公路火灾温度场数值模拟及大跨径缆索承重桥梁火灾分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥拉索和悬索桥主缆、吊索是主要承重构件,多采用平行钢束、钢丝绳或钢绞线作为承重材料。耐火性能差是钢结构的一个致命弱点。随着公路运输事业的发展,车辆火灾发生的频率越来越高,火灾规模越来越大,对结构物的破坏越来越严重。目前,对大跨径缆索承重桥梁的火灾研究尚处于空白阶段,开展大跨径缆索承重桥梁火灾对结构安全性能影响的研究极其必要,可为今后缆索承重桥梁的抗火设计提供重要的科学依据。本文主要研究内容如下:
     (1)在国内外研究工作的基础上,基于Ingason H.平方增长模型,提出了适用于公路桥梁火灾研究的车辆火灾和汽油池火灾的热释放率数学模型。
     (2)采用火灾动力学模拟软件FDS(Fire Dynamics Simulator)对公路火灾下缆索承重桥梁瞬态空间温度场进行数值模拟,并通过开放空间油罐火灾实验中实测的温度场数据与数值模拟的结果进行对比分析,证实了模拟过程中模型建立的正确性。
     (3)建立了公路火灾大气最高温度空间温度场。
     建立了公路桥梁火灾的物理模型,确定了车辆火灾和油池火灾各工况燃烧热源的尺寸和单位面积释热率。根据建立的物理模型,通过数值模拟得出了公路火灾大气温度场随释热率变化的规律、编制了各工况恒定温度场释热口平面上的温度值分布表格,给出空间温度场随高度变化的规律公式,从而模拟出整个空间大气温度场的最高温度分布。
     (4)建立了公路火灾下缆索承重桥梁承重构件瞬态空间温度场。
     根据建立的物理模型,通过数值模拟给出火灾各工况下悬索桥主缆、吊索以及不同直径斜拉索表面温度及热流密度随火灾的发展过程而变化的规律公式,并编制了最大燃烧持时处的温度及热流密度表格,从而建立了承重构件瞬态空间温度场。通过温度场的建立,得出了钢构件截面尺寸对其表面温度及热流密度变化过程的影响;同一火灾工况下,不同直径的悬索桥主缆不同位置具有相同的Tt2时,可以采用相同的表面温度及热流密度随火灾的发展过程而变化的规律公式。
     (5)通过对国内外已有的高温下钢材材料特性的研究做了详细比较,确定采用欧洲规范EUROCODE4规定的预应力钢筋的高温强度和弹性模量降低系数和高温下钢材的应力-应变关系Rubert-Schaumann模型进行缆索承重桥梁(悬索桥和斜拉桥)在火灾下的全过程分析。
     (6)给出了公路火灾下缆索承重桥梁承重构件的安全距离,明确了其抗火设计范围。
     通过热—结构耦合分析,确定了火灾各工况作用下悬索桥0.4~1.0m范围内不同直径主缆的安全距离、悬索桥吊索的安全距离、斜拉桥0.05~0.2m范围内不同直径斜拉索的安全距离;安全距离之内的构件,火灾对其力学性能不会造成影响,不需要考虑抗火设计。
     (7)根据建立的缆索承重桥梁承重构件瞬态空间温度场,采用ANSYS有限元程序,选择间接耦合法进行斜拉桥和悬索桥实例的热—结构耦合全过程数值模拟,分析了结构的温度场分布、内力和位移特征以及破坏模式,得到了不同火源模型下结构的极限状态。不同缆索承重桥梁在公路火灾下的极限状态可根据本文建立的承重构件瞬态空间温度场进行热—结构耦合的全过程数值分析。
     综上所述,公路火灾最不利状态下会对缆索承重桥梁的安全造成隐患,火灾如果得不到及时扑救,将使其丧失正常使用功能,严重时会导致大桥的损毁;火灾对悬索桥的影响是致命的,悬索桥主缆是不可更换构件,一旦在火灾作用下主缆发生较大的伸长变形,将会导致加劲梁的变形,使其丧失使用功能。本文的研究成果,对缆索承重桥梁抗火设计和工程实践具有重要的参考意义。
Cables of cable-stayed bridge, and the main and suspender cables of suspension bridgeare the main bearing elements, which are usually made of parallel steel wires, wire rope orsteel strands. Poor fire resistance is a fatal weakness of steel structure. With the developmentof highway transportation, it is more and more likely to see vehicle fire accidents on thehighways and the fire scale is becoming bigger and bigger; consequently, the damage tostructure of bridge is becoming more and more serious. At present, studies on the fireaccidents on long-span cable bearing bridges are still in the blank stage. Therefore, it isextremely necessary to conduct researches on the effects of fire accidents on the structuralsafety performance, which can provide some important and valuable scientific bases for thefire resistance design of cable supporting bridge. The followings are what the present papermainly discusses in this research:
     (1)After reviewing and analyzing studies conducted at home and abroad, and based onthe Ingason H. Square Growth Model, this paper puts forward several kinds of thermal releaserate mathematical models, which are suitable for the fire studies of highway bridges, forvehicle and for gasoline pool fire.
