无铅钎料的液态结构与钎焊界面反应及其相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,关于无铅钎料合金的研究在世界范围内得到了广泛的关注,并取得了一定的进展和成果,其中Sn-Cu、Sn-Ag和Sn-Ag-Cu等合金系成为科学研究和商业开发的重点。在无铅钎料的实际应用中,钎焊界面反应是影响钎焊质量和接头可靠性的关键问题之一,而在钎焊时,钎料合金必然要经历从固态到液态再到固态的过程,在钎焊反应阶段钎料合金始终处于液相状态,因此,了解和掌握钎料合金的液态结构,并探讨钎料的液态结构与钎焊界面反应之间的相关性,将对理解焊点界面金属间化合物(intermetalliccompound,IMC)的生长机制和控制IMC层的生长速度起到重要的作用。
     本文选取Sn-xCu(x=0.7,1.5,2)和Sn-3.5Ag-xCu(x=0,0.7,1.5)两种钎料合金为研究对象,首先利用高温液态X射线衍射仪测量了它们的衍射数据,进而计算和分析了它们的液态结构。结果表明,在液态Sn-0.7Cu和Sn-1.5Cu钎料中只测取到短程有序结构,而在260℃和330℃下Sn-2Cu熔体中不仅存在短程有序结构还存在中程有序结构,这种中程有序结构与Cu_6Sn_5有序团簇相关。此外,在液态Sn-3.5Ag钎料中只发现了短程有序,而Sn-3.5Ag-0.7Cu熔体在260℃和330℃时除存在短程有序外还存在中程有序,此时的中程有序同样和Cu_6Sn_5团簇相关,说明Cu的加入增加了熔体中有序结构的尺寸和数量。随着温度的升高上述Cu_6Sn_5相关团簇遭到破坏,熔体中的中程有序结构消失。由上述结果可知,在钎焊温度下,熔融无铅钎料合金中将可能存在尺寸较大的有序团簇甚至是中程有序结构,而随着钎料中合金元素含量的变化,有序团簇的尺寸和数量均会产生变化,这将对钎焊界面反应产生影响。
     其次,利用高温粘度仪测量了Sn-xCu和Sn-3.5Ag-xCu钎料熔体的粘度。发现随着温度的升高,钎料合金的粘度值整体上呈下降的趋势,但存在明显的不连续性,均可分为低温区和高温区。通过Arrhenius方程计算了各温区内的粘流活化能ε和流团尺寸ν_m,结果表明钎料熔体在低温区和高温区之间的温度范围内发生了结构转变,这与高温X射线衍射的结果相一致。钎料熔体中ν_m值的差异必然会引起钎焊界面反应速率的不同。同时还利用Sn-xCu的粘度值计算了对应温度下的表面张力,计算结果与文献报道的结果较为接近,此外还通过Sn-xCu与Cu基板之间的润湿性实验验证了计算结果的正确性,这为获取无铅钎料合金表面张力数据提供了新的途径。研究表明无铅钎料合金的粘度和表面张力均为液态结构敏感量,其变化与液态结构的变化密切相关。
     随后,本文研究了Sn-xCu/Cu(Ni)和Sn-3.5Ag-xCu/Cu接头的钎焊界面反应。在钎料合金与Cu基板反应时,钎料中Cu含量的增加对界面IMC颗粒的粗化和生长起到加速作用,这与液态钎料中Cu_6Sn_5有序团簇的尺寸增加和数量增大相关。随着Cu含量的增加,Sn-xCu/Ni接头的界面产物由(Ni_xCu_(1-x))_3Sn_4相逐渐转变为(Cu_xNi_(1-x))_6Sn_5相,(Cu_xNi_(1-x))_6Sn_5 IMC层的生长速率由钎料中Cu_6Sn_5的体积分数所决定。
     最后,由于无铅钎料合金元素与基板金属层(Cu和Ni)之间的界面反应纷繁复杂、数据分散,而合金元素的种类和含量对钎焊界面反应又存在重大影响,同时随着电子产品日趋小型化,焊点的尺寸也逐步减小,外来元素的引入,如通过镀层金属的溶解扩散,将很容易改变焊点钎料的原始成分,使钎焊界面反应变得更加复杂,甚至是难以控制,因此本文从钎料液态结构的角度分析和预测了合金元素对界面IMC类型、形貌和生长行为的影响。
At present,the research of lead-free solder alloys has been widely concerned around the world,and certain progress and achievement have been reached.Among the current solder alloy systems,Sn-Cu,Sn-Ag and Sn-Ag-Cu become the focus of scientific research and commercial development.In the application of lead-free solders,the interfacial reaction is one of the key issues that affect the quality of soldering and the reliability of the joint.During soldering,the solder must experience from the solid state to the liquid state then again to the solid state,while during the reaction stage the solder is always at the liquid state.Thus,to study the liquid structure of the solder alloys,to discover the correlations between the liquid structure and the interfacial reaction during soldering,will have a significant effect on understanding the growth mechanism of interracial intermetallic compound(IMC) and controlling the growth rate of IMC.
