1995, 32:585-590
    [10]成健,姚其正,周新利,杜扬,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法[J].有机化学.2008,28(11):1943-1947
    [11]安崇伟.重结晶过程中单质炸药晶形影响因素分析[J].制造技术.2004,5:36-38
    [12]封雪松,赵省先,李小平.重结晶降低RDX感度研究[J].火炸药学报.2007,30(3):45-47
    [13]司马天龙,燕吉胜.不同溶剂重结晶RDX对A5混合炸药压药成形性能的影响[J].火炸药学报.2003,26(2):8-9
    [14]黄明,李红珍,徐容,李金山,聂福德,黄辉,张明,韩勇.降感黑索今研究[J].含能材料.2006,14(6):98
    [15]曹端林,叶毓鹏.HMX球形化工艺[J].火炸药学报.1998,4:14-15
    [16]Wardle R B, Hinshaw J C, Braithwait P, Rose M. Synthesis of the caged nitramine HNIW(CL-20) [A]. Proc 27th Int Annual conf of ICT [C]. Karlaruhe,1996
    [17]Von Holtz E, Ornellas D, Folta M F, Clarkson J E. The solubility of ε-CL-20 in selected materials [J]. Prop Explos Pyrotech.1994,19:206-212
    [18]刘进全,欧育湘,金韶华,陈博仁.溶剂及温度对ε-HNIW晶形及热安定性的影响[J].火炸药学报.2005,28(2):56-59
    [19]Becuwe A, Delclos A. Low-sensitivity explosive compounds for low vulnerability warheads[J]. Prop Explos Pyrotech.1993,18:1-10
    [20]Yi X, Rongzu H, Tonglai Z, Fuping L. Preparation and mechanism of thermal decomposition of alkali metal(Li, Na and K) salts of 3-nitro-1,2,4-triazol-5-one [J]. Thermal anal.1993,39:827-847
    [21]Kim K J, Kim M J, Lee J M, Kim H S, Kim S H, Park B S. Experimental solubility and density for 3-nitro-1,2,4-triazol-5-one+C1 to C7 1-alkanols [J]. Fluid Phase Equil.1998, 146:261-268
    [22]Kim K J, Kim M J, Lee J M, Kim H S, Kim S H, Park B S. Solubility density and metastable zone width of the 3-nitro-1,2,4-triazlo-5-one+ water system [J]. Chem Eng Data.1998,43:65-68
    [23]柴涛,张景林.丙酮重结晶超细化NTO的晶形及粒度控制研究[J].火工品.2007,4:10-12
    [24]Hollins R A, Nissan R A, Wilson W S, Gilardi R D.2,6-diamino-3,5-dinitro-pyridine-1-oxide:a new insensitive explosive [R]. China Lake, CA:NAWCWPNS Technical Publication,1995
    [25]Mermin L H, Nissan R A, Wilson W S, Gilardi R D. Synthesis, characterization and explosive properties of 3,5-dinitro-2,4,6-triaminopyridine and its 1-oxide [R]. China Lake, CA:NAWCWPNS Technical Publication,1995
    [26]成健,姚其正,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法[J].含能材料.2009,17(2):166-168
    [27]成健,周新利,姚其正,乔珍,刘祖亮.2,6-二氨基-3,5-二硝基吡啶及其氧化物的氧化胺化反应[J].含能材料.2009,17(3):296-299
    [28]宋小兰,李风生,张景林,郭效德,安崇伟,王毅.粒度和形貌及粒度分布对RDX安全和热分解性能的影响[J],固体火箭技术.2008,31(2):168-172
    [29]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal Chem.1957, 29(11):1702-1706
    [30]Doyle C D. Kinetic analysis of thermaogravimetric data [J]. J Appl Polym.1961,15: 285-287
    [31]Zsako J. Kinetic analysis of thermaogravimetic data [J]. J Phys Chem.1968,72: 2406-2411
    [32]Borham B M, Olsav F A. Estimation of activation energies from differential thermal analysis curves [J]. Thermochim Acta.1973,6:345-351