     (2)In this research, the Fire Dynamics Simulator (FDS) is used to numerically simulatethe transient space temperature field of the cable bearing bridge in the highway fire. Bycontrasting and analyzing the measured data obtained from a tank fire experiment in the openspace and the data from the numerical simulation of temperature field, this study validates theaccuracy of modeling in numerical simulation.
     (3)Establish the space temperature field when the atmospheric temperature reaches thehighest in the highway fire.
     We build a physical model for highway bridge fire, and determine the size of combustionheat source and the heat release rate per unit area of the vehicle and pool fire in operatingconditions. Based on the established physical model, we obtain the regular pattern of how theatmospheric temperature field varies with the heat release rate change through the numericalsimulation, make a table of surface temperature distribution showing heat release in theconstant temperature field, and present the formula of how space temperature field varies withheight. Knowing that, we can simulate the highest temperature distribution of the wholeatmospheric temperature field.
     (4)Establish the transient space temperature field of bearing elements of cable bearingbridges in the highway fire.
     Based on the established physical model, we observe the trend of how the surfacetemperature and heat flux of main and suspender cables of suspension bridge as well asstayed-cable with different diameters changes with fire situation through the numericalsimulation, and create a table of temperature and heat flux at maximum combustion point.Therefore, the transient space temperature filed of bearing elements is established, from which we know the process of how the cross-section size of steel components influences itssurface temperature and heat flux. Under the same conditions of fire accidents, the sameformula of how the surface temperature and heat flux changes with fire situation can beapplied to main cables of suspension bridge with different diameters when they have thesameTt2at different places.
     (5)After a thorough comparison of existing studies on steel material properties at hightemperature home and abroad, we decide to employ the high temperature strength, the elasticmodulus decreasing coefficient and the stress-strain Rubert-Schaumann model at hightemperature, which is regulated by the European standard EUROCODE4, to analyzecompletely the cable bearing bridges (suspension bridge and cable-stayed bridge) under thefire occasion.
     (6)This study gives the safety distance of bearing elements of cable bearing bridgesand clarifies its design range of fire resistance.
     By the heat-structure coupling analysis, we determined the safety distance of main cableswith different diameters as well as suspender cable of suspension bridge (0.4~1.0m), and thesafety distance of stay cables with different diameters of cable stayed bridge (0.05~0.2m).As for those constructional elements within the safety distance, fire has no effect on theirmechanical properties, thus we need not take the fire resistance design into consideration.
     (7)Based on the transient space temperature filed of bearing elements of cable bearingbridges, and using ANSYS finite element software and indirect coupling method with whichwe conduct a practical and complete heat-structure coupling numerical simulation ofcable-stay brigade and suspension bridge, we studied the distribution of structural temperature,features of internal force and displacement and failure mode. From that we know the limitstate of cable structures in different fire models. According to the transient space temperaturefield of bearing elements established in this study, we can make a complete heat-structurecoupling numerical analysis of the different limit states of different cable bearing bridgesunder the highway fire.
