胎肝Sca-1~+细胞的横向分化和应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 探讨胎肝Sca-1~+细胞横向分化的能力、特点和在肾损伤修复中的作用。方法取14.5天C57BL/6j小鼠的胎肝,制成单细胞悬液;用快速PCR方法鉴定细胞的性别;收集雄性细胞,用MACS(magnetic cell sorting)技术分离雄性胎肝Sca-1~+(Stem Cell Antigen-1)细胞;用同样方法分离骨髓Sca-1~+细胞;将2×10~4的雄性胎肝Sca-1~+细胞移植给受致死量γ照射的同系成年雌性小鼠;2~6月后取受体小鼠的肾、肝、肺、胃和小肠组织,制作3-5μm石蜡切片;用原位杂交技术追踪Y染色体来确定细胞的来源,同时用特异性组织化学技术显示组织特征。为了研究胎肝Sca-1~+细胞修复能力,用甘油诱导小鼠急性肾功能衰竭(acute renal failure.ARF)的模型;3h后,腹膜下注射10μg/kg的G-CSF连续5天,监测血清肌酐和尿素氮水平以及肾组织病理形态。为了消除内源雌性干细胞的作用,用致死量射线清除小鼠体内造血干细胞,移植雄性胎肝Sca-1~+细胞,8周后雌性小鼠骨髓变为雄性骨髓;用甘油诱导小鼠急性肾功能衰竭,72h后再次输入2×10~4雄性胎肝Sca-1~+细胞,8周后制取受体肾组织切片。用原位杂交技术追踪Y染色体来确定细胞的来源,并计算横向分化的频率。最后,比较了胎肝和骨髓的Sca-1~+细胞向。肾组织细胞分化的频率。
     结果 在移植雄性胎肝Sca-1~+细胞的雌性小鼠的肾、肝、肺、胃和小肠组织切片中出现雄性细胞,各组织雄性细胞的百分数分别为(4.5±0.5)%、(0.9±0.1)%、(1.9±0.6)%、(6.1±0.5)%和(7.61±2.3)%,呈现小肠>胃>肾>肺>肝的特征;肾组织切片中的雄性细胞分别为RCA~+、CYP_(1A2)~+、Vimentin~+、CD_(45)~-和F_(4/80)~-;急性肾损伤使雌性受体小鼠肾组织中的雄性细胞数增加(8.58±1.34)%,在肾小管周围出现成对排列的雄性细胞;雄性胎肝Sca-1~+细胞输注使急性肾组织损伤雌性受体小鼠肾脏组织中的雄性细胞增多(18.13±1.91)%,在肾小管周围出现成环状排列的雄性细胞;在急性肾功能衰竭的肾组织中,雄性细胞频率高于骨髓;结论 小鼠胎肝Sca-1~+细胞具有向肾、肝、肺、胃和小肠等组织细胞分化的潜力和修复损伤肾组织细胞的能力;小鼠胎肝Sca-1~+细胞向肾组织细胞分化的能力优于骨髓。
Object: To explore the potential and behavior of transdifferentiation of Sca-l+ cells from murine fetal liver as well as their repairing capacity in acute renal failure. Method: The single cell suspension was prepared of murine fetal liver of pregnancy of 14.5day; cell sex was determined by quick PCR and male cells were collected, and Sca-l+ cells of them were separated with MACS technology. 2x104 cells of male Sca-l+ cells were transplanted into female syngeneic mouse irradiated with lethally dose of Y ray by tail vein. During 2-6 months, the kidneys, livers, lungs, stomach and small intestinal tissue were taken out and paraffin slices of them were made. The Y-chromosome cells were traced by fluorescence in situ hybridization (FISH), at the same time; the tissue characteristics of them were detected by immunochemistry. In order to detect the repairing capacity of Sca-l+ cells from fetal liver, the model of acute renal failure was made with glycerol. The urea nitrogen and creatine in serum were monitored aft
    er 10 H g/kg of G-CSF was injected into model mice. Furthermore, In order to reduce the interference of female hematopoietic stem cells in vivo, female bone marrow would be changed into male one with elimination of female bone marrow by radiation and transplantation of male Sca-l+ cells from fetal liver, which needed time of 8 weeks. The acute renal failure model of female mice with this male bone marrow was made again, and 72 hours later, Sca-l+ cells from fetal liver were transplanted into them. 8 weeks later, the mice were killed and kidneys were took out to be made tissue slices for detecting of FISH and immunochemistry, the transdifferentiation frequency of Sca-l+ cells from fetal liver and bone marrow were calculated and compared. Results: The male cells were found on sections of kidneys, liver, lung, gastric and small
    
