沙眼衣原体CT703蛋白在感染细胞中的表达及功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究目的
     1.研究CT703蛋白在沙眼衣原体感染细胞中的表达模式、持续性感染状态下CT703蛋白的表达变化。
     2.研究CT703蛋白对Raf/MEK/ERK信号通路的激活及抗凋亡作用。
     二、研究方法
     1.RT-PCR法扩增沙眼衣原体L2血清型CT703基因全长序列并亚克隆到原核表达质粒pGEX-6p-1中。
     2.IPTG诱导重组质粒pGEX-6p-1/CT703在大肠杆菌BL21中表达相应的重组融合蛋白,利用SDS-聚丙烯酰胺凝胶电泳分离并纯化重组融合蛋白,以纯化的重组融合蛋白作为免疫原免疫小鼠制备抗CT703蛋白多克隆抗体。
     3.采用Western Blot和免疫荧光技术,以抗CT703蛋白多克隆抗体为一抗检测CT703蛋白在沙眼衣原体急性感染状态下的表达模式。
     4.采用RT-PCR和Western Blot技术分别检测在干扰素-γ诱导沙眼衣原体持续性感染状态下CT703mRNA和蛋白水平表达变化。
     5.构建CT703基因真核表达重组质粒pcDNA4/CT703并转染HeLa细胞,Western Blot技术检测CT703蛋白是否活化Raf/MEK/ERK信号通路;并检测转染细胞在十字孢碱(Staurosporine, STS)作用下,细胞凋亡率以及Caspase-3活性变化。
     三、研究结果
     1.利用RT-PCR技术扩增沙眼衣原体L2血清型CT703基因,扩增片段长度约1.5kb,与预期理论值大小一致。重组质粒pGEX-6p-1/CT703经EcoR I和NotⅠ双酶切后,约在1.5kb处同样出现特异性DNA条带。通过DNA测序,证实插入的基因序列与GenBank公布的CT703基因序列完全一致,表明重组质粒构建成功。
     2.原核表达重组质粒pGEX-6p-1/CT703经IPTG在大肠杆菌BL21中诱导表达,纯化产物经考马斯亮蓝染色显示产物分子量约81kDa,由55KDa的CT703蛋白和26KDa的GST蛋白组成,与预期理论的分子量大小一致。以抗GST蛋白抗体为一抗,Western Blot技术检测纯化的重组融合蛋白,在81KDa处检测到相应的蛋白条带。Werstern Blot实验证实以重组融合蛋白免疫小鼠制备的抗血清能与CT703蛋白特异性结合;间接ELISA法检测抗血清效价,结果显示抗体滴度最高达到1:32000。
     3.利用Western Blot技术检测CT703蛋白在沙眼衣原体急性感染状态下的表达,感染后24小时可检测到相应的蛋白,随着感染时间的延长,蛋白表达量逐渐增多,并持续存在于整个感染过程,未感染细胞组没有检测到CT703蛋白的表达;通过免疫荧光技术检测CT703蛋白表达,最早在感染12小时即可检测到相应的蛋白。在干扰素-γ诱导沙眼衣原体持续性感染状态下,RT-PCR和Western Blot技术检测CT703 mRNA和蛋白的表达情况,结果表明持续性感染状态下CT703 mRNA和蛋白表达不呈时间依赖性,相同时间点沙眼衣原体持续性感染状态下CT703 mRNA和蛋白水平明显低于急性感染状态。
     4.间接免疫荧光技术对内源性的CT703蛋白进行定位,结果显示沙眼衣原体感染细胞CT703蛋白的荧光染色部位既不同于胞浆蛋白CPAF,也不同于包涵体膜蛋白CT813。
     5.构建的真核表达重组质粒pcDNA4/CT703经PCR、双酶切实验证实插入片段大小与CT703基因片段大小一致,测序证实插入的基因序列与GenBank公布的CT703基因序列完全一致。重组质粒pcDNA4/CT703转染到HeLa细胞后,Western Blot和免疫荧光实验均能检测到CT703蛋白的表达。
     6.真核表达重组质粒pcDNA4/CT703转染HeLa细胞后36小时检测磷酸化的Raf、ERK,发现二者均未被磷酸化;转染质粒36小时后,STS诱导细胞凋亡5小时,用流式细胞术检测细胞凋亡率以及用Caspase-3活性检测试剂盒检测Caspase-3活性。同时设STS诱导的HeLa细胞组、STS诱导的沙眼衣原体感染组和正常HeLa细胞组作为对照,发现4组细胞的凋亡率分别为:(93.1±2.01)%、(91.3±1.67)%、(3.21±0.87)%、(2.08±0.76)%。统计学分析,STS诱导的重组质粒转染组与正常HeLa细胞组比较有显著性差异,与STS诱导的衣原体感染组比较有显著性差异(P<0.05),与STS诱导的HeLa细胞组比较没有显著性差异(P>0.05)。Caspase-3活性检测结果与细胞凋亡率一致。
     四、结论
     1.成功构建原核表达重组质粒pGEX-6p-1/CT703以及真核表达重组质粒pcDNA4/CT703。
     2.沙眼衣原体急性感染状态下CT703蛋白表达呈时间依赖性增加,持续性感染状态下CT703蛋白表达不呈时间依赖性;相同时间点沙眼衣原体持续性感染状态下CT703蛋白表达明显低于急性感染状态。
     3.CT703蛋白不能激活Raf/MEK/ERK信号通路,不能抑制STS诱导的细胞凋亡。
Objective:
     1. To investigate the expression pattern of CT703 protein in Chlamydia trachomatis-infected cells by Western Blot and immunofluorescence assay and investigate the expression change of CT703 protein under Chlamydia trachomatis persistent infection.
     2. To investigate whether CT703 protein can activate Raf/MEK/ERK signaling pathway and investigate the antiapoptotic avtivity of CT703 protein.
     Methods:
     1. The full length of CT703 gene of Chlamydia trachomatis was amplified by RT-PCR, and was cloned into the prokaryotic expression vector pGEX-6p-1.