    [33]Raemy A. Differential thermal analysis and heat flow calorimetry of caffee and chicory products [J]. Thermochim Acta.1981,43:229-236
    [34]刘玉存,王建华,安崇伟,于雁武.RDX粒度对机械感度的影响[J].火炸药学报.2004,27(2):7-9
    [35]刘桂涛,曲虹霞.超细RDX爆轰感度与撞击感度、摩擦感度的研究[J].南京理工大学学报(自然科学版).2002,26(4):410-413
    [36]安崇伟,王晶禹.重结晶过程中单质炸药晶形影响因素分析[J].制造技术与实践.2004,5:36-39
    [37]王晶禹.HMX炸药微团化动态结晶细化技术研究[D].北京:北京理工大学,2001
    [38]李凤生.特种超细粉体制备技术及应用[M].北京:国防工业出版社,2002
    [1]Hans-Heinrich, L. Performance and sensitivity of explosives [J]. Prop Explos Pyrotech. 2002,25(3):126-132
    [2]李金山,黄亦刚,董海山.多硝基吡啶及其氮氧化物性能的理论预测[J].含能材料.2003,12:576-579
    [3]李金山,黄亦刚,董海山,杨光成.多硝基吡啶的密度泛函理论研究[J].含能材料.2003,11(4):178-180
    [4]王保国,张景林,陈亚芳.超细PYX制备和性能测试[J].含能材料.2007,15(3):198.200
    [5]王晶禹,黄浩,王培勇,陈健,刘红妮.高纯纳米HNS的制备与表征[J].含能材料.2008,16(3):258-261
    [6]安崇伟,宋小兰,王毅,郭效德,李凤生.硝胺类炸药颗粒表面包覆的研究进[J].含能材料.2007,15(2):188-192
    [7]陈洪伟,吴晓青,吴艳光.硝胺类炸药颗粒包覆研究及其进展[J].天津化工.2009,23(3):9-12
    [8]金韶华,吴秀梅,王伟,松全才.高分子包覆ε-HNIW方法对样品机械撞击感度的影响[J].安全与环境学报.2005,5(5):6-8
    [9]金韶华,于昭兴,刘进全,陈树林,欧育湘,松全才.六硝基六氮杂异伍兹烷的机械撞击感度[J].火炸药学报.2004,27(2):17-22
    [10]金韶华,于昭兴,欧育湘,陈树林,松全才.硝基六氮杂异伍兹烷包覆钝感的探索[J].含能材料.2004,12(3):147-150
    [11]陈鲁英,赵省向,杨培进,衡淑云,李巍,黄小悟.CL-20炸药的包覆钝感研究[J].含能材料.2006,14(3):171-173
    [12]雷英杰,杨文宝,胡荣祖.新型键合剂在硝胺发射药中的应用[J].火炸药学报.2002,2:59-60
    [13]Chan. Energetic binder explosive[P]. USP5316600,1994
    [14]Simpson R L, Urtiew P A, Ornellas D L, Moody G L, Scribner K J, Hoffman D M. CL-20 performance exceeds that of HMX and its sensitivity is moderate [J]. Prop Explos Pyrotech.1997,22:249-255
    [15]何志伟,高大元,方东,刘祖亮.包覆对新型炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物某些性能的影响[J].含能材料.2009,17(3):299-302
    [16]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995
    [17]孙国祥.高分子混合炸药[M].北京:国防工业出版社,1984
    [18]赵旭涛,刘大华.合成橡胶工业手册[M].北京:化学工业出版社,2006
    [19]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2006
    [20]张华,彭勤纪,李亚明,张蓉.现代有机波谱分析[M].北京:化学工业出版社,2005
    [21]董黎明,符全军,景振禹.氟橡胶粘结耐热炸药界面作用的红外光谱分析[J].火炸药学报.2003,26(2):70-72
    [22]黄玉成,胡应杰,肖继军,殷开梁,肖鹤鸣.TATB基PBX结合能的分子动力学模拟[J].物理化学学报.2005,21(4):425-429
    [23]马秀芳,肖继军,殷开梁,肖鹤鸣.TATB/聚三氟氯乙烯复合材料力学性能的MD模拟[J].化学物理学报.2005,18(1):55-58
    [24]朱伟,肖继军,马秀芳,于艳春,肖鹤鸣TATB 和 TATB/F2311 力学性能的MD模拟[J].淮海工学院学报(自然科学版).2005,14(4):38-41
    [25]Xiao H M, Li J S, Dong H S. A quantum-chemical study of PBX:inter molecular interactions of TATB with CH2F2 and with linear fluorine-containing polymers [J]. J Phys Org Chem.2001,14:644-649
    [26]蔡正千.热分析[M].北京:高等教育出版社,1993
    [27]刘子如.含能材料热分析[M].北京:国防工业出版社,2008
    [28]刘桂涛,曲虹霞.超细RDX爆轰感度与撞击感度、摩擦感度的研究[J].南京理工大学学报.2002,26(4):410-413
