肾小管周毛细血管损伤在原发性恶性高血压肾损害中意义的初步观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     恶性高血压(Malignant Hypertension, MHT)主要表现为严重的高血压(舒张压≥130mmHg),常伴有双侧眼底出血和/或渗出,伴或不伴视乳头水肿;因其起病急,进展快,预后差而受到广泛关注。恶性高血压常累及多个靶器官,其中肾脏受累比例高达63%-90%。有关原发性恶性高血压肾损害临床病理与预后相关性的研究并不多,有限的几项研究,或者病例数较少,或者没有肾脏病理资料,结论也不甚一致。近年来的研究提示肾小管周毛细血管(Peritubular Capillary, PTC)和肾脏病理改变、肾功能恶化程度有较好的相关性,但是目前尚未见在恶性高血压肾损害的病例中报道。在恶性高血压的起病过程中,肾素-血管紧张素-醛固酮系统(Renin-Angiotensin-Aldosterone System, RAAS)的活化有重要作用;肾素是RAAS激活的第一步限速酶,90%由肾脏球旁器分泌,但是具体活化机制研究不多。RAAS的激活和PTC的减少等都可能导致或加重肾脏缺氧,启动缺氧诱导因子(Hypoxia-Inducible Factor, HIF),调节机体对缺氧的适应性反应,但在恶性高血压肾损害中情况不明。本研究回顾性地分析52例病理资料完整的原发性恶性高血压肾损害的临床、病理特点,评价PTC缺失对肾功能和预后的影响,观察肾脏局部肾素表达细胞的特点,了解HIF-1α表达情况,为进一步研究发病机制和潜在的干预措施提供一些线索。
     研究目的:
     1.回顾性观察原发性恶性高血压肾损害病人的临床和病理特点,初步分析影响预后的相关因素;
     2.观察恶性高血压病例肾脏PTC缺失的情况,分析其和临床指标及预后的关联性;
     3.初步观察恶性高血压病例肾脏局部的肾素和HIF-1α表达特点,观察二者与PTC缺失、临床病理的相关性。
     研究方法:
     从2003年1月至2012年3月间在北京协和医院住院的病人中选出52例经肾活检确诊的、临床资料完整的原发性恶性高血压肾损害病例,收集其临床、病理及随访资料;定义长期透析(≥3个月)或死亡为终点事件。对肾小球、肾小管间质及肾脏血管病变进行半定量分析;行CD34(小血管内皮细胞特异性标记)免疫组化染色(n=35),评价PTC缺失程度与对照组(良性肾硬化组17例、肾小球轻微病变组19例)的差异。行肾素和HIF-1α免疫组化染色;对肾组织进行α-SMA和肾素的免疫荧光双染,观察肾脏局部肾素和HIF-1α的表达情况。统计方法:连续变量以均值±标准差的形式表示,计数资料以构成比表示。统计软件为SPSS19.0软件(IBM, USA)。主要统计方法包括t检验、卡方检验、单因素相关分析和COX比例风险模型等。
     研究结果:
     1.原发性恶性高血压肾损害病例的临床病理特点
     52例病人中以男性为主(男/女12:1),平均年龄为34.0±8.2岁(18-52岁),血压最高值为收缩压230.4±25.0mmHg,舒张压156.4±20.6mmHg。血肌酐(Scr)为486.8±375.7μmol/L,24小时尿蛋白定量(24hUpro)为1.87±1.50g/24h,21.1%患者需透析支持。病理提示存在不同程度的肾小球硬化;肾小管萎缩、间质纤维化比例为56±20%;微动脉病变以血管闭塞(24.3%)、内皮粘液样水肿(22.4%)和弹力纤维增生(22.1%)多见。肾小管间质病变与肾小球硬化、微动脉病变比例及微动脉闭塞比例、Scr、24hUpro正相关;微动脉闭塞比例与Scr正相关。出院时病人血肌酐和血压控制率均显著改善(P<0.001)。39例长期随访病例的平均随访时间29.1±30.1个月,肾脏存活和达终点各18例,其中1例死亡,3例失访,1年、3年和5年累积肾脏生存率分别为65%、55%和50%。
     2.原发性恶性高血压肾损害病例的肾小管周毛细血管损伤
     PTC面积占皮质比例为2.27±0.74%,显著低于轻微病变组(3.75±0.79%,P<0.001)和良性肾硬化组(2.85±0.51%,P=0.025)。PTC面积比例与血肌酐、是否需透析负相关。COX比例风险模型提示PTC面积减少(RR=13.21,95%CI(1.50,116.69),P=0.020)和CKD分期(RR=4.38,95%CI(1.46,13.15),P=0.008)是肾脏不良结局的独立危险因素。
     3.原发性恶性高血压肾损害病例的肾素、HIF-1α表达情况
     原发性恶性高血压病例肾脏局部肾素表达水平显著高于良性肾硬化组和肾小球轻微病变组,但HIF-1α表达强度无显著性差异。胚胎期间表达肾素的血管平滑肌细胞重新分泌肾素的再募集可能是RAAS活化的机制。
     研究结论:
     1.原发性恶性高血压患者肾脏受累严重,肾脏缺血性改变突出,现有血管病变的指标与临床相关性欠佳;
     2.肾脏PTC缺失与临床指标相关性好,且可预测肾脏的长期结局;
     3.肾脏局部肾素表达强度的升高可能和肾素分泌细胞再募集有关,没有观察到局部HIF-1α的异常表达。
Background
     Malignant hypertension, MHT is a clinical syndrome associated with severely elevated blood pressure and bilateral retinal haemorrhages or exudates, or both, with or without papiloedema. MHT has relatively poor prognosis and usually significant renal involvement. However, only a few clinicopathlogic studies have evaluated the correlations between pathologic lesions and prognosis of essential MHT. Peritubular Capillary, PTC is part of renal microvasculature distributed diffusely in kidney, which is vulnerable to hemodynamic challenge caused by hypertension. Several studies have demonstrated the correlation between PTC loss and renal injury in different disease models but MHT. It has been known for long that Renin-Angiotensin-Aldosterone System, RAAS activation has a pivotal role in the development and progression of MHT. Renin, mostly secreted from the juxtaglomerular apparatus, is the first rate-limiting enzyme in RAAS. However, little is known about the mechanisms of intrarenal renin activation. Both the PTC loss and RAAS activation contribute to the development of renal hypoxia which will lead to the stabilization and activation of Hypoxia-Inducible Factor, HIF, which is thought to be helpful in hypoxic environment. Accumulating evidence suggest that HIF activation might cause renal fibrosis and PTC loss. Therefore, this study retrospectively analyzed the clinical and pathological characteristics of52essential MHT patients confirmed by renal biopsy. The PTC losses, the patterns of renin-secreting cells as well as HIF-la expressions were also evaluated, aiming to provide possible clues for the understanding and management of MHT.