     2. The fusion protein GST-CT703 was expressed in the E. coli BL21 strain induced with IPTG, and then was separated and purified with SDS-PAGE gel, purified fusion protein was used to raise antigen-specific antibodies.
     3. To detection the expression pattern of CT703 protein by Western Blot and immunofluorescence assaies under chlamydia trachomatis acute infection.
     4. To examine the expression change of CT703 mRNA by RT-PCR and that of protein by Western Blot assay under Chlamydia trachomatis persistent infection induced with IFN-y.
     5. To construct the recombinant eukaryotic expression plasmid of pcDNA4/CT703. To investigate whether CT703 protein can activate Raf/MEK/ERK signaling pathway and examine the apoptotic rate and caspase-3 activity induced by STS in HeLa cells transfected transiently with pcDNA4/CT703.
     Results:
     1. About 1.5kb DNA band amplified by RT-PCR was seen in the 1% agarose gel, which was consistent with the entire CT703 gene fragment. Digested with the restriction endonuclease EcoRⅠand No tⅠ, about 1.5kp DNA fragment was cleaved off from the recombinant plasmid. Sequence analysis revealed that the fragment inserted into the pGEX-6p-1 vectors was 100% homologous to the published nucleotide sequence in GeneBank.
     2. The recombinant expression plasmid pGEX-6p-1/CT703 was overproductive in E. coli BL21 induced with IPTG. The product was an 81-kDa fusion protein composed of the 26-kDa pGEX-6p-1 vector expression protein and the 55-kDa CT703 protein, which was consistent with prediction Molecular Weight. The purified fusion protein showed one clear band on SDS-PAGE and was detected with anti-GST antibody by Western Blot. The mouse antiserum could bind to CT703 protein specially. The result showed the antibody titer examined by ELISA reached to 1:32000.
     3. The expression of CT703 protein in Chlamydia trachomatis-infected cells was examined by Western Blot assay; the result showed that CT703 protein was first detected at 24 h after infection, and the protein levels increased with progression of infection, but not in the parallel uninfected HeLa cells. In IF A, the CT703 protein was monitored as early as 12 h after infection. The expression of CT703 mRNA and protein was not time-dependent under persistent infection induced with IFN-γ. Both the CT703 mRNA and protein production greatly decreased at the same time points under persistent infection, as compared with under acute infection.
     4. Localization of CT703 protein in Chlamydia trachomatis-infected cells by indirect immunofluorescence assay. The result showed that the localization of CT703 protein was different from CPAF and CT813 protein which were known plasmosin and Inc protein, respectively.
     5. Eukaryotic expression plasmid pcDNA4/CT703 was constructed successfully, which was demonstrated by PCR, restriction enzyme digestion and sequence analysis. The expression of CT703 protein in HeLa cells after the plasmid was transfected was demonstrated by Immunofluorescence assay and Western Blot.
     6. The eukaryotic expression plasmid pcDNA4/CT703 was transfected transiently into cells, and then cultured 36 h, the pRaf and pERK were detected by Western Blot assay, and the result demonstrated CT703 protein can not activate Raf and MEK. The apoptotic rate and caspase-3 activity induced by STS for 5h was examined in HeLa cells transfected transiently with pcDNA4/CT703 for 36 h. The HeLa cell induced with STS, Chlamydia trachomatis-infected HeLa cells induced with STS and alone HeLa cells were as the control groups. The apoptotic rates were (93.1±2.01)%、(91.3±1.67)%、(3.21±0.87)%、(2.08±0.76)% respectively. The apoptotic rate of STS-induced cells transfected transiently with pcDNA4/CT703 was significant difference when compared with HeLa cells group and Chlamydia trachomatis-infected cells group induced with STS (P<0.05), but no significant difference when compared with HeLa cells group induced with STS (P>0.05). The result of caspase-3 activity was consistent with that of apoptotic rate.
     Conclusions:
     1. The prokaryotic expression plasmid pGEX-6p-1/CT703 and eukaryotic expression plasmid pcDNA4/CT703 was constructed successfully.
     2. The expression of CT703 protein was time-dependent increase under Chlamydia trachomatis acute infection, but was not time-dependent under persistent infection. CT703 protein production greatly decreased at the same time points under Chlamydia trachomatis persistent infection, as compared with under Chlamydia trachomatis acute infection.
     3. CT703 protein can not activate Raf/MEK/ERK signaling pathway, and can not inhibit cell apoptosis induced with STS.
引文
[1]Hackstadt T. The diverse habitats of obligate intracellular. Curr Opin Microbiol.1998,1(1):82-87.
    [2]Hackstadt T, Fischer ER, Scidmore MA, et al. Origins and functions of the chlamydial inclusion. Trends Microbiol.1997,5(7):288-293.
    [3]Abromaitis S, Stephens RS. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. Plos pathog,2009, 8(4):e1000357.
    [4]Byme GI, and Moulder JW. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect Imnlun,1978, 19(2):598-606.
    [5]Ward ME, Murray A. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells:mechanisms, of endocytosis. J Gen Microbiol.1984,130(7):1765-1780.
    [6]Wyriek PB, Choong J, Davis CH, et al. Entry of Chlamydia trachomatis into polarizedhuman epithelial ceils. Infect Immun.1989,57(8):2378-2389.
    [7]Prain CJ, and Pearce JH. Ultraslruetural studies on the intracellular fate of Chlamydia psittaci(strain guinea pig inclusion conjunctivitis)and Chlamydia trachomatis(suain lymphogranuloma venereum 434):modulation of intracellular events and relationship with the endocytic mechanism. J Gen Mierobiol.1989,135(7):2107-2123.
    [8]Hybiske K, Stephens RS. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proe Natl Acad Sci USA.2007,104(27):11430-11435.
    [9]Grayston JT, Kuo CC, Wang SP, et al. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med.1986, 315(3):161-168.