     In this dissertation,two kinds of lead-free solders,namely Sn-xCu(x=0.7,1.5,2) and Sn-3.5Ag-xCu(x=0,0.7,1.5),were chosen.First,the diffraction data of the solders were obtained by using a high temperature X-ray diffractometer,and then the liquid structure of the solders was calculated and analyzed.Only short rang order(SRO) structures were detected in liquid Sn-0.7Cu and Sn-1.5Cu solders,while there existed not only SRO structures but also medium rang order(MRO) structures in liquid Sn-2Cu solder at 260℃and 330℃.The MRO structures in Sn-2Cu melt were related to Cu_6Sn_5 ordered clusters.Also in Sn-3.5Ag melt only SRO structures were found.While MRO structures were detected in Sn-3.5Ag-0.7Cu melt at 260℃and 330℃besides the SRO.Such MRO structures were still related to Cu_6Sn_5 clusters indicating the size and amount of the ordered structures were increased with the addition of Cu.However with increasing temperature the before-mentioned Cu_6Sn_5 type correlative clusters were destroyed.As a result,the MRO structures disappeared.According to the previous results,it is clear that at the soldering temperature large ordered clusters even MRO structures will exist in lead-free solder melt,and the size or the amount will be changed with the variation of the alloying element in the solder,which can accordingly affect the soldering reaction.
     Secondly,the viscosity of Sn-xCu and Sn-3.5Ag-xCu solders was measured using a torsional oscillation viscometer.For all the melts the viscosity decreased with increasing temperature,however,there was obvious discontinuity.So two segments,namely a low temperature zone and a high temperature zone,were found correspondingly.The activation energyεand the unit volume of flow Vm were obtained according to Arrhenius equation.It was found that the anomalous variations of viscosity had a direct relation with the transition of the liquid structure,which is in good agreement with the results of high temperature X-ray diffraction.The difference in v_m of the solder melts will consequentially result in the different rate of interfacial reaction.At the same time,the surface tension calculated using the measured viscosity values was close to the reported value,and the results were also checked by performing the wetting test between the solders and the Cu substrates.This confirms the present method is quite reasonable to obtain surface tension values for solder alloys.Both viscosity and surface tension are closely related to the liquid structure of the solder alloy.
     Then the interfacial reactions of Sn-xCu/Cu(Ni) and Sn-3.5Ag-xCu/Cu joints during soldering were studied.When solders were reflowed with Cu substrates,the ripening process and the growth were accelerated by increasing Cu content.This was concerned with the increment of size and amount of Cu_6Sn_5 clusters in liquid solders.For Sn-xCu/Ni joints,the interfacial reaction product translated from(Ni_xCu_(1-x))_3Sn_4 to(Cu_xNi_(1-x))_6Sn_5 with increasing of Cu,and the growth rate of(Cu_xNi_(1-x))_6Sn_5 IMC layer was controlled by the volume fraction of Cu_6Sn_5.
     Finally,the interfacial reactions between the lead-free solder containing elements and the metallization layers(Cu and Ni) are very complex,and the kind and the content of alloying elements have a great effect on the interfacial reaction.Furthermore,as the size of solder joint becomes smaller and smaller with the miniaturization of electronic products,the original composition of the solder joint can be changed easily by the introduction of extraneous elements,for example through the dissolution and the diffusion of the metallic layer,which leads to the interfacial reaction more complex and sometime even hard to control.Therefore from the viewpoint of liquid structure the effect of alloying elements on the type,morphology and growth behavior of the interfacial IMC was analyzed and predicted in this dissertation.
引文
[1]田民波,林金堵,祝大同.高密度封装基板.北京:清华大学出版社,2003.
    [2]田民波.电子封装工程.北京:清华大学出版社,2003.
    [3]郭福.无铅钎焊技术与应用.北京:科学出版社,2006.
    [4]吴小俊,童彦刚.无铅钎料材料的研究.电焊机,2008,38(1):77-80.
    [5]Sharif A,Chan Y C.Dissolution kinetics of BGA Sn-Pb and Sn-Ag solders with Cu substrates during reflow.Materials Science and Engineering B,2004,106(2):126-131.
    [6]美国焊接学会钎焊委员会.软钎焊手册.崔殿亨译.北京:机械工业出版社,1987.
    [7]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社,1999.
    [8]李恒德,马春来.材料科学与工程国际前言.济南:山东科学技术出版社,2002.
    [9]Abtew M,Selvaduray G.Lead-free solder in microelectronics.Materials Science and Engineering Report,2000,27(5-6):95-141.
    [10]贾红星,刘素芹,黄金亮等.电子组装用无铅钎料的研究进展.材料开发与应用,2003,18(5):42-46.
    [11]史耀武,夏志东,陈志刚等.电子组装钎料研究的新进展.电子工艺技术,2001,2(4):139-143.
    [12]谢海平,于大全,马海涛等.无铅钎料的组织润湿性和力学性能.中国有色金属学报,2004,14(10):1694-1699.
    [13]Frear D R,Morgan H S,Burchett S N.The mechanics of solder alloy Interconnects.New York:Van Nostrand Reinhold,1994.
    [14]Tummala R R,Rymaszewskl E J,Klopfenstein A G.Microelectronics packaging handbook.New York:Van Nostrand Reinhold,1989.
    [15]Matin M A,Vellinga W P,Geers M G D.Aspects of coarsening in eutectic Sn-Pb.Acta Materialia,2004,52(12):3475-3482.
    [16]Gupta D,Vieregge K,Gust W.Interface diffusion in eutectic Pb-Sn solder.Acta Materialia,1998,47(1):5-12
    [17]Yah Y F,Liu J P,Shi Y W et al.Study on Cu particles-enhanced SnPb composite solder.Journal of Electronic Materials,2004,33(3):218-223.
    [18]Chen X,Jin D,Sakane M et al.Multiaxial low-cycle fatigue of 63Sn-37Pb solder.Journal of Electronic Materials,2005,34(1):L1-L6.