     Purpose
     1. Analyze the clinical and pathological characteristics of essential MHT patients, and identify the factors correlated with prognosis preliminarily.
     2. Evaluate the PTC loss and its associations with clinical manifestations and prognosis in essential MHT patients.
     3. Observe the patterns of renin secreting cells and its potential recruitment in kidney. Assess the expression of HIF-1α and its possible associations with PTC loss as well as clinical manifestations.
     Method
     The clinical records and follow-up data of52patients with essential MHT confirmed by renal biopsy in Peking Union Medical College Hospital from January2003to March2012were reviewed. The pathological findings including ischemic glomerular sclerosis, tubulointerstitial injury and arteriolar lesions are evaluated semi-quantitatively. The PTC was evaluated (n=35) by immunohistochemical staining of CD34, a specific marker of arteriolar endothelium and compared with control groups (17patients with benign hypertensive nephrosclerosis, BHN and19patients with glomerular minimal lesions, GML). The immunohistochemical staining of renin and HIF-la were also performed to evaluate the pattern of renin secreting cells and the expression of HIF-la. The renin secreting cell recruitment was assessed by immunofluorescence double-staining of a-SMA and renin. Continuous variables are displayed as mean±standard deviation and compared using student's t-test, one-way analysis of variance or Pearson's correlation coefficients. Categorical variables are expressed as percentage and compared with chi-square test. Kaplan-Meier analysis and Cox proportional hazard model were also used. A P-value of<0.05was considered significant. Statistical analysis was performed with the SPSS software (version19.0for Windows).
     Results
     1. The clinical and pathological characteristics of52essential MHT patients
     The enrolled patients were mostly male (48M:4F) and relatively young (age34.0±8.2), with the maximum blood pressure of230.4±25.0mmHg over156.4±20.6mmHg. The serum creatinine (Scr) was486.8±375.7μmol/L and the24h urine protein (24hUpro) was1.87±1.50g/24h.21.1%(11/52) of the patients required dialysis. The mean glomerular sclerosis index was2.50±1.39and the mean percentage of tubular atrophy/interstitial fibrosis (TA/IF) were56±20%. Lumen occlusion (24.3%), mucoid changes (22.4%) and intimal hyperplasia (22.1%) were common in arterioles. TA/IF correlated positively with the proportion of arteriolar lesion, lumen occlusion in arterioles and Scr. Lumen occlusion in arterioles correlated positively with Scr, too. After adequate anti-hypertension therapy, the blood pressure and renal function improved significantly (P<0.001). The mean follow-up time of39patients eligible for survival analysis were29.1±30.1months and the renal survival rate at1,3and5year was65%、55%and50%, respectively.
     2. The PTC loss in primary MHT patients
     The PTC proportion in essential MHT patients was2.27±0.74%, which was significantly less than that of GML patients (3.75±0.79%, P<0.001) and BHN patients (2.85±0.51%, P<0.025). PTC proportion correlated negatively with Scr and the need for dialysis. Cox proportional hazard model identified PTC loss as an independent risk factor for renal outcome (RR=13.21,95%CI (1.50,116.69), P=0.020).
     3. The evaluation of Renin and HIF-1α expression in MHT patients
     The renin expression level in essential MHT patients was elevated compared with BHN patients and GML patients. Such elevation in HIF-la expression was not observed. The renin secreting cell recruitment exists in essential MHT patients which might be a potential mechanism for local RAAS activation.
     Conclusion
     1. The renal involvement in essential MHT is severe both clinically and pathologically. The correlation of lesions in arterioles and small arteries with renal function and prognosis is not good enough.
     2. PTC loss in essential MHT patients correlated with renal function well and might predict the long time renal outcome.
     3. The elevation of renin expression in kidney may be related to renin secreting cell recruitment. Elevation of HIF-1α was not observed.
引文
[1]Volhard F F T. Die brightsche nierenkrankheit, Klinik, Pathologie und Atlas.1st ed.[Z]. Berlin:Verlag von Julius Springer,1914247-280.
    [2]Gonzalez R, Morales E, Segura J, et al. Long-term renal survival in malignant hypertension[J]. Nephrol Dial Transplant,2010,25(10):3266-3272.
    [3]Shantsila A, Shantsila E, Lip G Y. Malignant hypertension:a rare problem or is it underdiagnosed?[J]. Curr Vasc Pharmacol,2010,8(6):775-779.
    [4]Herlitz H, Gudbrandsson T, Hansson L. Renal function as an indicator of prognosis in malignant essential hypertension[J]. Scand J Urol Nephrol,1982,16(1):51-55.
    [5]Edmunds E, Beevers D G, Lip G Y. What has happened to malignant hypertension? A disease no longer vanishing[J].J Hum Hypertens,2000,14(3):159-161.
    [6]Lip G Y, Beevers M, Beevers G. The failure of malignant hypertension to decline:a survey of 24 years'experience in a multiracial population in England[J]. J Hypertens,1994,12(11):1297-1305.
    [7]黄淑文,刘力生.20例恶性高血压诊断与治疗的临床分析[J].中国循环杂志,1990,5(2):119-121.
    [8]赵明辉,周福德,王海燕.恶性高血压的肾损伤[J].中华内科杂志,2009(6):454-455.
    [9]程叙扬,赵明辉,李晓玫,等.慢性肾小球肾炎患者恶性高血压的临床特点和预后[J].中华肾脏病杂志,2004,20(2):79-82.
    [10]周福德,刘玉春,邹万忠,等.以肾脏受累为主要表现的恶性高血压临床病理分析[J].中华内科杂志,2001'40(3):165-168.
    [11]Ruggenenti P, Remuzzi G. Malignant vascular disease of the kidney:nature of the lesions, mediators of disease progression, and the case for bilateral nephrectomy[J]. Am J Kidney Dis,1996,27(4):459-475.
    [12]邹万忠.肾活检病理学[z].第1版.北京:北京大学医学出版社,2006:186.
    [13]Kitiyakara C, Guzman N J. Malignant hypertension and hypertensive emergencies[J]. J Am Soc Nephrol,1998,9(1):133-142.
    [14]Lane D A, Lip G Y, Beevers D G. Improving survival of malignant hypertension patients over 40 years[J]. Am J Hypertens,2009,22(11):1199-1204.
    [15]陈仆,陈香美,谢院生,等.伴恶性高血压IgA肾病的临床病理特征及其与肾血管病变的相关性[J].中华肾脏病杂志,2008,24(6):392-397.