    [10]Kuo CC, Jackson LA, Campbe U, et al. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev.1995,8(4):451-461.
    [11]Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen: Chlamydiapneumoniae strain TWAR. J Infect Dis.1990,161(4):618-625.
    [12]Dumrese C, Maurus CF, Gygi D. Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells. BMC Microbiology.2005,5:2.
    [13]Shi Y, Tokunaga O. Chlamydia pneumoniae and multiple infections in the aorta contribute to atherosclerosis. Pathol Int.2002,52(12):755-763.
    [14]Grayston JT, Kuo CC, Campbell LA, et al. Chlamydia pneumoniae, strain TWAR and atheroselerosis. Eur Heart J.1993,14(suppl K):66-71.
    [15]Taylor HR, Johnson SL, Schachter J, et al. Pathogenesis of trachoma:the stimulus for inflammation. J Immunol,1987,138(9):3023-3027.
    [16]Sherman KJ, Daling JR, Stergachis A, et al. Sexually transmitted diseases and tubal pregnancy. Sex Transm Dis.1990,17(3):115-121.
    [17]Azenabor AA, Patrick Kennedy, Salvatore Balistreri. Chlamydia trachomatis Infection of Human Trophoblast Alters Estrogen and Progesterone Biosynthesis: an insight into role of infection in pregnancy sequelae. Int. J. Med. Sci,2007, 4(4):223-231.
    [18]Belland R, Ojcius DM, Byrne GI. Chlamydia. Nat Rev Microbiol.2004, 2(7):530-531.
    [19]Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection:implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol,2005,5(2):149-161.
    [20]余平,张良文,戴翰峰,等.生殖道沙眼衣原体和解脲支原体与不育症的关系.湖南医科大学学报.1998,23(10):67-69.
    [21]Kinnunen AH, Surcel HM, Lehtinen M, et al. HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis related tubal factor infertility:a case-control study. Hum Reprod.2002, 17(8):2073-2078.
    [22]Pinkerton SD, Layde PM. For the NIMH multisite HIV prevention trial group. Using sexually transmitted disease incidence as a surrogate marker for HIV incidence in prevention trials:a modeling study. Sex Transm Dis.2002,29(5): 298-307.
    [23]Roberta B Ness, Caixia Shen, Debra Bass, et al. Chlamydia trachomatis Serology in Women with and without Ovarian Cancer. Infectious Diseases in Obstetrics and Gynecology.2008, Article ID 219672,5 pages.
    [24]Wallin KL, Wiklund F, Luostarinen T, et al. Apopulation-based prospective study of chlamydia trachomatis infection and cervical carcinoma. Ant J Cancer. 2002,101(4):371-374.
    [25]Luostarinen T, Stattin P, Saikku P, et al. Chlamydial antibodies and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev.2005,14(2):385-389.
    [26]Kuipers JG, Zeidler H, Kohler L. How does Chlamydia cause arthritis. Rheum Dis Clin North Am.2003,29(3):613-629.
    [27]Michael CJ, Elke R, Michael M, et al. Cytokine profile in serum and synovid fluid of arthritis patients with Chlamydia trachomatis infection. Rheumatol Int. 2005,25(1):37-41.
    [28]Hannu T, Inman R, Granfors K, et al. Best Reactive arthritis or post infections arthritis. Pract Res Clin Rheumatol.2006,20(3):419-433.
    [29]Yangming Xiao, Youmin Zhong, Whitney Greene. Chlamydia trachomatis infection inhibits Both Bax and Bak activation induced by staurosporine. Infect Immun.2004,72(9):5470-5474.
    [30]Fischer SF, Juliane Vier, Kirschnek S, et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J Exp Med. 2004,200(7):905-916.
    [31]Beatty WL, Morrison RP, Byrne GI. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect Immun,1995,63(1):199-205.
    [32]Fischer SF, Schwarz C, Vier J, et al. Characterization of antiapoptotic of Chlamydia pneumoniae in human cells. Infect Immun.2001, 69(11):9121-9129.
    [33]Dong F, Pirbhai M, Xiao Y, et al. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect Immun.2005,73(3):1861-1864.
    [34]魏秀青,程文,严杰,等.沙眼衣原体感染Hela229细胞诱导SOCS-1、3的表达.中南大学学报.2004,29(6):639-642.
    [35]张小清,李建平,余平.沙眼衣原体感染细胞中IFN-γ信号通路的初步研究.微生物学杂志.2003,23(2):5-7.
    [36]Fan T, Lu H, Hu H, et al. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med.1998,187(4):487-496
    [37]Rajalingam K, Sharma M, Lohmann C, et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-Infected Cells.plos one, 2008,3(9):e3102.
    [38]Su H, McClarty G, Dong F, et al. Activation of Raf/MEK/ERK/cPLA2 Signaling Pathway Is Essential for Chlamydial Acquisition of Host Glycerophospholipids. J Biol Chem,2004,279(10):9409-9416.
    [39]Askienazy-Elbhar M, Suchet JH. Persistent "silent"chlamydia trachomatis female genital tract infections. Infect Dis Obstet Gynecol.1999:7(1-2):31-34
    [40]Airenne S, Surcel HM, Alakarppa H, et al. Chlamydia pneumoniae infection in human monocytes. Infect Immun.1999,67(3):1445-1449.
    [41]Scidmore MA, Fischer ER, Hackstadt T. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun.2003,71(2):973-984.
    [42]Stephens RS. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol.2003,11(1):44-51.
    [43]Gerard HC, Krause—opatz B, Wang Z, et al. Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Molecular Microbiol.2001, 41(3):731-741.
    [44]Stephens RS, Kalman S, Lammel C, et al. Genome Sequence of an Obligate Intracellular Pathogen of Humans:Chlamydia trachomatis. Science.1998. 282(5389):754-759.
    [45]Kris E. Spaeth, Yi-Shan Chen, Raphael H, et al. The Chlamydia Type III Secretion System C-ring Engages a Chaperone-Effector Protein Complex. Plos Pathog.2009,5(9):e1000579.