    [29]Oraechowski A, Maranda A, Powala D, Bordowski J. Determination of sensitivity of plastic explosive containing insensitivity explosives [J]. Chin J Energ Mater.2004,6: 364-367
    [30]胡庆贤.塑料粘结炸药的感度测试方法及钝感机理的讨论[J].火炸药学报.2002,1:57-59
    [1]刘子如.含能材料热分析[M].北京:国防工业出版社,2008
    [2]Ulrich T.含能材料[M].北京:国防工业出版社,2009
    [3]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001
    [4]周新利.膨化硝酸铵自敏化理论及其炸药的物理性能和改性研究[D].南京:南京理工大学,2003
    [5]欧育湘.炸药学[M].北京:北京理工大学出版社,2006
    [6]郑梦菊.炸药性能及测试技术[M].北京:兵器工业出版社,1990
    [7]楚士晋.炸药热分析[M].北京:科学出版社,1994
    [8]刘振海.热分析导论[M].北京:化学工业出版社,1991
    [9]高大元,董海山,李波涛,何碧.炸药热分解动力学研究及其应用[J].含能材料.12(增刊):307-310
    [10]高大元,何松伟,沈永兴,周建华.GI-920炸药的热分解动力学研究[J].含能材料.2008,16(1):1-4
    [11]高大元,何松伟,韩勇,鲁斌.GI-920炸药加速老化模拟[J].火炸药学报.2008,31(3):58.60
    [12]马平,李国仲.粉状乳化炸药热分解动力学研究[J].爆破器材.2009,38(3):1-3
    [13]王瑾,马志钢,刘治兵.水胶炸药的热分解动力学[J].火炸药学报.2007,30(3):52.54
    [14]Atsumi M, Motohiko S, Yasushi O. Prediction and evaluation of the ractivity of self-reactive suances using microcalorimetries [J]. Thermochim Acta.2000,352: 181-188.
    [15]Coates C F. The ARC in chemical hazard evaluation [J]. Thermochim Acta.1985,86: 369-372
    [16]Townsend D I, Tou J C. Thermal hazard evaluation by accelerating rate calorimeter [J]. Thermochim Acta.1980,37:1-30
    [17]David E G, Feng C G, Kenneth J M, Rainer A A. Parameters affecting the thermal behavior of emulsion explosives [J]. Thermochim Acta.1999,331:37-44
    [18]Fu Z M, Feng C G, Qian X M. The thermal stability evaluation of a new emulsion explosive by using adiabatic self heating method [A]. Progress in Safety Science and Technology, VolⅡ,Part B [C]. Beijing:Chemical Industry Press,2000
    [19]Chen L, Feng C G. Theory and application of energetic materials[M]. Beijing:China Science and Technology Press,2001
    [20]Pauline P L, Margaret H B. Kinetic studies on the thermal decomposition of tetyryl using accelerating rate calorimetry [J]. Thermochim Acta.1986,107:1-16
    [21]Kenneth J M, David E G. Thermal analysis of monomethylammonium nitrate [J]. Thermochim Acta.1996,284:229-240
    [22]Wan X Z, Ou Y X, Chen B R, Feng C G. Determination of thermal stability of ε-CL-20 and HMX using accelerating rate calorimeter [A]. Proceedings of the Third Beijing International Symposium on Pyrotechnics and Explosives[C]. Beijing,1995
    [23]Manfred A B. Determination of the kinetic data of the thermal decomposition of energetic plasticzer and binder by adiabatic self heating [J]. Thermochim Acta.1999,337: 121-139
    [24]Macneil D D, Christensen L, Landucci J. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature [J]. J Electrochem Soc.2000,147(3): 970-979