    [19]王建辉.Sn-Zn-Cu(Ni)无铅钎料及其钎焊接头界面反应研究:(硕士学位论文).大连:大连理工大学,2006.
    [20]何大鹏.合金元素对二元Sn基钎料钎焊界面IMC的影响:(硕士学位论文).大连:大连理工大学,2006.
    [21]张建智.锡基低熔点无铅焊料的研究:(硕士学位论文).长沙:中南工业大学,2000.
    [22]Winterbottom W L.Converting to Lead-Free solders:An Automotive Industry Perspective.Journal of the Minerals,Metals & Materials Society,1993,45(7):20-24.
    [23]Frear D,Grivas D,Morris J W.A microstructural study of the thermal fatigue failures of 60Sn-40Pb solder joints.Journal of Electronic Materials,1988,17(2):171-180.
    [24]虞自基.环境中微量重金属元素的污染危害与迁移转移.北京:科学出版社,1987.
    [25]Artaki I,Jackson A M,Vianco P T.Evaluation of lead-free solder joints in electronic assemblies.Journal of Electronic Materials,1994,23(8):757-764.
    [26]赵跃,杜昆,胡珍.无铅软钎料的研究.广东有色金属学报,1998,8(2):99-105.
    [27]Jin S.Developing lead-free solders:a challenge and opportunity.Journal of the Minerals,Metals & Materials Society,1993,45(7):13-15.
    [28]Jones G.Are you ready for lead-free assembly?.Surface Mount Technology,2000,14(6):60-62.
    [29]胡志田,何前进,徐道荣.无铅软钎料国内外的研究动态与发展趋势.焊接技术,2005,34(3):4-7.
    [30]段莉蕾.无铅钎料接头界面化合物层生长及元素扩散行为:(硕士学位论文).大连:大连理工大学,2004.
    [31]Wu C M L,Yu D Q,Law C M T et al.Properties of lead free solder alloys with rare earth element additions.Materials Science and Engineering Report,2004,44(1):1-44.
    [32]Bruel M.Silicon on insulator material technology.Electronics Letters,1995,31(14):1201-1202.
    [33]Glazer J.Metallurgy of low temperature Pb-free solders for electronic assembly.International Materials Reviews,1995,40(2):65-93.
    [34]张红耀.无铅焊料的发展概况.云南冶金,2002,31(5):50-53.
    [35]Wu C M L,Yu D Q,Law C M T et al.The wettability and microstructure of Sn-Zn-RE alloys.Journal of Electronic Materials,2003,32(2):63-69.
    [36]Vianco P T,Mizik P M.Prototyping lead-free solders on hand-soldered,through-bole circuit boards.Proceedings of the 1994 7th International SAMPE Electronics Conference,Parsippany,1994:366-380.
    [37]Mei Z,Morris J W.Superplastic creep of low melting point solder joints.Journal of Electronic Materials,1992,21(4):401-407.
    [38]Freer J L,Morris J W.Microstructure and creep of eutectic indium/tin on copper and nickel substrates.Journal of Electronic Materials,1992,21(6):647-652.
    [39]Yeh M S.Evaluation of the mechanical properties of a ternary Sn-20In-2.8Ag solder.Journal of Electronic Materials,2002,31(9):953-956.
    [40]Morris J W,Goldstein J L F,Mei Z.Microstructure and mechanical properties of Sn-In and Sn-Bi solders.Journal of the Minerals,Metals & Materials Society,1993,45(7):25-27.
    [41]Kabassis H,Rutter J W,Winegard W C.Phase relationships in Bi-In-Sn alloy systems.Materials Science and Technology,1986,2(10):985-988.
    [42]Mackay C A,Von Voss W D.Effect of compositional changes and impurities on wetting properties of eutectic Sn-Bi alloy used as solder.Materials Science and Technology,1985,1(3):240-284.
    [43]Moon Kil-Won,Boettinger W J,Kattner U R et al.The effect of Pb contamination on the solidification behavior of Sn-Bi solders.Journal of Electronic Materials,2001,30(1):45-52.
    [44]Boettinger W J,Handwerker C A,Newbury B et al.Mechanism of fillet lifting in Sn-Bi alloys.Journal of Electronic Materials,2002,31(5):545-550.
    [45]戴志锋,黄继华.微电子组装中Sn-Zn系无铅钎料的研究与开发.电子工艺技术,2004,25(1):5-8.
    [46]黎小燕,陈国海,马莒生.Sn-Zn无铅焊料的研究与发展.电子工艺技术,2004,25(4):150-153.
    [47]于大全,赵杰,王来.稀土元素对Sn-9Zn合金润湿性的影响.中国有色金属学报,2003,13(4):1001-1004.
    [48]Wu C M L,Yu D Q,Law C M T et al.The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements.Journal of Electronic Materials,2002,31(9):921-927.
    [49]谢海平,于大全,马海涛等.Sn-Zn-Cu无铅钎料的组织、润湿性和力学性能.有色金属学报,2004,14(10):1694-1699.
    [50]谢海平,于大全,王来.Sn-Zn-Cu/Cu界面反应及剪切强度.大连理工大学学报,2005,45(5):663-667.
    [51]Yu D Q,Xie H P,Ma H T et al.Investigation on interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solders with Cu substrate.Journal of Alloys and Compounds,2004,385(1-2):119-125.
    [52]Hunt C,Lea D.Solderability of lead-free alloys.Proceedings of Apex,Long Beach,2000.
    [53]闫焉服.粒子增强Sn基无铅钎料研究:(博士学位论文).北京:北京工业大学,2004.