    [46]Sandra Muschiol, Leslie Bailey, Asa Gylfe, et al. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. PNAS.2006,103(39):14566-14571.
    [47]Galan JE, Collmer A. Type III secretion machines:bacterial devices for protein delivery into host cells. Science.1999,284(5418):1322-1328.
    [48]Xia M, Bumgarner RE, Lampe MF, et al. Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. J Infect Dis.2003, 187(3):424-434.
    [49]Hess S, Peters J, Bartling G, et al. More than just innate immunity:comparative analysis of Chlamydophila pneumoniae and Chlamydia trachomatis effects on host-cell gene regulation. Cell Microbiol.2003,5(11):785-795.
    [50]Dong F, Zhong Y, Bernard Arulanandam, et al. Production of a Proteolytically Active Protein, Chlamydial Protease/Proteasome-Like Activity Factor, by Five Different Chlamydia Species. Infect Immun.2005,73(3):1868-1872.
    [51]Zhong G, Fan P, Ji H. Identification of a Chlamydial protease-like activity factor responsible for the degradation of host transcription factor. J Exp Med. 2001,139(8):935-942.
    [52]Fan P, Dong F, Huang Y, et al. Chlamydia pneumoniae secretion of a protease-like activity factor for degrading host cell transcription factors required for major histocompatibility complex antigen expression. Infect Immun.2002,70(1):345-349.
    [53]余俊龙,余平,李立新.沙眼衣原体感染对IFN-y诱导的HeLa细胞HLA-Ⅱ类分子表达的影响.中国现代医学杂志.2003,13(9):83-86.
    [54]余俊龙唐发清李立新.沙眼衣原体感染对HeLa细胞MHC Ⅰ、Ⅱ类分子表达的影响.中华微生物学和免疫学杂志.2004,24(1):44-47.
    [55]Verma A, Maurelli AT. Identification of Two Eukaryote-Like Serine Encoded by Chlamydia trachomatis Serovar L2 and Characterization of Interacting Partners of Pknl. Infect Immun,2003,71 (10):5772-5784.
    [56]Akiyama T, Gohda J, Shibata S, et al. Mammalian homologue of E. coli ras-like GTPase (ERA) is a possible apoptosis regulator with RNA binding activity. Genes to Cells.2001,6(11):987-1001.
    [57]Scidmore MA, Fischer ER, Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol. 1996,134(2):363-374.
    [58]Hackstadt T, Rockey DD, Heinzen RA, et al. Chiamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J.1996, 15(5):964-977.
    [59]Hackstadt T, Scidmore MA, DRockey D. Lipid metabolism in Chlamydia trachomatis-infected cells:directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. PNAS.1995,92(11):4877-4881.
    [60]Carabeo RA, Mead DJ, Hackstadt T. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. PNAS.2003,100(1):6771-6776.
    [61]Sonya P Lad, Jiali Li, Jean da Silva Correia, et al. Cleavage of p65/RelA of the NF-KappaB pathway by Chlamydia. PNAS.2007,104(8):2933-2938.
    [62]李华,易新元,曾宪芳,等.日本血吸虫成虫67kDa分子抗原的纯化及其对血吸虫病的诊断和疗效考核.中国热带医学.2001,1(2):93-95.
    [63]Frances Cirino, Wilmore C Webley, Corrie West, et al. Detection of Chlamydia in the peripheral blood cells of normal donors using in vitro culture, immunofluorescence microscopy and flow cytometry techniques. BMC Infectious Diseases.2006,6:23.
    [64]Sturdevant GL, Kari L, Donald J, et al. Frameshift mutations in a single novel virulence factor alter the in Vivo pathogenicity of Chlamydia trachomatis for the female murine genital tract. Infect Immun.2010,78(9):3660-3668.
    [65]Tangbin Yang, Patrik Stark, Katrin Janik, et al. SOCS-1 Protects against Chlamydia pneumoniae-Induced lethal inflammation but hampers effective bacterial clearancel. The Journal of Immunology.2008,180(6):4040-4049.
    [66]Rishein Gupta, Pragya Srivastava, Harsh Vardhan, et al. Host immune responses to chlamydial inclusion membrane proteins B and C in Chlamydia trachomatis infected women with or without fertility disorders. Reproductive Biology and Endocrinology.2009,7:38.
    [67]Eugenia de la Torre, Melissa J Mulla, Andrew G Yu, et al. Chlamydia trachomatis infection modulates trophoblast cytokine/chemokine production. J Immunol.2009,182(6):3735-3745.
    [68]萨姆布鲁克J,拉塞尔D W.黄培堂等译.分子克隆实验指南.第三版.北京:科学出版社.2002,1217-1274.
    [69]Pupo E, Aguila A, Santana H, et al. Mice immunization with gel electrophoresis-micropurified bacterial lipopolysaccharides. Electrophoresis. 1999,20(3):458-461.
    [70]Oettinger HF, Pasqualini R, Bernfield M. Recombinant peptides as immunogens:a comparison of protocols for antisera production using the pGEX system. Biotechniques.1999,12(4):544-549.
    [71]Chen C, Chen D, Sharma J, et al. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis. Infect Immun.2006, 74(8):4826-4840.
    [72]Anne-Sofie Hobolt-Pedersen, Gunna Christiansen, Evy Timmerman, et al. Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion systemtothe host cell cytoplasmand nucleus. Immunol Med Microbiol.2009,57(1):46-58.
    [73]Rzomp KA, Moorhead AR, Scidmore MA. The GTPase Rab4 Interacts with Chlamydia trachomatis Inclusion Membrane Protein CT229. Infect Immun. 2006,74(9):5362-5373.
    [74]Claudio Cortes, Kimberly A Rzomp, Amy Tvinnereim, et al. Chlamydia pneumoniae Inclusion Membrane Protein Cpn0585 Interacts with Multiple Rab GTPases. Infect Immun.2007,75(12):5586-5596.