    [25]Hossein M, Deng G P, Inna K H, Anaba A, Jason N H. Thermal stability of binder materials in anodes for lithium-ion batteries [J]. J Electrochem Soc.2000,147(12): 4470-4475
    [26]Kawamura T, Kimura A, Egashira M, Okada S, Yamaki J I. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells [J]. J Power Soures.2002,104: 260-264
    [27]Richard M N, Dahn J R. Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte [J]. J Power Soures.1999,83:71-74
    [28]Degroot P B, Niemitz K J. A spread sheet kinetic model and its use to compare ARC and Dewar storage test data for two exothermic decompositions [J]. Thermochim Acta.1993, 225:177-188
    [29]胡荣祖,赵凤起,高红旭,张海,松全才.非线性等转化率的微、积分法及其在含能材料物理化学研究中的应用——Ⅰ.理论和数值方法[J].含能材料.2007,15(2):97-100
    [30]Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions [J]. J Therm Anal Cal.2002,68:131-139
    [31]Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy [J]. J Comput Chem.2001,22(2):178-183
    [32]Doyle C D. Kinetic analysis of thermogravimetric data [J]. J Appl Polym Sci.1961, 5(15):285-292
    [33]Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull Chem Soc Jpn. 1965,38(11):1881-1886
    [34]于清溪.橡胶原材料手册[M].北京:化学工业出版社,1995
    [35]赵国良,靳长德.有机物热力学数据的估算[M].北京:高等教育出版社,1983
    [36]高大元,徐容,董海山,李波涛,吕春绪.TATB及其杂质的绝热分解研究[J].爆炸与冲击.2004,24(1):69-74
    [37]郭洪.利用加速量热仪(ARC)研究热分析动力学反应机理[J].曲靖师范学院学报.2005,24(3):1-3
    [38]王志新,李国新,劳允亮,李浩.用加速量热仪研究PBX-HKF的热稳定性[J].含能材料.2005,13(2):113-114
    [39]侯建德,傅智敏,黄金印.物质热稳定性评估方法研究[J].消防科学与技术.2002,2:21-24
    [40]郭洪,钱新明,朱华侨,郭少华.用加速量热仪研究TATB的热分解[J].火工品.2004,1:52-54
    [41]钱兴明,傅智敏,张文明,冯长根. NH4NO3和NH4ClO4的绝热分解研究[J].含能材料.2001,9(4):156-160
    [42]刘祖亮,周新利,吕春绪.膨化硝酸铵绝热分解的加速量热法研究[J].南京理工大学学报(自然科学版).2004,28(6):643.648
    [43]周新利,刘祖亮,吕春绪.3#煤矿许用膨化硝铵炸药的绝热分解[J].火炸药学报.2007,30(5):15-18
    [44]Oxley C, James L. Ammonium nitrate:thermal stability and explosivity modifiers [J]. Thermochim Acta.2002,383:23-45
    [1]刘子如.含能材料热分析[M].北京:国防工业出版社,2008
    [2]楚士晋.炸药热分析[M].北京:科学出版社,1994
    [3]刘振海.热分析导论[M].北京:化学工业出版社,1991
    [4]Anderson K L, Merwin L H, Wilson W S, Faceli J C.15N chemical shifts in energetic materials:CP/MAS and ab Initio studies of aminonitropyridines, aminonitropyrimidines, and their N-oxides [J]. Int J Mol Sci.2002,3:858-872
    [5]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis [J]. Thermochim Acta.2002,384(1):187-204
    [6]李金山,黄亦刚,董海山,杨光成.多硝基吡啶的密度泛函理论研究[J].含能材料.2003,11(4):178-180
    [7]李金山,黄亦刚,董海山.多硝基吡啶及其氮氧化物性能的理论预测[J].含能材料.2003.12:576-579
    [8]何志伟,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物为基的耐热混合炸药性能[J].含能材料.2010,18(1):97-101
    [9]成健,姚其正,周新利,杜杨,方东,刘祖亮.2,6二氨基-3,5-二硝基吡啶-1-氧化物的合成与性能[J].含能材料.2008,16(6):672-674.