     To sum up, fire, to the worst, could become a potential safety hazard to cable-supportedbridges. If it is not controlled and extinguished promptly, it could cause the bridge lose itsnormal functions, and even cause serious damage to the bridge. The influence of fire onsuspension bridge is fatal because main cables of suspension bridge are irreplaceable. Oncethe main cables, affected by fire, elongate and distort greatly, they will cause the deformationof the stiffening girder and make it lose its normal function. This paper has got somewhere inthis field, and we hope that the findings will be of great significance in fire-resistance designfor cable bearing bridges and engineering practice.
引文
[1]刘勇先,李孟.高速公路交通事故的消防处置对策[J].中国科技信息,2010,(11):154-155
    [2]赵大林,魏东等.汽油储罐火灾燃烧特性的实验研究[J].工程热物理学报,2004,25(2):341-344
    [3]郑学志,朱连双,陈饪.油罐灭火系统的设计与应用[M].北京:中国石化出版社,1999
    [4]贾玉莲.油罐车火灾的数值模拟[D].太原:中北大学,2010
    [5] Li Lijun,Hu Zhaotong and Liu Qiang. Study on heat release rate model in steel bridge highwayfire[J].Applied Mechanics and Materials,2012,170-173:2535-2540
    [6]姚运涛,杜扬.油罐火灾模式及火行为的研究[J].天然气与石油,2000,18(3):20-31
    [7] BlinovV. I.,KhudyakovG. n.. Certain Laws Governing Diffusion Burning of Liquids(R). DokladyAkademii Nauk,USSR1957
    [8] Chang Qian,Ghassan Tashtoush,Akihiko Ito,et al. Structure of large scale pool fires[A],International Conference on Fire Research and Engineering[C],Oriando,FL,1995
    [9] Hiroshi Koseki, Yusaku lwata. Tomakomi Large Scale Crude Oil Fire Experiments[J]. FireTechnology,2000,36(1),24-38
    [10] Hiroshi Koseki. Radiation properties and flame structure of large hydrocarbon poolfires[R]. FireResearch Institute,3-14-1Nakahara Mitaka,Tokyo181Japan,2000
    [11] Eula'lia Planas-Cuchi,Joaquim Casal,Modelling Temperature Evolution in EquipmentEngulfedin aPool Fire[J]. Fire Safety Journal,1998,30,251-268
    [12]杨君涛,魏东.着火油罐燃烧过程预测的通用模型[J].工程热物理学报,2005.3(26):335-338
    [13]丛北华,廖光煌,韦亚星.计算机模拟在火灾科学与工程研究中的应用[J].防灾减灾工程学报,2003,23(2):63-69
    [14]罗涛.预应力网架结构的抗火理论与计算研究[D].阜新:辽宁工程技术大学,2003
    [15]陈波,郑瑾,岳磊.网壳结构火灾反应非线性有限元分析[J].武汉理工大学学报,2007,29(6):69-84
    [16]李国强,周焕廷.索网结构抗火实用设计方法[J].空间结构,2007,13(4):43-50
    [17]周焕廷,李国强,罗永峰.悬索及其索网在高温(火灾)作用下的计算[J].工业建筑,2009,39(2):106-108
    [18]白音,石永久,王元清.大空间索支承结构火灾下力学性能理论分析与数值模拟[J].中国科学,2009,39(7):1319-1328
    [19]荣献丽.弦支穹顶结构抗火反应分析[D].北京:北京工业大学,2007
    [20]刘永军,姚斌,陈长坤,等.性能化结构抗火设计的若干关键问题[J].消防科学与技术,2003,22(6):473-476
    [21]李耀庄,朱国朋,邝宇幸.大空问钢网架结构的性能化抗火分析[J].消防科学与技术,2008,27(6):395-398
    [22]李国强,杜咏,王银志,等.杭州国际会议中心钢结构抗火性能评估与设计[J].建筑钢结构进展,2006,8(1):14-22
    [23]陈适才,任爱珠,唐方勤,等.火灾下大空问网架结构的抗倒塌分析方法[J].钢结构,2007,8(22):85-88
    [24]史健勇,任爱珠,陈驰.基于计算机仿真模拟系统的奥运场馆火灾安全分析[J].工程抗震与加固改造,2005,27增刊:221-227
    [25] Gustaferro A. H.. Design of Prestressed Concrete for Fire Resistance[J]. Journal of the PrestressedConcrete Institute,1973,18(6):102-116
    [26] Gustaferro A. H.,S. L. Selvaggio.Fire Endurance of Simply-supported Prestressed Concrete Slabs[J].Journal of the Prestressed Concrete Institute,1967,12(1):37-52