    [16]陈瑜,唐政,王庆文,等.IgA肾病伴恶性高血压患者的预后及影响因素分析[J].中国实用内科杂志,2006,26(6):428-430.
    [17]Naruse M, Demura H, Naruse K, et al. Renin/angiotensin/aldosterone system in malignant hypertension[J]. Intern Med,1997,36(10):669-671.
    [18]Yoshida M, Nonoguchi H, Owada A, et al. Three cases of malignant hypertension:the roles of endothelin-1 and the renin-angiotensin-aldosterone system[J]. Clin Nephrol,1994,42(5):295-299.
    [19]Nangaku M, Fujita T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney[J]. Hypertens Res,2008,31(2):175-184.
    [20]Nangaku M, Inagi R, Miyata T, et al. Angiotensin-induced hypoxia in the kidney:functional and structural changes of the renal circulation[J]. Adv Exp Med Biol,2007,618:85-99.
    [21]Nangaku M, Fujita T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney[J]. Hypertens Res,2008,31(2):175-184.
    [22]Ruiz-Ortega M, Ruperez M, Esteban V, et al. Angiotensin Ⅱ:a key factor in the inflammatory and fibrotic response in kidney diseases[J]. Nephrol Dial Transplant,2006,21(1):16-20.
    [23]Fleming S. Malignant hypertension-the role of the paracrine renin-angiotensin system[J]. J Pathol,2000,192(2):135-139.
    [24]Long D A, Price K L, Herrera-Acosta J, et al. How does angiotensin II cause renal injury?[J]. Hypertension,2004,43(4):722-723.
    [25]Brown J J, Davies D L, Lever A F, et al. Plasma Renin Concentration in Human Hypertension-III: Renin in Relation to Complications of Hypertension[J]. Br Med J,1966,1(5486):505-508.
    [26]陈丽萌,黄宇宁,秦岩.血管紧张素Ⅱ调节肾脏球旁器颗粒细胞合成肾素的机制研究[J].中华肾脏病杂志,2010,26(1):28-33.
    [27]陈丽萌,黄宇宁,秦岩,等.前列腺素E2在肾脏球旁器调节肾素分泌中的作用[J].中华肾脏病杂志,2009,25(3):217-221.
    [28]陈丽萌,黄宇宁Schnermann Jurgen. β1/β2肾上腺素能受体基因缺失对肾脏球旁器颗粒细胞肾素分泌的影响[J].中华肾脏病杂志,2007,23(11):722-727.
    [29]Brunskill E W, Sequeira-Lopez M L, Pentz E S, et al. Genes that confer the identity of the renin cell[J]. J Am Soc Nephrol,2011,22(12):2213-2225.
    [30]Sequeira L M, Pentz E S, Nomasa T, et al. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened[J]. Dev Cell,2004,6(5):719-728.
    [31]Chade A R. Reno vascular disease, microcirculation, and the progression of renal injury:role of angiogenesis[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(4):R783-R790.
    [32]Jen K Y, Haragsim L, Laszik Z G. Kidney microvasculature in health and disease[J]. Contrib Nephrol,2011,169:51-72.
    [33]Long D A, Norman J T, Fine L G. Restoring the renal microvasculature to treat chronic kidney disease[J]. Nat Rev Nephrol,2012.
    [34]Johnson R J, Schreiner G F. Hypothesis:the role of acquired tubulointerstitial disease in the pathogenesis of salt-dependent hypertension[J]. Kidney Int,1997,52(5):1169-1179.
    [35]Faubert P F, Chou S Y, Porush J G. Regulation of papillary plasma flow by angiotensin II[J]. Kidney Int,1987,32(4):472-478.
    [36]Johnson R J, Herrera-Acosta J, Schreiner G F, et al. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension[J]. N Engl J Med,2002,346(12):913-923.
    [37]Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease[J]. Nephrol Dial Transplant,2011,26(4):1132-1137.
    [38]Mimura I, Nangaku M. The suffocating kidney:tubulointerstitial hypoxia in end-stage renal disease[J].Nat Rev Nephrol,2010,6(11):667-678.
    [39]Tanaka T, Nangaku M. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease[J]. Curr Opin Nephrol Hypertens,2010,19(1):43-50.
    [40]Palm F, Nordquist L. Renal tubulointerstitial hypoxia:cause and consequence of kidney dysfunction[J]. Clin Exp Pharmacol Physiol,2011,38(7):424-430.
    [41]Fine L G, Norman J T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics[J]. Kidney Int,2008,74(7):867-872.
    [42]Nangaku M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure[J]. J Am Soc Nephrol,2006,17(1):17-25.
    [43]Fine L G, Orphanides C, Norman J T. Progressive renal disease:the chronic hypoxia hypothesis[J]. Kidney Int Suppl,1998,65:S74-S78.
    [44]Gunaratnam L, Bonventre J V. HIF in kidney disease and development[J]. J Am Soc Nephrol,2009,20(9):1877-1887.
    [45]Nangaku M, Inagi R, Miyata T, et al. Hypoxia and hypoxia-inducible factor in renal disease[J]. Nephron Exp Nephrol,2008,110(1):el-e7.
    [46]Nangaku M, Nishi H, Miyata T. Role of chronic hypoxia and hypoxia inducible factor in kidney disease[J]. Chin Med J (Engl),2008,121(3):257-264.
    [47]Nangaku M, Eckardt K U. Hypoxia and the HIF system in kidney disease[J]. J Mol Med (Berl),2007,85(12):1325-1330.
    [48]Tanaka T, Kato H, Kojima I, et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney[J]. J Gerontol A Biol Sci Med Sci,2006,61(8):795-805.
    [49]Ding M, Cui S, Li C, et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice[J]. Nat Med,2006,12(9):1081-1087.
    [50]Haase V H. Pathophysiological Consequences of HIF Activation:HIF as a modulator of fibrosis[J]. Ann N Y Acad Sci,2009,1177:57-65.
    [51]Kroening S, Neubauer E, Wessel J, et al. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines[J]. Nephrol Dial Transplant,2009,24(11):3319-3325.
    [52]Kimura K, Iwano M, Higgins D F, et al. Stable expression of HIF-1 alpha in tubular epithelial cells promotes interstitial fibrosis[J]. Am J Physiol Renal Physiol,2008,295(4):F1023-F1029.
    [53]Kairaitis L K, Wang Y, Gassmann M, et al. HIF-1alpha expression follows microvascular loss in advanced murine adriamycin nephrosis[J]. Am J Physiol Renal Physiol,2005,288(1):F198-F206.
    [54]Higgins D F, Kimura K, Bernhardt W M, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition[J]. J Clin Invest,2007,117(12):3810-3820.