    [54]Frear D R,Jang J W,Lin J K et al.Pb-free solders for flip-chip interconnects.Journal of the Minerals,Metals & Materials Society,2001,53(6):28-32+38.
    [55]Brodley E,Bath J,Whitten G et al.Lead-free project focuses on electronics assemblies.Advanced Packaging,2000,9(2):34-42.
    [56]Trumble B.Get the lead out!.IEEE Spectrum,1998,35(5):55-60.
    [57]Dang B,Wright S L,Andry P S et al.3D chip stacking technology with low-volume lead-free interconnections.Proceeding of the 57th Electronic Components and Technology Conference,Reno,2007:627-632.
    [58] McCormack M, Jin S, Kammlott G W et al. New Pb-free solder alloy with superior mechanical properties. Applied Physics Letters, 1993, 63(1): 15-17.
    [59] McCormack M, Jin S, Kammlott G W. The design of new Pb-free solder alloys with improved properties. Proceedings of the 1995 IEEE International Symposium on Electronics and the Environment, Orlando, 1995: 171-176.
    [60] Glazer J. Microstructure and mechanical properties of Pb-free solder alloy for low-cost electronic assembly: A Review. Journal of Electronic Materials, 1994, 23(8): 693-707.
    [61] Grusd A. Connecting to lead-free solders. Circuit Assembly, 1999, 10(8): 32-38.
    [62] Kariya Y, Otsuka M. Mechanical fatigue characteristics of Sn-3. 5Ag-X (X=Bi, Cu, Zn and In) solder alloy. Journal of Electronic Materials, 1998, 27(11): 1229-1235.
    [63] Huang M L, Wang L. Effects of Cu, Bi, and In on microstructure and tensile properties of Sn-Ag-X(Cu, Bi, In) solders. Metallurgical and Materials Transactions A, 2005,36(6): 1439-1446.
    [64] Bradley E III, Hranisavl jevic J. Characterization of the Melting and Wetting of Sn-Ag-X Solders. Proceeding of the 50th Electronic Components and Technology Conference, Las Vegas, 2000: 1443-1448.
    [65] McCormack M, Kammlott G W, Chen H S et al. New lead-free, Sn-Ag-Zn-Cu solder alloy with improved mechanical properties. Applied Physics Letters, 1994, 65(10): 1233-1235.
    [66] Huang M L, Loeher T, Ostmann A et al. Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders. Applied Physics Letters, 2005, 86(18): 181908
    [67] Wang L, Yu D Q, Zhao J et al. Improvement of wettability and tensile property in Sn-Ag-RE lead-free solder alloy. Materials Letters, 2002, 56(6): 1039-1042.
    [68] Wu C M L, Yu D Q, Law C M T et al. Improvements of microstructure, wettability, tensile and creep strength of eutectic Sn-Ag alloy by doping with rare-earth elements. Journal of Materials Research, 2002, 17(12): 3146-3154.
    [69] Kanchanomai C, Mutoh Y. Effect of temperature on isothermal low cycle fatigue properties of Sn-Ag eutectic solder. Materials Science and Engineering A, 2004, 381(1-2): 113-120.
    [70] Kanchanomai C, Mutoh Y. Low-cycle fatigue prediction model for Pb-free solder 96. 5Sn-3. 5Ag. Journal of Electronic Materials, 2004, 33(4): 329-333.
    [71] Shao T L, Chen Y H, Chiu S H et al. Electromigration failure mechanisms for SnAg3.5 solder bumps on Ti/Cr-Cu/Cu and Ni(P)/Au metallization pads. Journal of Applied Physics, 2004, 96(8): 4518-4524.
    [72] Tu K N, Zeng K. Tin-lead (SnPb) solder reaction in flip chip technology. Materials Science and Engineering Report, 2001, 34(1): 1-58.
    [73] Miller C M, Anderson I E, Smith J F. A viable tin-lead solder subsitute: Sn-Ag-Cu. Journal of Electronic Materials, 1994, 23(7): 595-601.
    [74] Loomans M E, Fine M E. Tin-silver-copper eutectic temperature and composition. Metallurgical and Materials Transactions A, 2000, 31(4): 1155-1162.
    [75] Zeng Q L, Wang Z g, Xian A P et al. Cyclic softening of the Sn-3. 8Ag-0. 7Cu lead-free solder alloy with equiaxed grain structure. Journal of Electronic Materials, 2005, 34(1): 62-76.
    [76] Moon K W, Boettinger W J, Kattner U R, Biancaniello F S et al. Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. Journal of Electronic Materials, 2000, 29(10): 1122-1236.
    
    [77] Hwang J S. Solder materials. Surface Mount Technology, 2001, 15(7): 235-248.
    [78] Toyoda Y. The latest trends in lead-free soldering. Proceeding of International Symposium on Electronic Packaging Technology, Beijing, 2001: 434-438.
    
    [79] Zhao J, Mutoh Y, Miyashita Y et al. Fatigue crack-growth of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders. Journal of Electronic Materials, 2002, 31 (8): 879-886.
    [80] Yu D Q, Zhao J, Wang L. Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements. Journal of Alloys and Compounds, 2004, 376(1-2): 170-175.
    [81] Frear D R. The mechanical behavior of interconnect materials for electronic packaging. Journal of the Minerals, Metals & Materials Society, 1996, 48(5): 49-53.
    [82] Shao T L, Lin K C, Chen C. Electromigration studies of flip chip Sn95/Sb5 solder bumps on Cr/Cr-Cu/Cu under-bump metallization. Journal of Electronic Materials, 2003, 32(11): 1278-1283.