    [27] Joseph T. R.,Son I.. Report on Unbonded Post-tensioned Prestressed,Reinforced Concrete Flat PlateFloor with Expanded Shale Aggregate[J]. Journal of the Prestressed Concrete Institute,1968,13(2):45-56
    [28] Abrams M. S.,Gustaferro A. H.. Fire Endurance of Prestressed Concrete UnitsCoated withSpray-applied Insulation[J]. Journal of the Prestressed ConcreteInstitute,1972,17(1):82-103
    [29]侯晓萌.预应力混凝土梁板抗火性能与抗火设计方法研究[D].哈尔滨:哈尔滨工业大学,2009
    [30] Ellingwood B.,Lin T. D.. Flexure and Shear Behavior of Concrete Beams during Fires[J]. Journal ofStructural Engineering ASCE,1991,117(2):440-458
    [31] Kodur V. R.,Dwaikat M. B.. A Numerical Model for Predicting the Fire Resistance of ConcreteBeams[J]. Cement Concrete Composites,2008,30(5):431-443
    [32]沈玉根.高温后预应力混凝土受弯构件受力性能的研究[D].成都:西南交通大学,1992
    [33]郑文忠,胡琼,张昊宇.高温下及高温后1770级Ф5低松弛预应力钢丝力学性能试验研究[J].建筑结构学报,2006,27(2):120-128
    [34]张昊宇,郑文忠.1860级Ф5钢丝抗火性能试验研究[J].哈尔滨工业大学学报,2007,39(6):861-865
    [35]范进,吕志涛.受高温作用时预应力钢绞线性能的试验研究[J].建筑结构,2002,32(3):50-63
    [36]李猛.桥梁拉索安全性能鉴定技术研究[D].广州:华南理工大学,2010
    [37]奚勇.火灾受损桥梁的检测与评估[J].世界桥梁,2007(4):8-13
    [38]刘其伟,王峰,徐开顺,等.火灾受损桥梁检测评估与加固处理[J].公路交通科技,2005,22(2):71-74
    [39]钟委,霍然,史聪灵.热释放速率设定方式的几点讨论[J].自然灾害学报,2004,13(2):64-69
    [40]胡维撷.道路隧道防火要求[J].地下工程与隧道,1989,(1):10-14
    [41] Haack A. Fire safety conception in vehicle tunnel[A]. Proceedings of Highway Tunnel TechnicalCommunion of2001' China-Switzerland[C],Beijing,2001
    [42] PIARC Committee on Road Tunnels. Fire and Smoke Control in Road Tunnels[R]. France: PIARC,1999
    [43] Gonzalel J.A.,Danziger N.H.. Tunnel ventilation design for fire safety[A].6th Internationalsymposium on the aerodynamics and ventilation of vehicle tunnels[C].England,Sept1988:575-592
    [44]杨涛.公路隧道火灾热释放率及通风方式研究[D].西安:长安大学,2009
    [45]姚坚.公路隧道内火灾温度场分布规律数值模拟分析[D].上海:同济大学,2007
    [46]赵峰.公路隧道运营风险评估及火灾逃生研究[D].西安:长安大学,2010
    [47] Ingason H.. Fire growth rate is more important than maximum heat release rate in tunnel fires[A].Tunnel Management International[C]. M lardalens h gskola, Akademin f r h llbar samh lls-ochteknikutveckling,2006
    [48] Ingason H.,BergqvistA.,L nnermark A.,et al. R ddningsinsatser i v gtunnlar R ddningsverket[R],S ren Lundstrom,2005
    [49] Ingason H. Design Fires in Tunnels[A]. Safe&ReliableTunnels,InnovativeEuropeanAchievements,Second International Symposium[C]. Lausanne,2006:1-11
    [50] Ingason H.. Fire Development in Large Tunnel Fires[A].8th International Symposiumon Fire SafetyScience[C]. Beijing,China,2005:18-23
    [51] NumajiriF.,FurukawaK.. Short Communication: Mathematical Expression of Heat Release RateCurve and Proposal of'Burning Index[J]. Fire and Materials,1998,22:39-42
    [52] OECD. Safety in Tunnels: Transport of Dangerous Goods Through Road Tunnels [M]. Paris: OECDPublications,2001
    [53]路春森.建筑结构耐火设计[M].北京:中国建材工业出版社,1995