    [55]Manotham K, Tanaka T, Matsumoto M, et al. Transdifferentiation of cultured tubular cells induced by hypoxia[J]. Kidney Int,2004,65(3):871-880.
    [56]Higgins D F, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis[J]. Cell Cycle,2008,7(9):1128-1132.
    [57]Norman J T, Orphanides C, Garcia P, et al. Hypoxia-induced changes in extracellular matrix metabolism in renal cells[J]. Exp Nephrol,1999,7(5-6):463-469.
    [58]Chen T H, Wang J F, Chan P, et al. Angiotensin Ⅱ stimulates hypoxia-inducible factor 1alpha accumulation in glomerular mesangial cells[J]. Ann N Y Acad Sci,2005,1042:286-293.
    [59]Sanchez-Lopez E, Lopez A F, Esteban V, et al. Angiotensin Ⅱ regulates vascular endothelial growth factor via hypoxia-inducible factor-1 alpha induction and redox mechanisms in the kidney[J]. Antioxid Redox Signal,2005,7(9-10):1275-1284.
    [60]Wolf G, Schroeder R, Stahl R A. Angiotensin Ⅱ induces hypoxia-inducible factor-1 alpha in PC 12 cells through a posttranscriptional mechanism:role of AT2 receptors[J]. Am J Nephrol,2004,24(4):415-421.
    [61]Zhu Q, Wang Z, Xia M, et al. Silencing of hypoxia-inducible factor-1alpha gene attenuated angiotensin Ⅱ-induced renal injury in Sprague-Dawley rats[J]. Hypertension,2011,58(4):657-664.
    [62]Morita T, Kakinuma Y, Kurabayashi A, et al. Conditional VHL gene deletion activates a local NO-VEGF axis in a balanced manner reinforcing resistance to endothelium-targeted glomerulonephropathy[J]. Nephrol Dial Transplant,2011,26(12):4023-4031.
    [63]Wang Z, Tang L, Zhu Q, et al. Hypoxia-inducible factor-1alpha contributes to the profibrotic action of angiotensin Ⅱ in renal medullary interstitial cells[J]. Kidney Int,2011,79(3):300-310.
    [64]Chen L, Faulhaber-Walter R, Wen Y, et al. Renal failure in mice with Gsalpha deletion in juxtaglomerular cells[J]. Am J Nephrol,2010,32(1):83-94.
    [65]邹万忠.肾活检病理学[Z].第1版.北京:北京大学医学出版社,2006:42.
    [66]Roberts I S, Cook H T, Troyanov S, et al. The Oxford classification of IgA nephropathy:pathology definitions, correlations, and reproducibility[J]. Kidney Int,2009,76(5):546-556.
    [67]王海燕.肾脏病学[Z].第3版.北京:人民卫生出版社,2008415.
    [68]Levey A S, Bosch J P, Lewis J B, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine:a new prediction equation. Modification of Diet in Renal Disease Study Group[J]. Ann Intern Med,1999,130(6):461-470.
    [69]Lip G Y, Beevers M, Beevers D G. Complications and survival of 315 patients with malignant-phase hypertension[J]. J Hypertens,1995,13(8):915-924.
    [70]van den Born B J, Koopmans R P, Groeneveld J O, et al. Ethnic disparities in the incidence, presentation and complications of malignant hypertension[J]. J Hypertens,2006,24(11):2299-2304.
    [71]Bidani A K, Griffin K A. Pathophysiology of hypertensive renal damage:implications for therapy[J]. Hypertension,2004,44(5):595-601.
    [72]Gudbrandsson T, Hansson L, Herlitz H, et al. Malignant hypertension--improving prognosis in a rare disease[J]. Acta Med Scand,1979,206(6):495-499.
    [73]Dodson P M, Lip G Y, Eames S M, et al. Hypertensive retinopathy:a review of existing classification systems and a suggestion for a simplified grading system[J]. J Hum Hypertens,1996,10(2):93-98.
    [74]Feig D I, Kang D H, Johnson R J. Uric acid and cardiovascular risk[J]. N Engl J Med,2008,359(17):1811-1821.
    [75]Hwu C M, Lin K H. Uric acid and the development of hypertension[J]. Med Sci Monit,2010,16(10):A224-A230.
    [76]Johnson R J, Feig D I, Herrera-Acosta J, et al. Resurrection of uric acid as a causal risk factor in essential hypertension[J]. Hypertension,2005,45(1):18-20.
    [77]Feig D I, Soletsky B, Johnson R J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension:a randomized trial[J]. JAMA,2008,300(8):924-932.
    [78]Feig D I, Nakagawa T, Karumanchi S A, et al. Hypothesis:Uric acid, nephron number, and the pathogenesis of essential hypertension[J]. Kidney Int,2004,66(1):281-287.
    [79]夏鹏,邱玲,曾勇,等.尿酸联合脂蛋白a预测动脉粥样硬化高危人群肾动脉狭窄[J].中华肾脏病杂志,2012,28(5):367-370.
    [80]Mazzali M, Hughes J, Kim Y G, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism[J]. Hypertension,2001,38(5):1101-1106.
    [81]Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism[J]. Am J Physiol Renal Physiol,2002,282(6):F991-F997.
    [82]Feig D I. The role of uric Acid in the pathogenesis of hypertension in the young[J]. J Clin Hypertens(Greenwich),2012,14(6):346-352.
    [83]Feig D I. Uric acid and hypertension[J]. Semin Nephrol,2011,31(5):441-446.
    [84]Johnson R J, Segal M S, Srinivas T, et al. Essential hypertension, progressive renal disease, and uric acid:a pathogenetic link?[J]. J Am Soc Nephrol,2005,16(7):1909-1919.
    [85]杜晓霞,李航,陈丽萌,等.恶性高血压肾损害的临床及病理分析[J].中国中西医结合肾病杂志,2005,6(6):332-335.
    [86]Akimoto T, Muto S, Ito C, et al. Clinical features of malignant hypertension with thrombotic microangiopathy[J]. Clin Exp Hypertens,2011,33(2):77-83.
    [87]Zhang B, Xing C, Yu X, et al. Renal thrombotic microangiopathies induced by severe hypertension[J]. Hypertens Res,2008,31(3):479-483.
    [88]Shantsila A, Lane D A, Beevers D G, et al. Lack of impact of pulse pressure on outcomes in patients with malignant phase hypertension:the West Birmingham Malignant Hypertension study[J]. J Hypertens,2012,30(5):974-979.
    [89]Kadiri S, Olutade B O, Osobamiro O. Factors influencing the development of malignant hypertension in nigeria[J]. J Hum Hypertens,2000,14(8):532.