    
    [83] Kim H K, Liou H K, Tu K N. Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu. Applied Physics Letters, 1995, 66(18): 2337-2339.
    [84] Kim H K, Tu K N. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Physical Review B, 1996, 53(23): 16027-16034.
    [85] Chaefer M, Fournelle R A, Liang J. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control. Journal of Electronic Materials, 1998, 27(11): 1167-1176.
    [86] Sharif A, Chan Y C, Islam R A. Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging Materials Science and Engineering B, 2004, 106(2): 120-125.
    [87] Yu D Q, Wu C M L, Law C M T et al. Intermetallic compounds growth between Sn-3. 5Ag lead-free solder and Cu substrate by dipping method. Journal of Alloys and Compounds, 2005, 392(1-2): 192-199.
    [88]于大全,段莉蕾,赵杰等.Sn-3.5Ag/Cu界面金属间化合物的生长行为研究.材料科学与工艺,2005,13(5):532-536.
    [89]何大鹏,于大全,王来等.铜含量对Sn-Cu钎料与Cu、Ni基板钎焊界面IMC的影响.中国有色金属学报,2006,16(4):701-708.
    [90]Li G Y,Chen B L,Tey J N.Reaction of Sn-3.5Ag-0.7Cu-xSb solder with Cu metallization during reflow soldering.IEEE Transactions on Electronics Packaging Manufacturing,2004,27(1):77-85.
    [91]Kang S K,Shih D Y,Fogel K et al.Interfacial reaction studies on lead(Pb)-free solder alloys.IEEE Transactions on Electronics Packaging Manufacturing,25(3):155-161.
    [92]Ghosh G.Interfacial Reaction between Multicomponent Lead-Free Solders and Ag,Cu,Ni,and Pb Substrates.Journal of Electronic Materials,2004,33(10):1080-1091.
    [93]Zribi A,Clark A,Zavalij L et al.The growth of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu solder/Ni interfaces and the associated evolution of the solder microstructure.Journal of Electronic Materials,2001,30(9):1157-1164.
    [94]Chuang T H,Yu C L,Chang S Y et al.Phase identification and growth kinetics of the intermetallic compounds formed during In-49Sn/Cu soldering reactions.Journal of Electronic Materials,2002,31(6):640-645.
    [95]Sommadossiand S,Guillermet A F.Interface reaction systematics in the Cu/In-48Sn/Cu system bonded by diffusion soldering.Intermetallics,2007,15(7):912-917.
    [96]Hwang C W,Kim K S,Suganuma K.Interfaces in lead-free soldering.Journal of Electronic Materials,2003,32(11):1249-1256.
    [97]Chou C Y,Chen S W,Chang Y S et al.Interfacial reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni couples.Journal of Materials Research,2006,21(7):1849-1856.
    [98]Huang H Z,Wei X Q,Zhou L et al.Effects of Zn concentration on wettability of Sn-Zn alloy on Cu and on the interfacial microstructure between Sn-Zn alloy and Cu.Acta Metallurgica Sinica,2006,19(4):251-257.
    [99]Huang C S,Yeh J H,Young B L et al.Phenomena of electroless Ni-P and intermetallic-compound stripping and dissolving in Sn-Bi and Sn-Pb solder joints with Au/En/Cu metallization.Journal of Electronic Materials,2002,31(11):1230-1237.
    [100]Chen Z,He M,Kumar A et al.Effect of interracial reaction on the tensile strength of Sn-3.5Ag/Ni-P and Sn-37Pb/Ni-P solder joints.Journal of Electronic Materials,2007,36(1):17-25.
    [101]Chen Z,He M,Qi G J.Morphology and kinetic study of the interracial reaction between the Sn-3.5Ag solder and electroless Ni-P metallization.Journal of Electronic Materials,2004,33(12):1465-1472.
    [102]Jang J W,Frear D R,Lee T Y et al.Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump metallization.Journal of Applied Physics,2000,88(11):6359-6363.
    [103]Lee J I,Chen S W,Chang H Y et al.Reactive wetting between molten Sn-Bi and Ni substrate.Journal of Electronic Materials,2003,32(3):117-122.
    [104]Lee M S,Liu C M,Kao C R.Interfacial reactions between Ni substrate and the component Bi in solders.Journal of Electronic Materials,1999,28(1):57-62.
    [105]李飞,刘春忠,冼爱平等.Sn-58Bi无Pb焊料与化学镀Ni-P层之间的界面反应.金属学报,2004,40(8):815-821.
    [106]Lin S K,Chen S W.Interfacial reactions in the Sn-20 at.%In/Cu and Sn-20 at.%In/Ni couples at 160℃.Journal of Materials Research,2006,21(7):1712-1717.
    [107]Huang C Y,Chen S W.Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system.Journal of Electronic Materials,2002,31(2):152-160.
    [108]Sharif A,Chan Y C.Investigation of interfacial reactions between Sn-Zn solder with electrolytic Ni and electroless Ni(P) metallization.Journal of Alloys and Compounds,2007,440(1-2):117-121.
    [109]Chen W T,Ho C E,Kao C R.Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders.Journal of Materials Research,2002,17(2):263-266.
    [110]Ho C E,Tsai R Y,Lin Y L et al.Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni.Journal of Electronic Materials,2002,31(6):584-590.
    [111]Zeng K,Tu K N.Six cases of reliability study of Pb-free solder joints in electronic packaging technology.Materials Science and Engineering Report,2002,38(2):55-105.