    [54] Versteeg H.K.,Malalasekera W..An Introduction to Computational Fluid Dynamics:The FiniteVolume Method.Wiley,New York,1995
    [55] Cousin S.. Investigation of flow in an axially symmetric heated jet of air [R]. NACA Advis,1943
    [56] Townsend A.A.. Measurement in the turbulent wake of a cylinder [C]. Proc. R. Soc. London Ser.A,1947,190:551-561
    [57] Townsend A.A.. The structure of turbulent shear flow [M]. Cambridge Univ. Press,1956
    [58] Grant H.L.. The large eddied of turbulent motion [J]. J. Fluid Mech.,1958,4:149-190
    [59] Kline S.J.,Reynolds W.C.,Schraub F.A.,et al. The structure of turbulent boundary layer [J]. J. FluidMech.,1967,30:741-773
    [60] Crow S.C.,Champagne. Orderly structure in jet turbulence [J]. J. Fluid Mech.,1971,48:567
    [61] Brown G.L.,Roshko A.. On density effects and large structure in turbulent mixing layers [J]. J. FluidMech.,1974,64:775-816
    [62]林建忠.湍流的拟序结构[M].北京:机械工业出版社,1995
    [63] Boussinesq J.. Theoris de I'e coulement tourbillant[J]. Mem Acad Sci,1877,23(2):46
    [64] Kolmogorov A.N.. Equations of turbulent motion of an incompressible fluid I Akad Nauk,SSSR SerPhys,1942,6(1/2):56-58
    [65] Prandtl L.. Uber ein neues Formelsystem fur die ausgebildete Turbulentz,Nachr. Akad derWissenschaft in Gpttingen,Gotingen:Van den Loeck and Ruprecht,1945:6-9
    [66] Harlow F.H.. Transport of anisotropic or low-intensity turbulence [R]. Los Alamos Sci.Laboratory,University of Cali. LA-3947,1968
    [67] Launder B.E.,Spalding D.B.. Thenumerical computation of turbulent flows [J]. ComputationalMethods and Applied Mechanics,1974,3:269-289
    [68] Bradshaw P.. Understanding and prediction of turbulent flow [J]. Int. J. Heat and Fluid Flow,1997,18:45-54
    [69] Leschziner M.A.,Rodi W.. Computation of strongly swirling axisymmetric free jets [J]. AIAAJournal,1984,22(12):1742-1749
    [70] Rodi W.. Influence of buoyancy and rotation on equations for the turbulent length scale [A]. In:2ndInt. Symp. on Turbulent shear flows[C]. Imperial College,London.1979,10:37-42
    [71] Launder B.E.,Priddin C.H.,Sharma B.I.. The calculation of turbulent boundary layers on spinningand curved surfaces [J]. J. Fluids Engineering,1979,99:363-374
    [72] Speziale C.G.. On nonlinear k-I and k models of turbulence [J]. J. Fluid Mech.,1987,178:450-475
    [73] Wilcox. Multiscale model for turbulent flows [J]. AIAA Journal,1988,26:1311-1320
    [74] Yakhot V.,Orszag S.A.. Renormalization group analysis of turbulence [J]. J. Sci. Compt.,1988,1:3-51
    [75] Jones W.P.,Launder B.E.. The calculation of low-Reynolds-number phenomena with a two-equationmodel of twbulence [J]. Int. J. Heat Mass Transfer,1973,16:1119-1130
    [76] Hanjalic K.,Launder B.E.. A Reynolds stress model of turbulence and its application to thin shearflows [J]. J. Fluid Mech.,1972,52(4):609
    [77] Launder B.E.,Reece G.J.,Rodi W.. Progress in the development of a Reynolds-stress turbulenceclosure [J]. J. Fluid Mech.,1975,68:537