    [90]Freestone S, Yeo W W, Ramsay L E. Effect of coffee and cigarette smoking on the blood pressure of patients with accelerated (malignant) hypertension[J]. J Hum Hypertens,1995,9(2):89-91.
    [91]Walden R, Tomlinson B. Cardiovascular Disease[J].2011.
    [92]Kim D E, Lee K B, Jang I M, et al. Associations of cigarette smoking with intracranial atherosclerosis in the patients with acute ischemic stroke[J]. Clin Neurol Neurosurg,2012.
    [93]Howard G, Wagenknecht L E, Burke G L, et al. Cigarette smoking and progression of atherosclerosis:The Atherosclerosis Risk in Communities (ARIC) Study[J]. JAMA,1998,279(2):119-124.
    [94]Weintraub W S. Cigarette smoking as a risk factor for coronary artery disease[J]. Adv Exp Med Biol,1990,273:27-37.
    [95]Talukder M A, Johnson W M, Varadharaj S, et al. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice[J]. Am J Physiol Heart Circ Physiol,2011,300(1):H388-H396.
    [96]Virdis A, Giannarelli C, Neves M F, et al. Cigarette smoking and hypertension[J]. Curr Pharm Des,2010,16(23):2518-2525.
    [97]Bidani A K, Griffin K A. Long-term renal consequences of hypertension for normal and diseased kidneys[J]. Curr Opin Nephrol Hypertens,2002,11(1):73-80.
    [98]Bidani A K, Schwartz M M, Lewis E J. Renal autoregulation and vulnerability to hypertensive injury in remnant kidney[J]. Am J Physiol,1987,252(6 Pt 2):F1003-F1010.
    [99]Long D A, Price K L, Herrera-Acosta J, et al. How does angiotensin II cause renal injury?[J]. Hypertension,2004,43(4):722-723.
    [100]Chen Y, Tang Z, Yang G, et al. Malignant hypertension in patients with idiopathic IgA nephropathy[J]. Kidney Blood Press Res,2005,28(4):251-258.
    [101]陈瑜,唐政,王庆文,等.45例IgA肾病伴恶性高血压临床病理分析[J].中国中西医结合肾病杂志,2005,6(8):467-469.
    [102]Sutton T A. Alteration of microvascular permeability in acute kidney injury[J]. Microvasc Res,2009,77(1):4-7.
    [103]Bohle A, Mackensen-Haen S, Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure[J]. Kidney Blood Press Res,1996,19(3-4):191-195.
    [104]Namikoshi T, Satoh M, Horike H, et al. Implication of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy[J]. Nephron Physiol,2006,102(1):p9-p 16.
    [105]Ishii Y, Sawada T, Kubota K, et al. Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy[J]. Kidney Int,2005,67(1):321-332.
    [106]Futrakul N, Futrakul P. Renal microvascular disease predicts renal function in diabetes[J]. Ren Fail,2012,34(1):126-129.
    [107]Zhi Z, Jung Y, Jia Y, et al. Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography[J]. Biomed Opt Express,2011,2(5):1059-1068.
    [108]Tsuruoka K, Yasuda T, Koitabashi K, et al. Evaluation of renal microcirculation by contrast-enhanced ultrasound with Sonazoid as a contrast agent[J]. Int Heart J,2010,51(3):176-182.
    [109]van den Born B J, Koopmans R P, van Montfrans G A. The renin-angiotensin system in malignant hypertension revisited:plasma renin activity, microangiopathic hemolysis, and renal failure in malignant hypertension[J]. Am J Hypertens,2007,20(8):900-906.
    [110]Wenzel R R. Renal protection in hypertensive patients:selection of antihypertensive therapy[J]. Drugs,2005,65 Suppl 2:29-39.
    [111]Therrien F, Lemieux P, Belanger S, et al. Protective effects of angiotensin ATI receptor blockade in malignant hypertension in the rat[J]. Eur J Pharmacol,2009,607(1-3):126-134.
    [112]Griffin K A, Bidani A K. Progression of renal disease:renoprotective specificity of renin-angiotensin system blockade[J]. Clin J Am Soc Nephrol,2006,1(5):1054-1065.
    [113]Montgomery H E, Kiernan L A, Whitworth C E, et al. Inhibition of tissue angiotensin converting enzyme activity prevents malignant hypertension in TGR(mREN2)27[J]. J Hypertens,1998,16(5):635-643.
    [114]Agarwal R. Are vitamin D receptor agonists like angiotensin-converting enzyme inhibitors without side effects?[J]. Kidney Int,2010,77(11):943-945.
    [115]Perlstein T S, Gumieniak O, Hopkins P N, et al. Uric acid and the state of the intrarenal renin-angiotensin system in humans[J]. Kidney Int,2004,66(4):1465-1470.
    [116]Rosenberger C, Rosen S, Shina A, et al. Hypoxia-inducible factors and tubular cell survival in isolated perfused kidneys[J]. Kidney Int,2006,70(l):60-70.
    [117]Rosenberger C, Goldfarb M, Shina A, et al. Evidence for sustained renal hypoxia and transient hypoxia adaptation in experimental rhabdomyolysis-induced acute kidney injury[J]. Nephrol Dial Transplant,2008,23(4):1135-1143.
    [1]Coresh J, Astor B C, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population:Third National Health and Nutrition Examination Survey[J]. Am J Kidney Dis,2003,41(1):1-12.
    [2]Collins A J, Foley R N, Chavers B, et al.'United States Renal Data System 2011 Annual Data Report:Atlas of chronic kidney disease & end-stage renal disease in the United States[J]. Am J Kidney Dis,2012,59(1 Suppl 1):A7, el-e420.
    [3]Xie Y, Chen X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China[J]. Am J Nephrol,2008,28(1):1-7.
    [4]Fine L G, Orphanides C, Norman J T. Progressive renal disease:the chronic hypoxia hypothesis[J]. Kidney Int Suppl,1998,65:S74-S78.
    [5]Palm F, Nordquist L. Renal tubulointerstitial hypoxia:cause and consequence of kidney dysfunction[J]. Clin Exp Pharmacol Physiol,2011,38(7):424-430.
    [6]Fine L G, Norman J T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics[J]. Kidney Int,2008,74(7):867-872.
    [7]Nangaku M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure[J]. J Am Soc Nephrol,2006,17(1):17-25.
    [8]Heyman S N, Khamaisi M, Rosen S, et al. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease[J]. Am J Nephrol,2008,28(6):998-1006.
    [9]Long D A, Norman J T, Fine L G. Restoring the renal microvasculature to treat chronic kidney disease[J]. Nat Rev Nephrol,2012.
    [10]Jen K Y, Haragsim L, Laszik Z G. Kidney microvasculature in health and disease[J]. Contrib Nephrol,2011,169:51-72.