    [112]Liu C M,HO C E,CHEN W T et al.Reflow soldering and isothermal solid-state aging of Sn-Ag eutectic solder on Au/Ni surface finish.Journal of Electronic Materials,2001,30(9):1152- 1156.
    [113]Islam M N,Chan Y C,Sharif A.Interfacial reactions of Sn-Cu and Sn-Pb-Ag solder with Au/Ni during extended time reflow in ball grid array packages.Journal of Materials Research,2004,19(10):2897-2904
    [114]Kobe B,McIntyre N S.Investigation of reactions between lead/tin solder and palladium surface finishes.Acta Materialia,2002,50(18):4667-4676.
    [115]Sharma G,Eichfeld C M,Mohney S E.Intermetallic growth between lead-free solders and palladium.Journal of Electronic Materials,2003,32(11):1209-1213.
    [116]祖方道.液态合金结构变化的研究:(博士学位论文).合肥:中国科学院固体物理研究所,2002.
    [117]陆坤权,邹宪武.液态物理进展.武汉:武汉大学出版社,1997.
    [118]Steeb S,Entress H.Atomverteilung sowie spezifischer elektrischer widerstand geschmolzener Magnesium-Zinn-Legietungen.Zeitschrift fur MetaIlkunde,1966,57:803-807.
    [119]Elliott S R.Medium-range structural ordering in covalent amorphous solids.Nature,1991,354(6353):445-452.
    [120]Cowley J M.X-ray measurement of order in single crystals of Cu_3Au.Journal of Applied Physics,1950,21(1):24-30.
    [121]Musinu A,Piccaluga G.An X-ray diffraction study of the short-range order around Ni(Ⅱ),Zn(Ⅱ) and Cu(Ⅱ) in pyrophosphate glasses.Journal of Non-crystal Solids,1995,192-193:32-35.
    [122]储刚.含非晶相样品的X射线衍射增量法定量相分析.物理学报,1998,47(7):1142-1148.
    [123]秦敬玉,谷廷坤,田学雷等.Fe-Si合金系熔体结构的X射线衍射研究.金属学报,2004,40(7):689-693.
    [124]Hoyer W,Jodicke R.Short-range and medium-range order in liquid Au-Ge alloys.Journal of Non-crystal Solids,1995,192-193:102-105.
    [125]Sadigh B,Dzugutov M,Elliot S R.Vacancy ordering and medium-range structure in a simple liquid.Physical Review B,1999,59(1):1-4.
    [126]Alblas B P,Vanderlugt W,Dijkstra J et al.Structure of liquid Na-Sn alloys.Journal of Physics F:Metal Physics,1983,13(12):2465-2477.
    [127]边秀房,王伟民,李辉等.金属熔体结构.上海:上海交通大学,2003.
    [128]Qin J Y,Bian X F,Sliusarenko S I,Wang W M.Pre-peak in the structure factor of liquid Al-Fe alloy.Journal of Physics:Condensed Matter,1998,10(6):1211-1218.
    [129]秦敬玉,边秀房,王伟民.Al和Sn液态结构的温度变化特性.物理学报,1998,47(3):438-444.
    [130]边秀房,潘学民,秦绪波等.金属熔体中程有序结构.中国科学E辑,2002,32(4):145-151.
    [131]边秀房,王伟民,潘学民等.Al-TM合金熔体的中程有序结构及演变规律.化学学报,2002,60(7):1215-1219.
    [132]Xue X Y,Bian X F,Geng H X et al.Structural evolution of medium range and short-range order with temperature in Cu-25 wt.%Sn.Materials Science and Engineering A,2003,363(1-2):134-139.
    [133]Cheng S J,Wang W M,Bian X F et al.Structure evolution of Cu-Cu type clusters in Cu-In alloy melts.Physics Letters A,2004,331(6):387-392.
    [134]Cheng S J,Bian X F,Wang W M et al.Effect of copper,aluminum and tin addition on thermal contraction of indium melt clusters.Physica B,2005,366(1-4):67-73.
    [135]Zhao Y,Bian X F,Qin J Y et al.X-ray diffraction experiments on the solidification process of Cu80Ag20 alloy.Physics Letters A,2006,357(6):479-484.
    [136]Zhao Y,Bian X F,Qin X B et al.Structural properties and evolution in the solidification process of Cu-Ag alloys.Journal of Non-crystal Solids,2007,353(11-12):1177-1187.
    [137]Zhao Y,Bian X F,Qin J Y et al.Structural evolution in the solidification process of Cu-Sn alloys.Journal of Non-crystal Solids,2007,353:4845-4848.
    [138]Wang S H,Bian X F.Structure relaxation and crystallization of A183Ni10Ce7 metallic glass.Journal of Alloys and Compounds,2008,450(1-2):260-263.
    [139]潘学民,边秀房,秦敬玉等.Cu-12%Al合金熔体内中程有序原子团簇.物理化学学报,2001,17(8):708-712.
    [140]Li X F,Zu F Q,Ding H F et al.High-temperature liquid-liquid structure transition in liquid Sn-Bi alloys:Experimental evidence by electrical resistivity method.Physics Letters A,2006,354(4):325-329.
    [141]Zu F Q,Zhu Z G,Guo L J et al.Observation of an anomalous discontinuous liquid-structure change with temperature.Physical Review Letters,2002,89(12):125505.
    [142]丁国华,祖方道,李先芬等.液态In-80wt%Sn合金结构的分形分析物理学报.2006,55(8):4188-4192.