    [10]付秋菠,舒远杰,黄奕刚.FOX-7的热分解机理[J].固体火箭技术.2010,33(1):77-80
    [11]金朋刚,常海,陈智群,潘清,汪渊.PYX红外热行为研究[J].火炸药学报.2006,29(2):69-71
    [12]刘子如,刘艳,范夕萍,赵凤起.RDX和HMX的热分解Ⅲ.分解机理[J].火炸药学报.2006,29(4):14.18
    [13]Brill T B. Thermal decomposition of energetic materials.62. reconciliation of kinetics and mechanisms of TNT on the time scale from microseconds to hours [J]. J Phys Chem. 1993,97:8795-8763
    [14]Ritter H, Licht H. Review of energetic materials synthesis [J]. J Heterocycl Chem.1995, 32:585-590
    [15]王艳红,宋元军,胡桢,景介辉,孟祥丽,黄玉东.一个简易的2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成方法[J].有机化学.2009,29(5):780-783
    [16]Hollins R A, Nissan R A, Wilson W S, Gilardi R D.2,6-diamino-3,5-dinitro-pyridine-1-oxide:a new insensitive explosive [R]. China Lake, CA:NAWCWPNS Technical Publication,1995
    [17]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature. 1964,201:68-69
    [18]常海.PYX的热分解特性[J].火炸药学报.2007,30(2):36-40
    [19]陈智群,郑晓华,刘子如,汪渊,潘清. TATB、DATB热分解动力学和机理研究[J].固体火箭技术.2005,28(3):201-204
    [20]Brill T B. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives [J]. Chem Rev.1993,93:2667-2692
    [21]潘青,汪渊.NEPE推进剂的热分解研究(Ⅳ)[J].火炸药学报.2003,26(3):78-80
    [22]李艳春,闫石,成一.RDX热分解的TG-DSC-QMS-FTIR同步动力学[J].火炸药学报.2009,32(1):32-35
    [23]张华,彭勤纪,李亚明,张蓉.现代有机波谱分析[M].北京:化学工业出版社,2005
    [24]左玉芬,常昆,陈捷,陈克梅,王新锋,房永曦.TEX的热分解特性研究[J].含能材料.2006,14(5):385-388
    [25]陈智群,郑晓龙.HNS热行为研究[J].含能材料,2005,13(4):249-251
    [26]Lei M, Liu Z R, Kong Y H, Yin C M, Wang B Z, Wang Y, Zhang P. The thermal behavior of potassium dinitramide Part 2. Mechanism of thermal decomposition [J]. Thermochem Acta.1999,335:113-120
    [27]Tsang W, Robaugh D, Mallard W G. Single-pulse shock-tube studies on C-NO2 band cleavage during the decomposition of some nitro aromatic compounds [J]. J Phys Chem. 1986,90(22):5968-5973
    [28]He Y Z, Cui J P, Mallard W G, Tsang W. Homogenous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition [J]. J Am Chem Soc.1988, 110(12):3754-3759
    [1]吕春绪.耐热炸药分子结构分析与合成研究[J].含能材料.1993,1(4):13-17
    [2]周兴喜.日本炸药合成及应用近况[J].火炸药.1992,3:39-40
    [3]陈鲁英,张川,杨培进,石健.以六硝基二苯砜为基的耐热混合炸药的性能[J].火炸药学报.2004,27(2):26-27
    [4]王军,黄靖伦,廖龙渝,李洪珍,聂福德,黄黎明,李金山.一种PYX制备技术[J].含能材料.2008,16(4):480-481
    [5]陆明,吕春绪.2,6-二(2',4',6'-三硝基-3'-氨基苯胺基)-3,5-二硝基吡啶的合成[J].化学世界.2000,3:135-138
    [6]薛长荣,甘云清.测定2,6-双(苦氨基)-3,5-二硝基吡啶纯度的研究[J].火炸药.1997,1:20-21
    [7]封雪松.高聚物粘结耐热炸药HNS的配方研制及表面界面性能的研究[D].南京:南京理工大学,2001
    [8]惠君明.六硝基茋炸药及其应用[J].爆破器材.1990,57(4):9-12
    [9]Jockson C L, Wing J F. On the action of nitric acid on symmetric trichlorobenzene[J]. J Amer Chem Soc.1887,9:348-349
    [10]魏运洋.1,3,5-三氨基-2,4,6-三硝基苯的合成新法[J].应用化学.1990,7(1):70-71
    [11]孙荣康,魏运洋.硝基化合物炸药化学与工艺学[M].北京:兵器工业出版社,1992
    [12]吕春绪.耐热硝基芳烃化学[M].北京:兵器工业出版社,2000