    [11]Chade A R. Renovascular disease, microcirculation, and the progression of renal injury:role of angiogenesis[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(4):R783-R790.
    [12]Sutton T A. Alteration of microvascular permeability in acute kidney injury[J]. Microvasc Res,2009,77(1):4-7.
    [13]Eckardt K U, Bernhardt W M, Weidemann A, et al. Role of hypoxia in the pathogenesis of renal disease[J]. Kidney Int Suppl,2005(99):S46-S51.
    [14]Brezis M, Rosen S. Hypoxia of the renal medulla--its implications for disease[J]. N Engl J Med,1995,332(10):647-655.
    [15]Nangaku M, Eckardt K U. Hypoxia and the HIF system in kidney disease[J]. J Mol Med (Berl),2007,85(12):1325-1330.
    [16]Zoccali C. Endothelial dysfunction in CKD:a new player in town?[J]. Nephrol Dial Transplant,2008,23(3):783-785.
    [17]Rabelink T J, Wijewickrama D C, de Koning E J. Peritubular endothelium:the Achilles heel of the kidney?[J]. Kidney Int,2007,72(8):926-930.
    [18]Palm F, Nordquist L. Renal tubulointerstitial hypoxia:cause and consequence of kidney dysfunction[J]. Clin Exp Pharmacol Physiol,2011,38(7):424-430.
    [19]Kang D H, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease[J]. J Am Soc Nephrol,2002,13(3):806-816.
    [20]Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease[J]. Nephrol Dial Transplant,2011,26(4):1132-1137.
    [21]Nangaku M, Inagi R, Miyata T, et al. Angiotensin-induced hypoxia in the kidney:functional and structural changes of the renal circulation[J]. Adv Exp Med Biol,2007,618:85-99.
    [22]Ohashi R, Shimizu A, Masuda Y, et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy[J]. J Am Soc Nephrol,2002,13(7):1795-1805.
    [23]Ohashi R, Kitamura H, Yamanaka N. Peritubular capillary injury during the progression of experimental glomerulonephritis in rats[J]. J Am Soc Nephrol,2000,11(1):47-56.
    [24]Kang D H, Joly A H, Oh S W, et al. Impaired angiogenesis in the remnant kidney model:I. Potential role of vascular endothelial growth factor and thrombospondin-1[J]. J Am Soc Nephrol,2001,12(7):1434-1447.
    [25]Zhu X Y, Chade A R, Rodriguez-Porcel M, et al. Cortical microvascular remodeling in the stenotic kidney:role of increased oxidative stress[J]. Arterioscler Thromb Vasc Biol,2004,24(10):1854-1859.
    [26]Matsumoto M, Tanaka T, Yamamoto T, et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis[J]. J Am Soc Nephrol,2004,15(6):1574-1581.
    [27]Sun D, Feng J, Dai C, et al. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy[J]. Am J Nephrol,2006,26(4):363-371.
    [28]Modelli D A L, Viero R M, Carvalho M F. Role of peritubular capillaries and vascular endothelial growth factor in chronic allograft nephropathy[J]. Transplant Proc,2009,41(9):3720-3725.
    [29]Futrakul N, Futrakul P. Renal microvascular disease in an aging population:a reversible process?[J]. Ren Fail,2008,30(4):353-356.
    [30]Bohle A, Mackensen-Haen S, Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure[J]. Kidney Blood Press Res,1996,19(3-4):191-195.
    [31]Choi Y J, Chakraborty S, Nguyen V, et al. Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney:altered expression of vascular endothelial growth factor[J]. Hum Pathol,2000,31(12):1491-1497.
    [32]Futrakul N, Kulaputana O, Futrakul P, et al. Enhanced peritubular capillary flow and renal function can be accomplished in normoalbuminuric type 2 diabetic nephropathy[J]. Ren Fail,2011,33(3):312-315.
    [33]Futrakul N, Kittikowit W, Yenrudi S. Reduced endothelial factor VIII staining in renal microcirculation correlates with hemodynamic alteration in nephrosis[J]. Ren Fail,2003,25(5):759-764.
    [34]Futrakul N, Yenrudi S, Sensirivatana R, et al. Peritubular capillary flow determines tubulointerstitial disease in idiopathic nephrotic syndrome[J]. Ren Fail,2000,22(3):329-335.
    [35]Kang D H, Anderson S, Kim Y G, et al. Impaired angiogenesis in the aging kidney:vascular endothelial growth factor and thrombospondin-1 in renal disease[J]. Am J Kidney Dis,2001,37(3):601-611.
    [36]Eremina V. Sood M, Haigh J, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases[J]. J Clin Invest.2003,111(5):707-716.
    [37]Nakagawa T, Kosugi T, Haneda M, et al. Abnormal angiogenesis in diabetic nephropathy[J]. Diabetes,2009,58(7):1471-1478.
    [38]Schrijvers B F, Flyvbjerg A, Tilton R G, et al. Pathophysiological role of vascular endothelial growth factor in the remnant kidney[J]. Nephron Exp Nephrol,2005,101(1):e9-el5.
    [39]Futrakul N, Butthep P, Laohareungpanya N, et al. A defective angiogenesis in chronic kidney disease[J]. Ren Fail,2008,30(2):215-217.
    [40]Lindenmeyer M T, Kretzler M, Boucherot A, et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy[J]. J Am Soc Nephrol,2007,18(6):1765-1776.
    [41]Woolf A S, Gnudi L, Long D A. Roles of angiopoietins in kidney development and disease[J]. J Am Soc Nephrol,2009,20(2):239-244.
    [42]Yuan H T, Tipping P G, Li X Z, et al. Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomeralonephritis[J]. Kidney Int,2002,61(6):2078-2089.
    [43]Rizkalla B, Forbes J M, Cao Z, et al. Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes:role of the renin-angiotensin system[J]. J Hypertens,2005,23(1):153-164.
    [44]Baylis C. Nitric oxide deficiency in chronic kidney disease[J]. Am J Physiol Renal Physiol,2008,294(1):F1-F9.
    [45]Kang D H, Nakagawa T, Feng L, et al. Nitric oxide modulates vascular disease in the remnant kidney model[J]. Am J Pathol,2002,161(1):239-248.
    [46]Muller V, Tain Y L, Croker B, et al. Chronic nitric oxide deficiency and progression of kidney disease after renal mass reduction in the C57B16 mouse[J]. Am J Nephrol,2010,32(6):575-580.
    [47]Mohan S, Reddick R L, Musi N, et al. Diabetic eNOS knockout mice develop distinct macro-and microvascular complications[J]. Lab Invest,2008,88(5):515-528.