    [78] Rodi W.. A new algebraic relation for calculating Reynolds stresses [J]. ZAMM,1976,56:T219
    [79] Demuren A.O.,Rodi W.. Calculation of turbulence-driven secondary motion in non-circular duct [J].J. Fluid Mechanics,1984,140:189-222
    [80] Bergles G.,Gosman A.D.,Launder B.E.. The turbulent jet in a cross stream at low injection rates:a three-dimensional numerical treatment [J].Numerical Heat Transfer,1978,1:217-242
    [81] Nikjooy M.,Mongia H.C.. A second-order modeling study of confined swirling flow [J]. Int. J. HeatFluid Flow,1991,12(1):12-19
    [82] Moin P.. Progress in large eddy simulation of turbulence flows[J].AIAA paper,1997,61,97-157
    [83] Shih T.H.,Liou W.W.,Shabbir A.,et al. A newk-eddy viscosity model for high Reynoldsnumber turbulent flows[J].Comput Fluids,1995,24(3):227-238
    [84]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [85] Gibson M.M.,Launder B.E..Ground effects on pressure fluctuations in the atmospheric boundarylayer [J].Journal of Fluid Mechanics,1978,86:491-511
    [86] LaunderB.E..Second-moment closure and its use in modeling turbulent industrialflows[J].International Journal for Numerical Methods in Fluids,1989,9:963-985
    [87] Launder B.E..Second-moment closure:present and future[J].Inter.J.Heat Fluid Flow,1989,10(4):282-300
    [88] Marzio Piller,Enrico Nobile,ThomasJ..DNS study of turbulent transport at low Prandtl numbers ina channel flow[J].Journal of Fluid Mechanics,2002,(458):419-441
    [89] Wissink J.G..DNS of separating low Reynolds number flow in a turbine cascade with incomingwakes[J].International Journal of Heat and Fluid Flow,2003,24(4):626-635
    [90] Michelassi V.,Wissink J.G.,Rodi W..Direct numerical simulation,large eddy simulation andunsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressureturbine cascade:A comparison[J]. Journal of Power and Energy,2003,217(4):403-412
    [91] Stephane V..Local mesh refinement and penalty methods dedicated to the Direct NumericalSimulation of incompressible multiphase flows[A].Proceedings of the ASME/JSME Joint FluidsEngineering Conference[C].2003,1299-1305
    [92] Laetitia Doris,Christian Tenaud,Loc Ta Phuoc.LES of spatially developing3D compressiblemixing layer[J].Compatational Fluid Mechanics,2000,328(7):567-573
    [93] Mare L.di.,Jones W.P..LES of turbulent flow past a swept fence[J].International Journal of Heat andFluid Flow,2003,24(4):606-615
    [94] Oleg V. V.,Thomas S. L.,Parviz Moin. A general class of commutative filters for les in complexgeometries[J].Journal of Computational Physics,1998,146(1):82-104
    [95] Felten F.,Fautrelle Y.,Terrail Y.Du.,et al. Numerical modeling of electrognetically-riven turbulentflows using LES methods[J].Applied Mathematical Modelling,2004,28(1):15-27
    [96]杨君涛.油罐火灾的数值模拟与实验研究[D].天津:天津大学,2005
    [97] McGrattan K. B.,Forney G. P.,Floyd J. E.,et al. Fire Dynamics Simulator-user's guide,version3,NIST IR6784. Gaithersburg,MD:National Institute of Standards and Technology,2001