    [13]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis [J]. Thermochim Acta.2002,384(1):187-204
    [14]李金山,黄亦刚,董海山,杨光成.多硝基吡啶的密度泛函理论研究[J].含能材料.2003,11(4):178-180
    [15]何志伟,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物为基的耐热混合炸药性能[J].含能材料.2010,18(1):97-101
    [16]Richard A H, Lawrence H M, Robin A N, William S W, Richard G. Aminonitropyridines and their N-Oxides[J]. J Heterocyclic Chem.1996,33:895-904
    [17]何志伟,高大元,刘祖亮,2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学[J].火炸药学报.2009,32(2):32-36
    [18]Hans-Heinrich L. Performance and Sensitivity of Explosives [J]. Prop Explos Pyrotech. 2002,25(3):126-132
    [19]杨朝卿,冯国富,戴蓉兰.射孔弹用炸药药柱耐热试验研究[J].爆破器材.1992, 68(3):8-11
    [20]成建龙,孙宪宏,乔晓光,艾晓莉.油气井用火药的耐高温性能研究[J].测井技术.2008,32(2):95-99
    [21]邓明哲,叶志虎,赵省向,田战怀.耐热炸药PCS的合成及应用[J].火炸药学报.2007,30(5):42-44
    [22]董黎明.氟橡胶粘结TATB/HNS配方及其表明界面性能的研究[D].西安:西安近代化学研究所,2003
    [27]耿俊峰,劳允亮.对高分子塑性耐热炸药的界面化学研究[J].北京理工大学学报.1991,11(2):87-93
    [28]欧育湘.炸药学[M].北京:北京理工大学出版社,2006
    [29]郭圣延,徐永胜.影响石油射孔弹穿孔深度的几个主要因素[J].测井技术.2005,29(增刊):52-54
    [30]王艳萍,黄寅生,刘德全.浅谈石油射孔弹技术设计[J].煤矿爆破.2001,52(1):22-24
    [31]李晋庆.几种新型石油射孔弹的研究和讨论[J].爆破器材.2003,32(4):27-30
    [32]潘永新.射孔弹穿深性能评价方法初探[J].测井与射孔.2007,4:72-73
    [33]向旭,赵世华,周伏虎.石油射孔弹金属射流穿孔机理及金属粉末选用研究[J].测井技术.2000,24(6):448-450
    [34]石健,王宝兴,郭红军,郭惊雷,高强.装药与药型罩不对称因素对射孔弹性能的影响[J].测井技术.2007,31(5):500-503
    [35]王军.提高炸药威力和猛度的方法研究[J].爆破器材.2005,34(2):16-18
    [1]肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计[M].北京:科学出版社,2008
    [2]Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials [J]. J Phys Chem A.2006,110:5929-5933
    [3]许晓娟,肖鹤鸣.新潜在高能量密度化合物(HEDC)多硝酸酯基金刚烷由气态到固态的理论研究[J].中国科学B辑:化学.2009,39(5):470-471
    [4]许晓娟,肖鹤鸣.多硝基四面体烷结构和性能的理论研究[J].化学学报.2008,66(20):2219-2226
    [5]王桂香,肖鹤鸣,居学海,贡雪东.含能材料的密度、爆速、爆压和静电感度的理论研究[J].化学学报.2007,65(6):517-524
    [6]Ritter H, Licht H. Review of energetic materials synthesis [J]. J Heterocycl Chem.1995, 32:585-590
    [7]何志伟,成健,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的精制及其性能研究[J].含能材料.2009,17(4):392-395
    [8]张熙和,丁来欣,朱广军.炸药的实验室制备方法[M].北京:国防工业出版社,1997
    [9]Hans-Heinrich L. Performance and sensitivity of explosives [J]. Prop Explos Pyrotech. 2002,25(3):126-132
    [10]Miao Y L, Zhang T L, Qiao X J, Zhang J G, Yu R G, Yu K B. Characterization and crystal structure of 2,6-Diamino-3,5-dinitropyridine-l-oxide [J]. Chin J Explos Propellents.2003,26:37-40
    [11]李金山,黄亦刚,董海山,杨光成.多硝基吡啶的密度泛函理论研究[J].含能材料.2003,11(4):178-180
    [12]李金山,黄亦刚,董海山.多硝基吡啶及其氮氧化物性能的理论预测[J].含能材料.2003,12:576-579
    [13]Jadeja R N,Shirsat R N, Suresh E. Ab initio study and its comparison with X-ray crystal structure of 4-[1-(4-Chloro-pheylamino)-ehtyl] 5-methyl-2-p-tolyl-2,4-dihydropyrazol-3-one [J]. Struct Chem.2005,16:515-520