    
    intestinal tissue of female mice irradiated with lethally Y ray and transplanted with male sca-l+ cells, frequency of differentiation were (4.5+0.5)%, (0.9+0.1)%, (1.9+0.6)%, (6.1 0.5)% and (7.61 2.3)% respectively, phenotype characteristics of male renal tissue was RCA+/CYP1A2+/Vimentin+/CD457F4/80". There was a big increase of frequency of male cells from (4.5+_0.5)% to (8.58 1.34)% on sections of female mouse of acute renal failure compared with single dose of radiation, and there appeared a double male cell arrangement on area of renal tubules on section. There was much bigger increase of frequency of male on section of female mouse (18.13+_1.91)%, bone marrow sex of which had become male, of acute renal failure, and there appeared ring arrangement of several male cells on area of renal tubule on sections. The transdifferentiation frequency of Sca-l+ cells from fetal liver was higher than bone marrow on model of acute renal failure, as follows (3.55+0.51)% and (1.35 0.09)% respect.
    Conclusion: The Sca-l+ cells from fetal liver have the capacity differentiated into kidneys, liver, and lung, gastric and small intestinal tissue. The higher frequency of transdifferntiation would be obtained in acute renal failure. The transdifferentiation potential of Sca-l+ cells from fetal liver was much bigger than bone marrow.
引文
[1] Kooy D, Weiss S. Why stem cells? Science, 2000, 287(5457): 1439-1441.
    [2] Prockop DJ. Further proof of the plasticity of adult stem cells and their role in tissue repair. J Cell Biol, 2003, 160(6): 807-809.
    [3] Ferrari G, Cusella G, Angelis D, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, and Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998, 279(5356): 1528-1530.
    [4] Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, and Goff JP. Bone marrow as a potential source of hepatic oval cells. Science, 1999, 284(5417): 1168-1170.
    [5] Bjornson CRR, Rietze RL, Reynolds BA, Magli MC, Vescovil AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science, 1999, 283(5401): 534-537.
    [6] 廖继东,张洹。骨髓干/祖细胞的非血细胞分化(综述)国外医学.生理、病理与临床科学,2003,23(1):28-30.
    [7] Poulsom R, Forbes ST, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathology, 2001, 195(2): 229-235.
    [8] Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA, 1999, 96(25): 14482-14486.
    [9] Slack JMW, Tosh D. Transdifferentiation and metaplasia--switching cell types. Current Opinion in Genetics & Development, 2001, 11(5): 581-586.
    [10] Deng J, Steindler DA, Laywell ED, Petersen BE. Neural trans-differentiation potential of hepatic oval cells in the neonatal mouse brain. Experimental neurology, 2003, 182(2): 373-82.
    [11] Cao B, Zheng B, Jankowski RJ, et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol, 2003, 5(7): 640-6.
    
    
    [12] Uher F, Vas V. Plasticity of tissue stem cells. Orv Hetil, 2002, 143(18): 921-8.
    [13] Holyoake TL, Nicolini FE, Eaves CJ. Functional differences between transplantable human hematopoietie stem cells from fetal liver, cord blood, and adult marrow. Experimental hematology, 1999, 27(9): 1418-1427.
    [14] Roy V, Verfaillie CM. Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: Implications for anatomical localization and developmental stage specific regulation of hematopoiesis. Experimental Hematology, 1999, 27(2): 302-312.
    [15] Lansdorp PM. The biology of purified stem cells. Clinical biochemistry, 1995, 289(3): 354-355.
    [16] Chertkov JI, Drize NJ. Fetal liver hematopoietic stem cells: clonal kinetics in adult and newborn recipients. Abstracts/Experimental hematology, 2000, 28(7): 41.
    [17] Rebel VI, Miller CL, Thombry GR, Dragowska WH, Eaves CJ, Lansdorp PM. A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse. Exp Hematol, 1996, 24(5): 638-648.
    [18] Jordan CT, Astle CM, Zawadzki J, Mackarehtschian K, Lemischka IR, Harrison DE. Long-term repopulating abilities of enriched fetal liver stem cells measured by competitive repopulation. Exp Hematol, 1995, 23(9): 1011-1015.
    [19] Blair A and Thomas DB. The proliferative status of haematopoietic progenitor cells in the developing murine liver and adult bone marrow. Journal of Anatomy, 1998, 193(3): 443-447.
    [20] Wu AG, Michejda M, Mazumder A, Meehan KR, Menendez FA, Tehabo JG, Slack R, Johnson MP, Bellanti JA. Analysis and characterization of hematopoietie progenitor cells from fetal bone marrow, adult bone marrow, peripheral blood, and cord blood. Pediatric Research, 1999, 46(2): 163-169.
    [21] Gilles JM, Bentolila E, Rashbaum WK, Divon MY, Lyman WD. Fetal transplantation therapy; immunophenotypic characterization of fetal liver hematopoietie stem cells in the second trimester. Journal of the Society for Gynecologic Investigation, 1996, 3(2): 109.
    [22] Prummer O, Fliedner TM. The fetal liver as an alternative stem cell source for
    