    [75]Wilhelmina M Huston, Christina Theodoropoulos, Sarah A Mathews, et al. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiology.2008,8:190.
    [76]Srilekha Deka, Jennifer Vanover, Sophie Dessus-Babus, et al. Chlamydia trachomatis enters a viable but noncultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cellular Microbiology. 2006,8(1):149-162.
    [77]Leonhardt RM, Seung-Joon Lee, aula B Kavathas PB, et al. Severe Tryptophan Starvation Blocks Onset of Conventional Persistence and Reduces Reactivation of Chlamydia trachomatis. Infect Immun.2007,75(11):5105-5117.
    [78]Beatty WL, Belanger TA, Desai AA, et al. Tryptophan depletion as a mechanism of gamma interferon-mediated Chlamydia persistent. Infect Immun. 1994,62(9):3705-3711.
    [79]Beatty WL, GERALD I Byrne GI, Morrison RP. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. PNAC.1993,90(9):3998-4002.
    [80]Wandy L Beaity, Richard P Morrison, Gerald I Byrne. Immunoelectron-Microscopic Quantitation of Differential Levels of Chlamydial Proteins in a Cell Culture Model of Persistent Chlamydia trachomatis Infection. Infect Immun,1994,62(9):4059-4062.
    [81]Herve C Gerarda, Judith A Whittum-Hudsona, H Ralph Schumacher Jr, et al. Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microbial Pathogenesis.2004,36(l):35-39.
    [82]Adam Polkinghorne, Richard J. Hogan, Lloyd Vaughan, et al. Differential expression of chlamydial signal transduction genes in normal and interferon gamma-induced persistent Chlamydophila pneumoniae infections. Microbes and Infection.2006,8(1):61-72.
    [83]Belland RJ, David E, Virok ND, et al. Transcroptome analysis of Chlamydia growth during IFN-gamma-mediated persistence and teactivation. PNAS.2003, 100(26):15971-15976.
    [84]Simone Hess, Claudia Rheinheimer, Felicitas Tidow, et al. Chlamydia Trachomatis-Induced Up-Regulation of Glycoprotein 130 Cytokines, Transcription Factors, and Antiapoptotic Genes. ARTHRITIS & RHEUMATISM.2001,44(10):2392-2401.
    [85]Perkins D, Pereira EFR, Gober M, et al. The Herpes Simplex Virus Type 2 R1 Protein Kinase (ICP10 PK) Blocks Apoptosis in Hippocampal Neurons, Involving Activation of the MEK/MAPK Survival Pathway. Journal of virology,2002,76(3):1435-1449.
    [86]Perkins D, Pereira EFR,. Aurelian L. The Herpes Simplex Virus Type 2 R1 Protein Kinase (ICP10 PK) Functions as a Dominant Regulator of Apoptosis in Hippocampal Neurons Involving Activation of the ERK Survival Pathway and Upregulation of the Antiapoptotic Protein Bag-1. Journal of virology,2003, 77(2):1292-1305.
    [87]Henkart PA. ICE family proteases:mediators of all apoptotic cell death? Immunity.1996,4(3):195-201.
    [88]Kyriakis JM, Avruch·J. Sounding the alarm:protein kinase cascades activated by stress and inflammation. J Biol Chem.1996,271 (40):24313-24316.
    [89]Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Pin Neurobiol.2000,10(3):381-391.
    [90]Yan CYI, Greene LA. Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci.1998,18(11):4042-4049.
    [91]Tran SEF, Holmstrom TH, Ahonen M, et al. mitogen-activated protein kinase/ERK overrides the apoptotic signaling from Fas, tumor necrosis factor alpha, and TRAIL receptors. J Biol Chem.2001,276(19):16484-16490.
    [92]Jean-Luc Perfettini, Toni Darville, Alice Dautry-Varsat, et al. Inhibition of Apoptosis by Gamma Interferon in Cells and Mice Infected with Chlamydia muridarum (the Mouse Pneumonitis Strain of Chlamydia trachomatis). Infect Immun.2002,70(5):2559-2565.
    [93]Deborah Dean, Virginia C. Powers. Persistent Chlamydia trachomatis Infections Resist Apoptotic Stimuli. Infect Immun.2001,69(4):2442-2447.
    [94]Whitney Greene, Yangming Xiao, Yanqing Huang. Chlamydia-Infected Cells Continue To Undergo Mitosis and Resist Induction of Apoptosis. Infect Immun. 2004,72(1):451-460.
    [95]David M. Ojcius, Philippe Souque, Jean-Luc Perfettini, et al. Apoptosis of Epithelial Cells and Macrophages Due to Macrophages Due to Infection with the Obligate Intracellular Pathogen Chlamydia psittaci. J Immunol.1998, 161(8):4220-4226.
    [96]Rajalingam K, Sharma M, Paland N, et al. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog.2006, 2(10):e114.
    [97]Christian Wahl, Sonja Maier, Reinhard Marre, et al. Chlamydia pneumoniae induces the expression of inhibitor of apoptosis 2 (c-IAP2) in a human monocytic cell line by an NF-kappaB-dependent pathway. J Med Microbiol. 2003,293(5):377-381.
    [98]Ying S, Christian JG, Stefan A. Paschen SA, et al. Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular Inhibitor of Apoptosis Proteins and Mcl-1. Microbes and Infection.2008,10:97-101.
    [99]Gurumurthy RK, Maurer AP, Machuy N, et al. A loss-of-function screen reveals Ras-and Raf-independent MEK-ERK signaling during Chlamydia trachomatis infection. Science Signaling,2010,3(113):ra21.
    [100]Cheng Wen, Chen Fan, YU Ping, et al. Activation of MAPK/ERK and MAPK/P38 is Essential for Proinflammatory Response by Chlamydia trachomatis. Progress in Biochemistry and Biophysics.2008,35(1):56-62.
    [101]Webb SJ, Harrison DJ, Wyllie AH. Apoptosis:an overview of the process and its relevance in disease. Adv Pharmacol.1997,41:1-31.