    [14]Chung G S, Schmidt M W, Gordon M S. An ab initio study of potential energy surfaces for N8 isomers [J]. J Phys Chem A.2000,104:5647-5650
    [15]Hollins R A, Nissan R A, Wilson W S, Gilardi R D.2,6-diamino-3,5-dinitro-pyridine-1-oxide:a new insensitive explosive [R]. China Lake, CA:NAWCWPNS Technical Publication,1995
    [16]Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-principles simulation:ideas, illustrations and the CASTEP code [J]. J Phys.2002,14: 2717-2743
    [17]Saunders V R, Dovesi R, Roetti C, Causa M, Harrison N M, Orlando R, Zicovich-Wilson C M. Crystal 98. Torino, Italy:University of Torino,1998
    [18]Monkhorst H J, Pack J D. On special points for brillouin zone integrations [J]. Phys Rev B.1976,13:5188-5192
    [19]Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies, some procedures with reduced errors [J]. Mol Phys.1970,19: 553-559
    [20]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A J, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision B.03. Pittsburgh PA:Gaussian, Inc, 2003
    [21]居学海,姬广富,邱玲,肖鹤鸣.Cu+和Ag+叠氮盐晶体的周期性ab initio计算[J].高等学校化学学报.2005,26(11):2125-2127
    [22]Hoffmann R. Solids and surfaces:a chemist's view of bonding in the extended structures, New York:VCH Publishers,1988
    [23]Kortus J, Pederson M R, Richardson S L. Density functional-based prediction of the electronic, structural, and vibrational properties of the energetic molecules: octanitrocubane [J]. Chem Phys Lett.2000,322:224-230
    [24]Mulliken R S, Ermler W C. Diatomic molecules:results of ab initio calculations [A], New York:Academic, pp 33-38,1977
    [25]Reed A E, Weinstock R B, Weinhold F. Natural population analysis [J]. J Chem Phys. 1985,83:735-746
    [26]Dovesi R, Causa M, Orlando R, Roetti C. Ab initio approach to molecular crystals:a periodic hartree-fock study of crystalline urea [J]. J Chem Phys.1990,92:7402-7411
    [27]Ju X H, Xiao H M, Xia Q Y. A density functional theory investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal [J]. J Chem Phys.2003,119: 10247-10255
    [28]Kim K S, Tarakeshwar P, Lee J Y. Molecular cluster of π-systems:theoretical studies of structures, spectra, and origin of interaction energies [J]. Chem Rev.2000,100: 4145-4186
    [29]Gibbs T R, Popolato A. LASL explosive property data [M], Berkeley:University of California Press,1980
    [30]Parker A, Claridge R P, Hamid J. Particle size modification of thermally stable secondary explosives for IM applications [J]. Prop explos Pyrotch.2008,33(1):55-59
    [1]欧育湘.炸药学[M].北京:北京理工大学出版社,2006
    [2]孙荣康,任特生,高怀琳.猛炸药化学与工艺学(上册)[M].北京:国防工业出版社,1982
    [3]Ritter H, Licht H. Review of energetic materials synthesis [J]. J Heterocycl Chem.1995, 32:585-590