    hemolymphopoietic reconstitution. Int J Cell Cloning, 1986, 4(4): 237-49.
    [23] 邹仲之 主编 《组织学与胚胎学》 人民卫生出版社 2002年1月 第5版 p189.
    [24] 杜晓霞,彭佑铭.T-ESRD的发生率和治疗方式选择.国外医学泌尿系统分册,2001,21(2):60-61.
    [25] Phillip PJ. Optimizing medical management of patients with pre-end-stage renal disease. The American journal of medicine, 2001, 111(7): 559-568.
    [26] Humes HD, MacKay SM, Funke AJ, Buffington DA. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int, 1999, 55 (6): 2502-14.
    [27] Gordon EJ. Patients' decisions for treatment of end-stage renal disease and their implications for access to transplantation. Social science & medicine, 2001, 53(8): 971-987.
    [28] Watt FM, Hogan BLM. Out of Eden: stem cells and their niches. Science, 2000, 287(5457): 1427-1430.
    [29] Lund E, Guttlinger S, Calado A, Dahlberg JE, and Kutay U. Nuclear export of microRNA precursors. Science, 2004, 303(1090599): 95-98.
    [30] Chen CZ, Li L, Lodish HF, and Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(1090599): 83-86.
    [31] Haifan Lin. The stem-cell niche theory: lessons from flies. Nature reviews genetics, 2002, 3(12(6880)): 931-940.
    [32] Simon TD, Kovalev GI, Coffield3 VM, Su L. Regulation of the hematopoietic stem/progenitor cell subsets in mouse bone marrow by the cdk inhibitor p18~(INK4c). Abstracts/experimental haematology, 2000, 28(12): 1495.
    [33] Pat Levitt. Sealing cortical cell fate. Science, 2004, 303(1090599); 48-49. Hanashima C, Li SC, Shen LJ, LaiE, and Fishell G. Foxgl suppresses early cortical cell fate. Science, 2004, 303(1090599): 56-59.
    [34] Touraine JL. Perinatal fetal-cell and gene therapy. International Journal of immunopharmacology, 2000, 22(12): 1033-1040.
    [35] Ciancio G. Donor bone marrow infusion in cadaveric renal transplantation.
    
    Transplantation Proceedings, 2003, 35(2): 871-872.
    [36] Larsson LC, Widner H. Neural tissue xenografting. Scand J Immunol, 2000, 52(3): 249-256.
    [37] Seppa N. Pig-cell grafts ease symptoms of Parkinson's. Science News, 2000, 157(25): 197.
    [38] Sumitran S, Anderson P, Widner H, Holgersson J. Porcine embryonic brain cell cytotoxicity mediated by human natural killer cells. Cell Transplant, 1999, 8(6): 601-10.
    [39] Brevig T, Meyer M, Kristensen T, Zimmer J, Holgersson J. Xenotransplantation for brain repair: reduction of porcine donor tissue immunogenicity by treatment with anti-Gal antibodies and complement. Transplantation, 2001, 72(2): 190-6.
    [40] Bauer M, Meyer M, Brevig T, Gasser T, Widmer, HR, Zimmer J. Lipid-Mediated Glial Cell Line-Derived Neurotrophic Factor Gene Transfer to Cultured Porcine Ventral Mesencephalic Tissue. Experimental Neurology, 2002, 177(1): p40-49.
    [41] Moisset PA, Tremblay JP. Gene therapy: a strategy for the treatment of inherited muscle disease? Current Opinion in Pharmacology, 2001, 1(3): 294-299.
    [42] Skuk D, Roy B, Goulet M, Tremblay JP. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Experimental Neurology, 1999, 155(1): 22-30.
    [43] Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, Mazzolari E, Maggioni D, Rossi C, Servida P, Ugazio AG, and Mavilio F. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science, 1995, 270(5235): 470-475
    [44] Marktel S, Bonini C, Bordignon C. Potential of gene therapy in bone marrow transplantation. BioDrugs, 1999, 11(1): 1-6.
    [45] Otsu M, Candotti F. Gene therapy in infants with severe combined immunodeficiency. Biodrugs, 2002, 16(4): 229-239.
    [46] Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001, 19(3): 193-204.
    