    [143]骆军,翟启杰,赵沛.近熔点液态纯铁和Fe-C二元合金的微观结构.金属学报,2003,39(1):5-9.
    [144]殷凤仕,管恒荣,孙晓峰等.铸态镍基高温合金M963的液态结构和熔体处理.金属学报2005,41(11):1190-1194.
    [145]Iida T,Roderick I L.The physical properties of liquid metals.Oxford:Clarendon Press,1993.
    [146]杨定中.液体粘度的关联式计算.化工设计,1996,19(1):40-43.
    [147]Nishimura S,Matsumoto S,Terashima K.Variation of silicon melt viscosity with boron addition.Journal of Crystal Growth,2002,237-239(Part 3):1667-1670.
    [148]冯端,师昌绪.材料科学导论.北京:化学工业出版社,2002.
    [149]孙民华,耿浩然,边秀房等.Al熔体粘度的突变及熔体微观结构的关系.金属学报,2000,36(11):1134-1138.
    [150]杨中喜,耿浩然,陶珍东等.液态Sn的粘度及其熔体微观结构的变化.原子分子物理学报,2004,21(4):663-666.
    [151]杨中喜,耿浩然,邱学农等.Sn-60%Bi合金熔体粘滞性研究.济南大学学报(自然科学版),2005,19(4):283-285.
    [152]刘建同,王玉青,王丽等.熔体的粘度,亚稳相,相变和相图Ⅰ.熔体的粘度理论和亚稳相.山东大学学报(工学版),2005,35(6):5-8.
    [153]Hou J X,Guo H X,Zhan C W et al.Viscous and magnetic properties of liquid Cu-25wt.%Sn alloy.Materials Letters,2006,60(16):2038-2041.
    [154]Wu Y Q,Bian X F,Mao T et al.Effect of the roughness of crucible on viscosity of liquid Pb38.1Sn61.9 alloy.Physics Letters A,2007,361(3):265-269.
    [155]腾新营,闽光辉,刘含莲等.液态纯铁1550℃的粘度及表面张力与结构的相关性.材料科学与工艺,2001,9(4):383-386.
    [156]Egry I,Lohofer G,Sauerland S.Surface tension and viscosity of liquid metals.Journal of Non-Crystalline Solids,1993,156-158(Part 2):830-832.
    [157]Egry I.On the relation between surface tension and viscosity for liquid metals.Scripta Metallurgica et Materialia,1993,28(10):1273-1276.
    [158]赵岩.二元合金熔体凝固过程中的结构演化及团簇行为:(博士学位论文).济南:山东大学,2007.
    [159]Schvidkovskii E G.Gostekhteorizda.Moscow:Science press,1955.
    [160]Wagner J C N.Direct methods for the determination of atomic-scale structure of amorphous solids(X-ray,electron and neutron scattering).Journal of Non-Crystalline Solids,1978,31(1-2):1-40.
    [161]Waseda Y.The structure of non-crystalline materials.New York:McGraw-Gill,1980.
    [162]黄胜涛.非晶态材料的结构和结构分析.北京:科学出版社,1987.
    [163]秦敬玉.液体Al-Fe合金的微观不均匀结构研究:(博士学位论文).济南:山大工业大学,1998.
    [164]James A I,Hamilton W C.International Tables for X-ray Crystallography,Vol.Ⅳ.Birmingham:The Kynoch Press,1974.
    [165]Cromer D T,Mann J B.Compton scattering factors for spherically symmetric free atoms.Journal of Chemical Physics,1967,47(6):1892-1893.
    [166]Giessen B C,Wager C N J.Liquid Metals.New York:Marcel Dekker,1972.
    [167]Buhalenko V V,Ilinskii A G,Romanova A V.Metallofizika,1991,13(10):92-98.
    [168]Saunders N,Miodownik A P.The Cu-Sn(Copper-Tin) System.Bulletin of Alloy Phase Diagrams,1990,11(3):278-287.
    [169]侯纪新,孙建俊,詹成伟等.Cu-Sn合金熔体的结构变化.中国科学G辑,2007,37(3):288-293.
    [170]Mudry S,Sklyarchuk V,Shtablavyi I et al.A Structure and electroconductivity of tin-enriched SnO.987Cu0.013,Sn0.987Ag0.013 and Sn0.949Ag0.038Cu0.013 liquid eutectic alloys.Journal of Molecular Liquids,2006,127(1-3):121-123.
    [171]Vateva E,Savova E.New medium-range order features in Ge-Sb-S glasses.Journal of Non-Crystalline Solids,1995,192-193:145-148.
    [172]Coulson C A,Rushbrooke G S,Wills H H.On the interpretation of atomic distribution curves for liquids.Physical Review,1939,56(12):1216-1223.
    [173]Wang W M,Bian X F,Qin J Y et al.Gaussian peaks decomposing of simple liquids'RDF.Science in China(Series E),1999,42(6):631-636.
    [174]Schnyders H S,Van Zytveld J B.Electron transport and neutron diffraction evidence for chemical short-range order in liquid Cu6Ce.Journal of Physics:Condensed Matter,1997,9(50):L677-L685.
    [175]Kaban I,Hover W.Interplay between atomic and electronic structure in liquid noble-polyvalent metal systems.Journal of Non-Crystalline Solids,2002,312-314:41-46.
    [176]Kaban I,Hover W,Il'inskii A et al.Short-range order in liquid silver-tin alloys.Journal of Non-Crystalline Solids,2003,331(1-3):254-262.