    [4]Hans-Heinrich L. Performance and sensitivity of explosives [J]. Prop Explos Pyrotech. 2002,25(3):126-132
    [5]王艳红,宋元军,胡桢,景介辉,孟祥丽,黄玉东.一个简易的2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成方法[J].有机化学.2009,29(5):780-783
    [6]成健,姚其正,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成新方法[J].含能材料.2009,17(2):166-168
    [7]何志伟,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物为基的耐热混合炸药性能[J].含能材料.2010,18(1):97-101
    [8]何志伟,刘祖亮,王爱玲.2,6-二氨基-3,5-二硝基吡啶-1-氧化物对RDX性能的影响[J].火炸药学报.2010,33(1):11-14
    [9]孙荣康,魏运洋.硝基化合物炸药化学与工艺学[M].北京:兵器工业出版社,1992
    [10]胡庆贤,吕子剑.TATB、石蜡、石墨钝感作用的讨论[J].含能材料.2004,12(1):26-29
    [11]聂福德,杨雪海,张凌,孙杰,胡庆贤.HMX/TATB基PBX的感度与表明形态的关系探索[J].火炸药学报.2001,3:20-21
    [12]徐容,田野,刘春.TATB对CL-20降感研究[J].含能材料.2003,11(4):219-221
    [13]Heinz H, Karl R. Process for the production of a pressed insensitive explosive mixture [P].USP0216822 A 1,2004
    [14]孙杰,黄辉,张勇,郑敏侠,刘俊玲.TATB原位包覆HMX研究[J].含能材料.2006,14(5):132-134
    [15]周润强,.曹端林,王建龙,李永祥.硝酸脲与黑索今混合炸药的制备及其应用[J].含能材料.2007,15(2):109-111
    [16]骆兵,王凤英. LOVA炸药钝感机理探讨[J].安全与环境学报.2004,4(增刊):103-106
    [17]Becuwe A, Delclos A. Low-sensitive explosive compounds for low vulnerability warheads [J]. Prop Explos Pyrotech.1993,18:1-10
    [18]王昕.美国不敏感混合炸药的发展现状[J].火炸药学报.2007,30(2):78-80
    [19]黄辉,王泽山,黄亨建,李金山.新型含能材料的研究进展[J].火炸药学报.2005,28(4):9-12
    [20]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995
    [21]孙国祥.高分子混合炸药[M].北京:国防工业出版社,1985
    [22]《混合炸药》编写组.猛炸药的化学与工艺学(下册)[M].北京:国防工业出版社,1983
    [23]王保国,陈亚芳,张景林.亚微米HMX/FPM2602超细混合炸药的制备工艺研究[J].含能材料.2008,16(2):142-145
    [24]Oraechowski A, Maranda A, Powala D, Bordowski J. Determination of sensitivity of plastic explosive containing insensitivity explosives [J]. Chin J Energ Mater.2004,6: 364-367
    [25]陈鲁英,赵省向,杨培进,衡淑云,李巍,黄小悟.CL-20炸药的包覆钝感研究[J].含能材料.2006,14(3):171-173
    [26]Simpson R L, Urtiew P A, Ornellas D L, Moody G L, Scribner K J, Hoffman D M. CL-20 performance exceeds that of HMX and its sensitivity is moderate [J]. Prop Expos Pyrotech.1997,22:249-255
    [27]宋小兰,郭效德,张景林,安崇伟,李凤生.粒度及粒度分布对硝铵类炸药及其混合炸药安全性能的影响[J].火工品.2007,(3):17-20
    [28]Lee J S, Hsu C K, Chang C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX [J]. Thermochim Acta.2002,392:176-176
    [29]南海,王晓峰.DADE及其混合炸药的机械感度[J].火炸药学报.2006,29(1):23-25
    [30]高大元.混合炸药爆轰与安全性能实验与理论研究[D].南京:南京理工大学,2003
    [31]何志伟,高大元,方东,等.包覆对新型炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物某些性能的影响[J].含能材料.2009,17(3):299-303
    [32]陈洪伟,吴晓青,吴艳光.硝胺炸药颗粒包覆研究及其进展[J].天津化工.2009,23(3):9-12
    [33]松全才,魏化震.PBX颗粒力学性质对其撞击感度影响的初步研究[J].爆炸与冲击.1990,10(3):244-249
    [34]胡庆贤.塑料粘结炸药的感度测试方法及钝感机理的讨论[J].火炸药学报.2002,1:57-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700