    [1]Hackstadt T. The diverse habitats of obligate intracellular. Curr Opin Microbiol.1998,1(1):82-87.
    [2]Hackstadt T, Fischer ER, Scidmore MA, et al. Origins and functions of the chlamydial inclusion. Trends Microbiol.1997,5(7):288-293.
    [3]Grayston JT, Wang S. New knowledge of chlamydiae and the diseases they cause. J Infect Dis.1975,132:87-105.
    [4]Taylor HR, Johnson SL, Schachter J, et al. Pathogenesis of trachoma:the stimulus for inflammation. J Immunol.1987,138(9):3023-3027.
    [5]Sherman KJ, Daling JR, Stergachis A, et al. Sexually transmitted diseases and tubal pregnancy. Sex Transm Dis.1990,17(3):115-121.
    [6]Kinnunen AH, Surcel HM, Lehtinen M, et al. HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis related tubal factor infertility:a case-control study. Hum Reprod.2002, 17(8):2073-2078.
    [7]余平,张良文,戴翰峰,等.生殖道沙眼衣原体和解脲支原体与不育症的关系.湖南医科大学学报.1998,23(10):67-69.
    [8]Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol.2005, 5(2):149-161.
    [9]Belland R, Ojcius DM, Byrne G. Chlamydia. Nat Rev Microbiol.2004, 2(7):530-531.
    [10]Anthony A Azenabor, Patrick Kennedy, Salvatore Balistreri. Chlamydia trachomatis Infection of Human Trophoblast Alters Estrogen and Progesterone Biosynthesis:an insight into role of infection in pregnancy sequelae. Int J Med. Sci.2007,4(4):223-231.
    [11]Grayston JT. Chlamydia pneumoniae, strain TWAR pneumonia. Annu. Rev Med.1992,43:317-323.
    [12]Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis.1990,161(4):618-625.
    [13]Kuo CC, Jackson L A, Campbe U, et al. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev.1995,8(4):451-461.
    [14]Grayston JT, Kuo CC, Wang SP, et al. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med.1986, 315(3):161-168.
    [15]Shi Y, Tokunaga O. Chlamydia pneumoniae and multiple infections in the aorta contribute to atherosclerosis. Pathol Int.2002,52(12):755-763.
    [16]Claudia Dumrese, Christine F Maurus, Daniel Gygi. Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells. BMC Microbiology.2005,5:2.
    [17]Zhang JP, Stephens RS. Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell.1992,69(5):861-869.
    [18]Su H, Raymond L, Rockey DD, et al. A recombinant Chlamydia trachomatis major outermembrane protein binds to heparansulfate receptors on epithelial cells. Proc Natl Acad Sci U S A.1996,93(20):11143-11148.
    [19]Moelleken K, Hegemann JH. The Chlamydia outermembrane protein OmcB is required for adhesion and exhibits biovar specific differences in glycosam inoglycan binding. Mol Microbiol.2008,67 (2):403-419,67(2):403.
    [20]Crane DD, Carlson JH, Fischer ER, et al. Chlamydia trachomatis polymorphic membrane protein D is a species common panneutralizing antigen. Proc Natl Acad Sci U S A.2006,103 (6):1894-1899, 103(6):1894-1899.
    [21]Wehrl W, Brinkmann V, Jungblut PR, et al. From the inside out-processing of the Chlamydia to transporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol Microbiol.2004,51(2):319-334.
    [22]Birkelund S, Johnsen H, Christiansen G. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells. Infect Immun.1994,62(11):4900-4908.
    [23]Clioon DR, Dooley CA, Grieshaber SS, et al. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Infect Immun.2005,73(7):3860-3868.
    [24]Clifton DR, Fields KA, Grieshaber SS, et al. A chlamydial type III translocated protein is tyrosine phosphor rylated at the site of entry and associa ted with recruitment of actin. Proc Natl Acad Sci U S A.2004, 101(27):10166-10171.
    [25]Swanson KA, CraneDD, Caldwellh D. Chlamydia trachomatis species-specific induction of ezrin tyrosine phosphorylation functions in pathogen entry. Infect Immun.2007,75(12):5669-5677.
    [26]Carabeo RA, Dooley CA, Grieshaber SS, et al. Rac interacts with Abi1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol.2007,9(9):2278-2288. [27] Carabeo RA, Grieshaber SS, Hasenkrug A, et al. Requirement for the RacGTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic.2004,5(6):418-425. [28] Subtil A, Wyplosz B, Balanam E, et al. Analysis of Chlamydia caviae entry site and involvement of Cdc42 and Rac activity. J Cell Sci.2004, 117(Ptl7):3923-3933. [29] Scidmore MA, Fischer ER, Hackstadt T. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun.2003,71(2):973-984. [30] AL-Younes HM, Rudel T, Meyer TF. Characterization and in trace llular trafficking pattern of vacuoes containing Chlamydia pneumoniae in human epithelial cells. Cell Microbiol.1999, 1(3):237-247.
    [31]Friss RR. Interaction of L cells and Chlamydia psittaci:entry of the parasite and host responses to its development. J Bacteriol.1972,110(2):706-721.
    [32]余俊龙,唐发清,李立新,等.沙眼衣原体感染对HeLa细胞MHC工、Ⅱ类分子表达的影响.中华微生物学和免疫学杂志.2004,24(1):44-47.
    [33]Kyriakis JM, Avruch J. Sounding the alarm:protein kinase cascades activated by stress and inflammation. J Biol Chem.1996,271(40):24313-24316.
    [34]Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Pin Neurobiol.2000,10(3):381-391.
    [35]Yan CYI, Greene LA. Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci.1998,18(11):4042-4049.
    [36]Tran SEF, Holmstrom TH, Ahonen M, et al. mitogen-activated protein kinase/ERK overrides the apoptotic signaling from Fas, tumor necrosis factor alpha, and TRAIL receptors. J Biol Chem.2001,276(19):16484-16490.