    [177]Borjesson L,Torell L M,Dahlborg U et al.Evidence of anomalous intermediate-range ordering in superionic borate glasses from neutron diffraction.Physical Review B,1989,39(5):3404-3407.
    [178]Sokolov A P,Kisliuk A,Soltwisch M et al.Medium-range order in glasses:comparison of Raman and diffraction measurements.Physical Review Letters,1992,69(10):1540-1543.
    [179]Wang L,Cong H R,Bian X F.Medium-range order in liquid Al5Fe2 alloy.Materials Science and Engineering A,2003,341(1-2):197-201.
    [180]下地光雄.液态金属.北京:科学出版社,1987.
    [181]安阁英.铸件形成理论.北京:机械工业出版社,1990.
    [182]董若璟.铸造合金熔炼原理.北京:机械工业出版社,1991.
    [183]陈惠钊.粘度测量.北京:中国计量出版社,1994.
    [184]Wang J L.Underfill of flip chip on organic substrate:viscosity,surface tension,and contact angle.Microelectronics Reliabbility,2002,42(2):293-299.
    [185]Sun Y Y,Zhang Z Q,Wong C P.Rheology study of wafer level underfill.Macromolecular Materials and Engineering,2005,290(12):1204-1212.
    [186]Wei X Q,Zhou L,Huang H Z et al.Viscosity transition of ZnO-containing rosin.Materials Letters,2005,59(14-15):1889-1892.
    [187]毛潭.Cu-Sn合金熔体粘度的实验与理论研究:(硕士学位论文).济南:山东大学,2007.
    [188]Vincent J H,Richards B P,Wallis D R et al.Alternative solders for electronics assemblies:part 2:UK progress and preliminary trials.Circuit World,1993,19(3):32-34.
    [189]Lee J H,Lee D N.Use of thermodynamic data to calculate surface tension and viscosity of Sn-based soldering alloy systems.Journal of Electronic Materials,2001,30(9):1112-1119.
    [190]Tsai C M,Luo W C,Chang C W et al.Cross-interaction of under-bump metallurgy and surface finish in flip-chip solder joints.Journal of Electronic Materials,2004,33(12):1424-1428.
    [191]Hsu S C,Wang S J,Liu C Y.Effect of Cu content on interfacial reactions between Sn(Cu) alloys and Ni/Ti thin-film metallization.Journal of Electronic Materials,2003,32(11):1214-1221.
    [192]雍岐龙.稀溶体中第二相质点的Ostwald熟化—Ⅰ.普适微分方程.钢铁研究学报,1991,3(4):51-60.
    [193]雍岐龙.稀溶体中第二相质点的Ostwald熟化—Ⅱ.解析解.钢铁研究学报,1992,4(1):59-66.
    [194]Choi W K,Lee H W.Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate.Journal of Electronic Materials,2000,29(10):1207-1213.
    [195]Schaefer M,Fournelle R A,Liang J.Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control.Journal of Electronic Materials,1998,27(11):1167-1176.
    [196]Yu D Q,Wang L,Wu C M L et al.The formation of nano-Ag_3Sn particles on the intermetallic compounds during wetting reaction.Journal of Alloys and Compounds,2005,389(1-2):153-158.
    [197]Laurila T,Vuorinen V,Kivilahti J K.Analyses of interfacial reactions at different levels of interconnection.Materials Science in Semiconductor Processing,2004,7(4-6):307-317.
    [198]Wang S J,Liu C Y.Study of interaction between Cu-Sn and Ni-Sn interfacial reactions by Ni-Sn3.5Ag-Cu sandwich structure.Journal of Electronic Materials,2003,32(11):1303-1309.
    [199]Laurila T,Vuorinen V,Kivilahti J K.Interfacial reactions between lead-free solders and common base materials.Materials Science and Engineering Report,2005,49(1):1-60.
    [200]Yoon J W,Kin S W,Jung S B.Effect of reflow time on interfacial reaction and shear strength of Sn-0.7Cu solder/Cu and electroless Ni-P BGA joints.Journal of Alloys and Compounds,2004,385(1-2):192-198.
    [201]徐祖耀,李麟.材料热力学.北京:科学出版社,1999.
    [202]Cahn R W,Haasen P.Physical Metallurgy.Amsterdam:North-Holland Physics Publishing,1983.
    [203]Jackson K A.Liquid metals and solidification.Cleveland:ASM,1958.
    [204]Choi W K,Jang S Y,Kim J H et al.Grain morphology of intermetallic compounds at solder joints.Journal of Materials Research,2002,17(3):597-599.
    [205]Sebo P,Svec P,Janickovic D et al.Influence of thermal cycling on shear strength of Cu-Sn3.5AgIn-Cu joints with various content of indium.Journal of Alloys and Compounds,2008,463(1-2):168-172.
    [206]Yoon J W,Chun H S,Jung S B.Correlation between interfacial reactions and shear strengths of Sn-Ag-(Cu and Bi-In)/ENIG plated Cu solder joints.Materials Science and Engineering A,2008,483-483:731-734.
    [207]Yoon S W,Sob J R,Lee H M et al.Thermodynamics-aided alloy design and evaluation of Pb-free solder Sn-Bi-In-Zn system.Acta Materialia,1997,45(3):951-960.
    [208]Duan N,Scheer J,Bielen J et al.The influence of Sn-Cu-Ni(Au) and Sn-Au intermetallic compounds on the solder joint reliability of flip chips on low temperature co-fired ceramic substrates.Microelectronics Reliability,2003,43(8):1317-1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700