    
    [47] Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 2002, 297(1074807): 2256-2259.
    [48] Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002, 416(6880): 542-545.
    [49] Yin L, Lynch D, Ilic Z, Sell S. Proliferation and differentiation of ductular progenitor cells and littoral cells during the regeneration of the rat liver to CC14/2-AAF injury. Histol Histopathol, 2002 Jan, 17(1): 65-81.
    [50] Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 2000 Jan, 31(1): 235-40.
    [51] Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS. Liver from bone marrow in humans. Hepatology, 2000 Jul, 32 (1): 11-6.
    [52] Mezey E, Chandross KJ, Harta G, Maki RA, and McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000, 290(5497): 1779-82.
    [53] Brazelton TR, Rossi FMV, Keshet GI, and Blau HM. From marrow to brain: Expression of neuronal phenotypes in adult mice. Science, 2000, 290(5497): 1775-9.
    [54] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96 (19): 10711-6.
    [55] Nakano K, Migita M, Mochizuki H, Shimada T. Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation, 2001, 71(12): 1735-40.
    [56] Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci, 2001, 938: 221-30.
    [57] Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman
    
    ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001, 107 (11): 1395-402.
    [58] Gunsilius E. Evidence from a leukemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Adv Exp Med Biol, 2003, 522: 17-24.
    [59] Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AMB, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000, 6 (11): 1282-6.
    [60] Almeida-Porada G; Porada CD, Tran N, Zanjani ED. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, 2000, 95(11): 3620-7.
    [61] Christof S, Bernd W, Hans-Dieter K, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 2003, 361(9351): 45-46.
    [62] Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 2003, 361(9351): 47-49
    [63] Laham RJ, Oettgen P. Bone marrow transplantation for the heart: fact or fiction? Lancet, 2003, 361(9351): 11-12.
    [64] Asashima M, Okada TS. Spemann's influence on Japanese developmental biology. Int J Dev Biol, 2001, 45(1): 57-65.
    [65] Lindvall O. Neural transplantation: a hope for patients with Parkinson's disease. Neuroreport, 1997, 8(14): 3-10.
    [66] Imasawa T, Utsunomiya Y. Stem cells in renal biology: bone marrow transplantation for the treatment of IgA nephropathy. Exp Nephrol, 2002, 10(1): 51-8.
    
    
    [67] Caroline JM, Adrian JT. The embryonic origins of human haematopoiesis. British journal of haematology, 2001, 112(4-Ⅱ): 838-850.
    [68] Amos TAS. Gordon MY. Sources of human hematopoietic stem cells for transplantation—a review. Cell Transplantation, 1995, 4(6): 547-569.
    [69] Al-Awqati Q. Oliver JA. Stem cells in the kidney. Kidney Int, 2002, 61(2): 387-95.
    [70] Humes HD, Fissell WH, Weitzel WF. The bioartificial kidney in the treatment of acute renal failure. Kidney international, 2002, 61(Suppl 80): 121-125.
    [71] Fissell WH, Dyke DB, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, Gutierrez JM, Humes HD. Bioartificial kidney alters cytokine response and hemodynamics in endotoxin-challenged uremic animals. Blood purification, 2002, 20(1): 55-60.
    [72] Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature, 1991, 351(6322): 117-121.
    [73] Miyatake S, Yokota T, Lee F, Arai K. Structure of the chromosomal gene for murine interleukin 3. Proc Natl Acad Sci USA, 1985, 82(2): 316-320.
    [74] Kim CJ, Khoo JC, Gillotte-Taylor K, Li A, Palinski W, Glass CK, Steinberg D. Polymerase chain reaction-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tumor necrosis factor-alpha and interleukin-1 beta. Arterioscler Thromb Vase Biol, 2000, 20(8): 1976-1982.
    [75] Kunieda T, Xian M, Kobayashi E, Imamichi T, Moriwaki K, Toyoda Y. Sexing of mouse preimplantation embryos by detection of Y chromosome-specific sequences using polymerase chain reaction. Biol Reprod, 1992, 46(4): 692-697.
    [76] Han YM, Yoo OJ, Lee KK. Sex determination in single mouse blastomeres by polymerase chain reaction. J Assist Reprod Genet, 1993, 10(2): 151-156.
    [77] Lambert JF, Benoit BO, Colvin GA, Carlson J, Delville Y, Quesenberry PJ. Quick sex determination of mouse fetuses. J Neurosci Methods, 2000, 95(2): 127-132.
    [78] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from
    