    [98] Madrzykowski D.,Verrori R.L.. Simulation of the dynamics of the Fire at3144Cherry Road NE,Washington,DC May30,1999[R]. Technical Report NISTIR6510,National Institute of Standardsand Technology Gaithersburg,MD20899,2000
    [99] Floyd J.E.,McGrattan K.B.,Hostikka S.,etal. CFD Fire Simulation Using Mixture FractionCombustion and Finite Volume Radiative Heat Transfer [J]. Journal of Fire Protection Engineering,2003,(13):11-36
    [100]薛伟,张光俊.贮木场楞堆火灾场景模拟设计[J].林业机械与木土设备,2006,(8):34
    [101]赵大林,魏东,田亮,等.汽油储罐火灾燃烧特性的实验研究[J].工程热物理学报,2004,25(2):341-344
    [102]魏东,赵大林,杜玉龙,等.油罐火灾燃烧速度的实验研究[J].燃烧科学与技术,2005,11(3):286-291
    [103]郭鸿志,张欣欣,刘向军.传输过程数值模型[M].北京:冶金工业出版社,1998
    [104]范维澄,王清安,姜冯辉,等.火灾学简明教程[M].合肥:中国科学技术大学出版社,1995
    [105]刘士林.斜拉桥设计[M].北京:人们交通出版社,2006
    [106]钮宏,陆洲岛,陈磊.高温下钢材与混凝土本构关系的实验研究[J].同济大学学报,1990,18(1):8-16
    [107]孙金香,高伟译.建筑物综合防火设计[M].天津:天津科技翻译出版公司,1994
    [108] BSI. Structural Use of Steelwork in Building Part8. Code of Practice for Fire ResistanceDesign[S],1990
    [109]杜咏.大空间建筑网架结构实用抗火设计方法[D].上海:同济大学,2007
    [110] ECCS.European Recommendations for the Fire Safety of Steel Structures[S],1983
    [111] Crozier D.A.,Wong M.B.. Elastoplastic Analysis of Steel Frames at Elevated Temperatures[A].13thAustralian Conference on the Mechanicsof Structures and Materials[C]. University ofWollongong,1993
    [112]陈凯.变截面门式刚架结构抗火性能及实用设计方法研究[D].上海:同济大学,2000
    [113]李国强,韩林海,楼国彪,等.钢结构及钢—混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006
    [114]吕彤光.高温下钢筋的强度和变形试验研究[D].北京:清华大学,1996
    [115] Rubert Achim,Schaumann Peter.Structural Steel and Plane Frame Assembliesunder FireAction[J].Fire Safety Journal,1986,10(3):173-184
    [116]邱林波.空间网格结构火灾下的力学性能研究[D].北京:北京工业大学,2010
    [117]王应时,范维澄,周力行,等.燃烧过程数值计算[M].科学出版社,1986
    [118] Lockwood F.C.,Spalding D.B.. Prediction of a turbulent dust flow with significant radiation
    [A].Proc. Thermodynamics colloquium[C].1971
    [119] Hottel H.C.,Sarofim A.M.. Radiative Transfer [M]. McGraw-Hill Book Corp,1967
    [120] Howell J.R.. Application of Monte-Carlo to heat transfer problems [J]. Adv Heat Transfer,1968,5:1-54
    [121] Sreward F.R.,Canon P.. The calculation of radiative heat flux in a cylindrical furnace usingtheMonte-Carlo method [J]. Int. J. Heat Mass Transfer,1971,14(2):245-262
    [122] Docherty P.,Fairweather M.. Prediction of radiative transfer from non-homogeneous combustionproducts using the discrete transfer method [J]. Combustion and Flame,1988,71:79-81
    [123] Cheng P.. Two dimensional radiating gas flow by a moment method [J]. AIAA Journal,1964,2:1662-1664
    [124] Siegel R.,Howell J.R.. Thermal radiation heat transfer [M]. Hemisphere Publishing Corporation,Washington D. C.,1992
    [125]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社:知识产权出版社,2009
    [126]吕彤光.高温下钢筋的强度和变形试验研究[D].北京:清华大学,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700