    [48]Sibal L, Agarwal S C, Home P D, et al. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease[J]. Curr Cardiol Rev,2010,6(2):82-90.
    [49]Boger R H, Bode-Boger S M, Szuba A, et al. Asymmetric dimethylarginine (ADMA):a novel risk factor for endothelial dysfunction:its role in hypercholesterolemia[J]. Circulation,1998,98(18):1842-1847.
    [50]Lu T M, Chung M Y, Lin C C, et al. Asymmetric dimethylarginine and clinical outcomes in chronic kidney disease[J]. Clin J Am Soc Nephrol,2011,6(7):1566-1572.
    [51]Cross J M, Donald A E, Kharbanda R, et al. Acute administration of L-arginine does not improve arterial endothelial function in chronic renal failure[J]. Kidney Int,2001,60(6):2318-2323.
    [52]Xiao S, Wagner L, Schmidt R J, et al. Circulating endothelial nitric oxide synthase inhibitory factor in some patients with chronic renal disease[J]. Kidney Int,2001,59(4):1466-1472.
    [53]Kielstein J T, Impraim B, Simmel S, et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans[J]. Circulation,2004,109(2):172-177.
    [54]O'Riordan E, Mendelev N, Patschan S, et al. Chronic NOS inhibition actuates endothelial-mesenchymal transformation[J]. Am J Physiol Heart Circ Physiol,2007,292(1):H285-H294.
    [55]Nangaku M, Fujita T. Activation of the renin-angiotensin system and chronic hypoxia of the kidney[J]. Hypertens Res,2008,31(2):175-184.
    [56]Wang Z, Holthoff J H, Seely K A, et al. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injuryfJ]. Am J Pathol,2012,180(2):505-516.
    [57]Yamaguchi I, Tchao B N, Burger M L, et al. Vascular endothelial cadherin modulates renal interstitial fibrosis[J]. Nephron Exp Nephrol,2012,120(1):e20-e31.
    [58]Norman J T, Fine L G. Intrarenal oxygenation in chronic renal failure[J]. Clin Exp Pharmacol Physiol,2006,33(10):989-996.
    [59]Mimura I, Nangaku M. The suffocating kidney:tubulointerstitial hypoxia in end-stage renal disease[J]. Nat Rev Nephrol,2010,6(11):667-678.
    [60]Tanaka T, Nangaku M. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease[J]. Curr Opin Nephrol Hypertens,2010,19(1):43-50.
    [61]Gunaratnam L, Bonventre J V. HIF in kidney disease and developmen[J]. J Am Soc Nephrol,2009,20(9):1877-1887.
    [62]Nangaku M, Inagi R, Miyata T, et al. Hypoxia and hypoxia-inducible factor in renal disease[J]. Nephron Exp Nephrol,2008,110(1):el-e7.
    [63]Nangaku M, Nishi H, Miyata T. Role of chronic hypoxia and hypoxia inducible factor in kidney disease[J]. Chin Med J (Engl),2008,121(3):257-264.
    [64]Tanaka T, Kato H, Kojima I, et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney[J]. J Gerontol A Biol Sci Med Sci,2006,61(8):795-805.
    [65]Kelly B D, Hackett S F, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J]. Circ Res,2003,93(11):1074-1081.
    [66]Tanaka T, Matsumoto M, Inagi R, et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thyl nephritis[J]. Kidney Int,2005,68(6):2714-2725.
    [67]Tanaka T, Kojima I, Ohse T, et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model[J]. Lab Invest,2005,85(10):1292-1307.
    [68]Kudo Y, Kakinuma Y, Mori Y, et al. Hypoxia-inducible factor-lalpha is involved in the attenuation of experimentally induced rat glomerulonephritis[J]. Nephron Exp Nephrol,2005,100(2):e95-e103.
    [69]Ohtomo S, Nangaku M, Izuhara Y, et al. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model[J]. Nephrol Dial Transplant,2008,23(4):1166-1172.
    [70]Kroening S, Neubauer E, Wessel J, et al. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines[J]. Nephrol Dial Transplant,2009,24(11):3319-3325.
    [71]Lee Y K, Kim E J, Lee J E, et al. Hypoxia induces connective tissue growth factor mRNA expression[J]. J Korean Med Sci,2009,24 Suppl:S176-S182.
    [72]Higgins D F, Kimura K, Iwano M, et al. Hypoxia-inducible factor signaling in the development of tissue fibrosis[J]. Cell Cycle,2008,7(9):1128-1132.
    [73]Katavetin P, Inagi R, Miyata T, et al. Albumin suppresses vascular endothelial growth factor via alteration of hypoxia-inducible factor/hypoxia-responsive element pathway[J]. Biochem Biophys Res Commun,2008,367(2):305-310.
    [74]Kimura K, Iwano M, Higgins D F, et al. Stable expression of HIF-1 alpha in tubular epithelial cells promotes interstitial fibrosis[J]. Am J Physiol Renal Physiol,2008,295(4):F1023-F1029.
    [75]Higgins D F, Kimura K, Bernhardt W M, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition[J]. J Clin Invest,2007,117(12):3810-3820.
    [76]Zhu Q, Wang Z, Xia M, et al. Silencing of hypoxia-inducible factor-lalpha gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats[J]. Hypertension,2011,58(4):657-664.
    [77]Morita T, Kakinuma Y, Kurabayashi A, et al. Conditional VHL gene deletion activates a local NO-VEGF axis in a balanced manner reinforcing resistance to endothelium-targeted glomerulonephropathy[J]. Nephrol Dial Transplant,2011,26(12):4023-4031.
    [78]Wang Z, Tang L, Zhu Q, et al. Hypoxia-inducible factor-1 alpha contributes to the profibrotic action of angiotensin Ⅱ in renal medullary interstitial cells[J]. Kidney Int,2011,79(3):300-310.
    [79]Ishii Y, Sawada T, Kubota K, et al. Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy[J]. Kidney Int,2005,67(1):321-332.
    [80]Modelli D A L, Viero R M, Carvalho M F. Role of peritubular capillaries and vascular endothelial growth factor in chronic allograft nephropathy[J]. Transplant Proc,2009,41(9):3720-3725.
    [81]Ivanyi B, Kemeny E, Rago P, et al. Peritubular capillary basement membrane changes in chronic renal allograft rejection:Comparison of light microscopic and ultrastructural observations[J]. Virchows Arch,2011,459(3):321-330.
    [82]Katz A, Caramori M L, Sisson-Ross S, et al. An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients[J]. Kidney Int,2002,61(6):2058-2066.
    [83]Futrakul N, Futrakul P. Renal microvascular disease predicts renal function in diabetes[J]. Ren Fail,2012,34(1):126-129.