    [37]Perkins D, Pereira EFR, Gober M, et al.The Herpes Simplex Virus Type 2 R1 Protein Kinase (ICP10 PK) Blocks Apoptosis in Hippocampal Neurons, Involving Activation of the MEK/MAPK Survival Pathway. Journal of virology,2002,76(3):1435-1449. [38] Perkins D, Pereira EFR,. Aurelian L. The Herpes Simplex Virus Type 2 R1 Protein Kinase (ICP10 PK) Functions as a Dominant Regulator of Apoptosis in Hippocampal Neurons Involving Activation of the ERK Survival Pathway and Upregulation of the Antiapoptotic Protein Bag-1. Journal of virology, 2003,77(2):1292-1305. [39] Fan T, Lu H, Hu H, et al. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med.1998,187(4):487-496. [40] David M. Ojcius, Philippe Souque, Jean-Luc Perfettini, et al. Apoptosis of Epithelial Cells and Macrophages Due to Infection with the Obligate Intracellular Pathogen Chlamydia psittaci1. The Journal of Immunology. 1998,161(8):4220-4226. [41] Stenne-Liewen F, Liewen H, Zapata JM, et al. CADD, a Chlamydia protein that interacts with death receptors. J Biol Chem.2002,277(12):9633-9636. [42] Schwarzenbacher R, Stenner-Liewen F, Liewen H, et al. Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis. J Biol Chem.2004,279(28):29320-29324.
    [43]Perfettini JL, Reed JC, Israel N, et al. Role of Bcl-2 family members in caspase-independent apopoptosis during Chlamydia infection. Infect Immun, 2002,70(1):55-61.
    [44]Xia M, Bumgamer RE, Lampe MF, et al. Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. J Infect Dis.2003, 187(3):424-434.
    [45]Carabeo RA, Mead DJ, Hackstadt T. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. PNAS.2003,100(1):6771-6776.
    [46]Hackstadt T, Scidmore MA, DRockey D. Lipid metabolism in Chlamydia trachomatis-infected cells:directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. PNAS.1995,92(11):4877-4881.
    [47]Hackstadt T, Rockey DD, Heinzen RA, et al. Chiamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J.1996,15(5):964-977.
    [48]Scidmore MA, Fischer ER, Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol. 1996,134(2):363-374.
    [49]Su H, McClarty G, Dong F, et al. Activation of RafMEKERKcPLA2 Signaling Pathway Is Essential for Chlamydial Acquisition of Host Glycerophospholipids. J Biol Chem.2004,279(10):9409-9416. [50] Fischer SF, Schwarz C, Vier J, et al. Characterization of antiapoptotic activities of Chlamydia pneumoniae in human cells. Infect Immun.2001, 69(11):7121-7129. [51] Geng Y, Shane RB, Berencsi K, et al. Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J Immunol.2000,164(10):5522-5529. [52] Xiao Y, Zhong Y, GreeneW, et al. Chlamydia trachomatis infection inhibits both bax and bak activation induced by staurosporine. Infect Immun.2004, 72(9):5470-5475. [53] Fischer SF, Harlander T, Vier J, et al. Protection against CD952 induced apoptosis by Chlamydial infection at a mitochondrial step. Infect Immun. 2004,72(1107-1115).
    [54]Dong F, PirbhaiM, Xiao Y, et al. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect Immun.2005,73(3):1861-1864.
    [55]Ying S, Seiffert BM, Hacker G, et al. Broad degradation of proapoptotic proteins with the conserved bcl-2 homology domain 3 during infection with Chlamydia trachomatis. Infect Immun.2005,73(3):1399-1403.
    [56]Rajalingam K, Sharma M, Paland N, et al. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog.2006, 2(10):e114.
    [57]Christian Wahl, Sonja Maier, Reinhard Marre, et al. Chlamydia pneumoniae induces the expression of inhibitor of apoptosis 2 (c-IAP2) in a human monocytic cell line by an NF-kappaB-dependent pathway. J Med Microbiol. 2003,293(5):377-381.
    [58]Rajalingam K, Sharma M, Lohmann C, et al. Mcl-1 is a Key regulator of apoptosis Resistance in Chlamydia trachomatis-Infected Cells.plos one.2008, 3(9):e3102.
    [59]Lampe MF, Wilson CB, Bevan MJ, et al. Gamma interferon production by cytotoxic T lymphocytes is required for resolution of Chlamydia trachomatis infection. Infect Immun.1998,66(11):5457-5461. [60] Kim SK, DeMars R. Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. Curr Opin Immunol.2001,13(4):429-436. [61] Hsia RC,Pannekoek Y, Ingerowski E, et al. Type III secretion genes identify putative vimlence locus of Chlamydia. MoI Microbiol.1997,351-359. [62] Slepenkin A, Motin V, de la Maza LM, et al. Temporal expression of type III secretion genes of Chlamydia pneumoniae. Infect Immun.2003, 71(5):2555-2562. [63] Rockey DD, Grosenbach D, Hruby DE, et al. Chamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol Micmbiol.1997,4(1):217-228. [64] Stephens RS, Fawaz FS, Kennedy KA, et al. Eukaryotic cell uptake of heparin-coated microspheres:a model of host cell invasion by Chlamydia tmchomatis. Infect Immun.2000,68(3):1080-1085. [65] WyIie JL, Hatch GM, MccIany G. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol.1997, 179(23):7233-7242.
    [66]Hatch GM, McClarty G. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucarvotic host cell. Infect Immun.1998, 66(8):3727-3735.
    [67]Mota LJ, Cornelis. The bacterial injection kit:type III secretion systems. Ann Med.2005,37(4):234-249.
    [68]Bnantine JP, Grimths RS, Viratyosin W, et al. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Micmbiol.2000,2(1):35-47.
    [69]Hackstadt T, Scidmore, Carlson MA, et al. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Micmbiol.19991, 1(2):119-130.