    [84]Futrakul N, Futrakul P. A progression in peritubular capillary flow reduction and tubulointerstitial fibrosis reflected by FE Mg predict the decline in glomerular filtration rate[J]. Kidney Int,2012,81(7):707, 707.
    [85]Futrakul N, Futrakul P. Renal microvascular disease in an aging population:a reversible process?[J]. Ren Fail,2008,30(4):353-356.
    [86]Fujimoto T. Pathology of malignant nephrosclerosis with special reference to the difference between histologic manifestations of pure and exacerbated forms[J]. Tohoku J Exp Med,1978,125(2):135-153.
    [87]赵明辉,周福德,王海燕.恶性高血压的肾损伤[J].中华内科杂志,2009(6):454-455.
    [88]Bentley M D, Ortiz M C, Ritman E L, et al. The use of microcomputed tomography to study microvasculature in small rodents[J]. Am J Physiol Regul Integr Comp Physiol,2002,282(5):R1267-R1279.
    [89]Zhi Z, Jung Y, Jia Y, et al. Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography[J]. Biomed Opt Express,2011,2(5):1059-1068.
    [90]Namikoshi T, Satoh M, Horike H, et al. Implication of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy[J]. Nephron Physiol,2006,102(1):p9-p16.
    [91]Jourde-Chiche N, Dou L, Sabatier F, et al. Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients[J]. J Thromb Haemost,2009,7(9):1576-1584.
    [92]Koc M, Bihorac A, Segal M S. Circulating endothelial cells as potential markers of the state of the endothelium in hemodialysis patients[J]. Am J Kidney Dis,2003,42(4):704-712.
    [93]Mohandas R, Segal M S. Endothelial progenitor cells and endothelial vesicles-what is the significance for patients with chronic kidney disease?[J]. Blood Purif,2010,29(2):158-162.
    [94]Deanfield J, Donald A, Ferri C, et al. Endothelial function and dysfunction. Part I:Methodological issues for assessment in the different vascular beds:a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension[J]. J Hypertens,2005,23(1):7-17.
    [95]Lopez-Novoa J M, Martinez-Salgado C, Rodriguez-Pena A B, et al. Common pathophysiological mechanisms of chronic kidney disease:therapeutic perspectives[J]. Pharmacol Ther,2010,128(1):61-81.
    [96]Yu Y, Wang Y, Zhou L N, et al. ARB treatment prevents the decrease in endothelial progenitor cells and the loss of renal microvasculature in remnant kidney[J]. Am J Nephrol,2011,33(6):550-557.
    [97]Zhang B, Chen N, Shi W, et al. Peritubular capillary loss is ameliorated by ramipril or valsartan treatment[J]. Microcirculation,2008,15(4):337-348.
    [98]Iwazu Y, Muto S, Fujisawa G, et al. Spironolactone suppresses peritubular capillary loss and prevents deoxycorticosterone acetate/salt-induced tubulointerstitial fibrosis[J]. Hypertension,2008,51 (3):749-754.
    [99]Nakaya H, Sasamura H, Hayashi M, et al. Temporary treatment of prepubescent rats with angiotensin inhibitors suppresses the development of hypertensive nephrosclerosis[J]. J Am Soc Nephrol,2001,12(4):659-666.
    [100]Sasamura H, Hayashi K, Ishiguro K, et al. Prevention and regression of hypertension:role of renal microvascular protection[J]. Hypertens Res,2009,32(8):658-664.
    [101]Montgomery H E, Kiernan L A, Whitworth C E, et al. Inhibition of tissue angiotensin converting enzyme activity prevents malignant hypertension in TGR(mREN2)27[J]. J Hypertens,1998,16(5):635-643.
    [102]Therrien F, Lemieux P, Belanger S, et al. Protective effects of angiotensin AT1 receptor blockade in malignant hypertension in the rat[J]. Eur J Pharmacol,2009,607(1-3):126-134.
    [103]Vasan R S, Larson M G, Leip E P, et al. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study:a cohort study[J]. Lancet,2001,358(9294):1682-1686.
    [104]Williams S A, Michelson E L, Cain V A, et al. An evaluation of the effects of an angiotensin receptor blocker on health-related quality of life in patients with high-normal blood pressure (prehypertension) in the Trial of Preventing Hypertension (TROPHY)[J]. J Clin Hypertens (Greenwich),2008,10(6):436-442.
    [105]Julius S, Nesbitt S D, Egan B M, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker[J]. N Engl J Med,2006,354(16):1685-1697.
    [106]Sasamura H, Nakaya H, Julius S, et al. The short treatment with the angiotensin receptor blocker candesartan surveyed by telemedicine (STAR CAST) study:rationale and study design[J]. Hypertens Res,2008,31(10):1843-1849.
    [107]Luders S, Schrader J, Berger J, et al. The PHARAO study:prevention of hypertension with the angiotensin-converting enzyme inhibitor ramipril in patients with high-normal blood pressure:a prospective, randomized, controlled prevention trial of the German Hypertension League[J]. J Hypertens,2008,26(7):1487-1496.
    [108]Futrakul N, Futrakul P, Siriviriyakul P. Correction of peritubular capillary flow reduction with vasodilators restores function in focal segmental glomerulosclerotic nephrosis[J]. Clin Hemorheol Microcirc,2004,31(3):197-205.
    [109]Patterson M E, Mullins J J, Mitchell K D. Renoprotective effects of neuronal NOS-derived nitric oxide and cyclooxygenase-2 metabolites in transgenic rats with inducible malignant hypertension[J]. Am J Physiol Renal Physiol,2008,294(1):F205-F211.
    [110]Iliescu R, Fernandez S R, Kelsen S, et al. Role of renal microcirculation in experimental renovascular disease[J]. Nephrol Dial Transplant,2010,25(4):1079-1087.
    [111]Kim W, Moon S O, Lee S Y, et al. COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model[J]. J Am Soc Nephrol,2006,17(9):2474-2483.
    [112]Sato W, Tanabe K, Kosugi T, et al. Selective stimulation of VEGFR2 accelerates progressive renal disease[J]. Am J Pathol,2011,179(1):155-166.
    [113]Long D A, Price K L, Ioffe E, et al. Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury[J]. Kidney Int,2008,74(3):300-309.
    [114]Yasuda K, Park H C, Ratliff B, et al. Adriamycin nephropathy:a failure of endothelial progenitor cell-induced repair[J]. Am J Pathol,2010,176(4):1685-1695.
    [115]Sangidorj O, Yang S H, Jang H R, et al. Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model[J]. Am J Physiol Renal Physiol,2010,299(2):F325-F335.
    [116]Chade A R, Zhu X, Lavi R, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease[J]. Circulation,2009,119(4):547-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700