    [70]Suchland RJ, Rockev DD, Bannalltine JP, et al. Isolates of Chlamydia trachomatis that occupv nonfusogenic inclusions lack IncA, a protein localized to the inclusion membmne. Infect Immun.2000,68(1):360-367.
    [71]Suchland RJ, Rockey DD, Weeks SK, et al. Development of secondary inclusions in cells infected by Chlamy dia t rachomatis. Infect Immun.2005, 73(7):3954-3962. [72] Alzhanov D, Barnes J, Hruby DE, et al. Chlamydial development is blocked in host cells transfected with Chlamy dophilacaviae incA. BMC Microbiol. 2004,1(4):24. [73] Anne-Sofie Hobolt-Pedersen, Gunna Christiansen, Evy Timmerman. et al. Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. Immunol Med Microbiol.2009,57(1):46-58. [74] Abromaitis S, Stephens RS. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. Plos pathog,2009, 8(4):e1000357. [75] Byme GI, and Moulder JW. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect Imnlun,1978, 19(2):598-606. [76] Ward ME, Murray A. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells:mechanisms, of endocytosis. J Gen Microbiol.1984,130(7):1765-1780.
    [77]Wyriek PB, Choong J, Davis CH, et al. Entry of Chlamydia trachomatis into polarizedhuman epithelial ceils. Infect Immun.1989,57(8):2378-2389.
    [78]Prain CJ, and Pearce JH. Ultraslruetural studies on the intracellular fate of Chlamydia psittaci(strain guinea pig inclusion conjunctivitis)and Chlamydia trachomatis(suain lymphogranuloma venereum 434):modulation of intracellular events and relationship with the endocytic mechanism. J Gen Mierobiol.1989,135(7):2107-2123.
    [79]Hybiske K, and Stephens RS. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proe Natl Acad Sci USA,2007, 104(27):11430-11435.
    [80]Wilhelmina M Huston, Christina Theodoropoulos, Sarah A Mathews, et al. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiology.2008,8:190.
    [81]Srilekha Deka, Jennifer Vanover, Sophie Dessus-Babus, et al. Chlamydia trachomatis enters a viable but noncultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cellular Microbiology. 2006,8(1):149-162.
    [82]Beatty WL, GERALD I Byrne GI, Morrison RP. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. PNAC.1993,90(9):3998-4002.
    [83]Kazar J, Gillmore JD, Gordon FB. Effect of interferon and interferon inducers on infections with a nonviral intracellular microorganism, Chlamydia trachomatis. Infect Immun.1971,3(6):825-832.
    [84]Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psttaci replication in T24 cells. Infect Immun.1986, 53(2):347-351.
    [85]Beatty WL, Belanger TA, Desai AA, et al. Tryptophan depletion as a mechanism of gamma interferon-mediated Chlamydia persistent. Infect Immun.1994,62(9):3705-3711.
    [86]Beatty WL, Morrison RP, Byrne GI. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect Immun.1995,63(1):199-205.
    [87]Morrison RP. Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma interferon. Infect Immun.2000, 68(10):6038-6040.
    [88]Calswell HD, Wood H, Crane D, et al. Polymorphisms in Chlamydia trachomatis tryptophan syntheses genes differentiate between genital and ocular isolates. J Clin Invest.2003,111(11):1757-1769.
    [89]Harper A, Pogson CI, Jones ML, et al. Chlamydia development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect Immun.2000,68(3):1457-1464.
    [90]McCoy AJ, Sandlin RC, Maurelli AT. In vitro and in vivo functional activity of Chlamydia Maura, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol. 2003,185(4):1218-1228.
    [91]Dreses-Werringloer U, Padub rin I, Jurgens-Saathoff B, et al. Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in vitro. Antimicrob Agents Chemother.2000,44(12):3288-3297.
    [92]CHENG Wen, CHEN Fan2, YU Ping, et al. Activation of MAPK/ERK and MAPK/P38 is Essential for Proinflammatory Response by Chlamydia trachomatis. Progress in Biochemistry and Biophysics.2008,35(1):56-62.
    [93]Ozlem Equils, Daning Lu, Mary Gatter, et al. Chlamydia Heat Shock Protein 60 Induces Trophoblast Apoptosis through TLR4. J Immunol.2006, 177(2):1257-1263.[94]余琳,陈敦金.沙眼衣原体与生殖道感染免疫损伤机制的研究.进展.热带医学杂志,2006,6(1):100-102.[95]王燕舞,孟运莲,罗善云.女性生殖道沙眼衣原体感染免疫机制的研究进展.国外医学妇幼保健分册,2002,13(1):46.
    [96]Zhong G, Fan P, Ji H. Identification of a Chlamydial protease-like activity factor responsible for the degradation of host transcription factor. J Exp Med. 2001,139(8):935-942. [97] Dong F, Sharma j, Xiao Y, et al. Intramolecular dimerization is required for the chlamydia-secreted protease CPAF to degrade host transcriptional farctors. Infect Immnu,2004,72(7):3869-3875. [98] Dong F, Zhong Y, Arulanandam B. Production of a Proteolytically Active Protein, Chlamydial Protease/Proteasome-Like Activity Factor, by Five Different Chlamydia Species. Infect Immun.2005,73(3):1868-1872.
    [99]Sharma J, Bosnic AM, Piper JM, et al. Human antibody responses to a Chlamydia-secreted protease factor. Infect Immun.2004,72(12):7164-7171.
    [100]Sharma J, Dong F, Pirbhai M, et al. Inhibition of proteolytic activity of chlamydial proteasome/protease-like activity factor of by antibodies from humans infected with Chlamydia trachomatis. Infect Immun.2005, 73(7):4414-4419.
    [101]Dong F,Su H,Huang Y, et al. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect Immun.2004,72(7):3836-3868.
    [102]Pirbhai M, Dong F, Zhong Y, et al. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3 only Proteins in Chlamydia trachomatis infected cells. J Biol Chem,2006,281(42):31495-31501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700