    mouse embryos. Nature, 1981,292(5819): 154-156.
    [79] Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78(12): 7634-8.
    [80] Thomson JA, Itskovitz-Eldor J, Shapiro SS,Waknitz MA, Swiergiel JJ, Marshall VS, and Jones JM. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145-1147.
    [81] Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA, 1998, 95(23): 13726-31.
    [82] Thomson JA, Odorico JS. Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol, 2000, 18(2): 53-57.
    [83] Evans MJ. Potential for genetic manipulation of mammals. Mol Biol Med, 1989, 6(6): 557-65.
    [84] Winkler A, Kiem HP, Shields LE, Sun QH, Andrews RG. Gene transfer into fetal baboon hematopoietic progenitor cells. Hum Gene Ther, 1999, 10(4): 667-677.
    [85] Schulte BA, Spicer SS. Histochemical evaluation of mouse and rat kidneys with lectin-horseradish peroxidase conjugates. Am J Anat, 1983, 168(3): 345-362.
    [86] kim H, Reddy S, Nonak RF. 3-Methylcholanthrene and pyridine effects on CYP1A1 and CYP1A2 expression in rat renal tissue. Drug Metab Dispos, 1995, 23(8): 818-824.
    [87] Wharram BL, Goyal M, Gillespie PJ, Wiggins JE, Kershaw DB, Holzman LB, Dysko RC, Saunders TL, Samuelson LC, Wiggins RC. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J Clin Invest, 2000, 106(10): 1281-90.
    [88] Masuya M, Drake CJ, Fleming PA, Reilly CM, Zeng H, Hill WD, Martin-Studdard A, Hess DC, Ogawa M. Hematopoietic origin of glomerular mesangial cells. Blood, 2003, 101(6): 2215-8.
    [89] Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of
    
    mouse hematopoietic stem cells. Science, 1988, 241 (4861): 58-62
    [90] 廖洪军,陈香美.急性肾功能衰竭动物模型的制备.肾脏病与透析肾移植杂志,1994,3(002):155-7.
    [91] Zager RA. Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int, 1996, 49(3): 314-26.
    [92] 陈运贤,欧瑞明,钟雪云,钟立业,陈惠珍,彭龙云,曾武涛,靳三庆,张希,韩忠朝.粒细胞集落刺激因子动员骨髓干细胞治疗大鼠急性心肌梗塞.中国病理生理杂志,2002,18(1):1-3.
    [93] 陈运贤,钟雪云,欧瑞明.CD_(34)~+细胞的心肌细胞分化潜能研究.中国病理生理杂志,2002,18(2):117-119.
    [94] Jablonski P, Howden BO, Rae DA, Birrell CS, Marshall VC, Tange J. An experimental model for assessment of renal recovery from warm ischemia. Transplantation, 1983, 35(3): 198-204.
    [95] Humes HD, MacKay S M, Funke A J, Buffington DA. The bioartificial renal tubule assist device to enhance CRRT in acute renal failure. Am J Kidney Dis, 1997, 30(5 Suppl 4): S28-31.
    [96] Humes HD, MacKay SM, Funke AJ, Buffington DA. Acute renal failure: Growth factors, cell therapy, gene therapy. Proc Assoc Am Physicians, 1997, 109 (6): 547-557.
    [97] Bone RC, Grodzin CJ, Balk RA. Sepsis: A new hypothesis for pathogenesis of the disease process. Chest, 1997, 112 (1): 235-243.
    [98] Imai E, Ito T. Can bone marrow differentiate into renal cells? Pediatr Nephrol, 2002, 17(10): 790-794.
    [99] 李文歌,陈香美.小鼠急性肾功能衰竭模型的建立.中华实验外科杂志,1996,13(003):188-189.
    [100] Sacco G, Marcianò R, Brightwell J, Mariani MF. Stimulation of granulopoiesis by a recombinant granulocyte colony-stimulating factor in cyclophosphamide-treated mice. Toxicology Letters, 1996, 88(supl): 77.
    [101] Haan G, Albertina A, Marga W, Dontje B, Molineux G. Efficient mobilization of haematopoietic progenitors after a single injection of pegylated recombinant human
    
    granulocyte colony-stimulating factor in mouse strains with distinct marrow-cell pool sizes. British journal of haematology, 2000, 1160(3): 638-646.
    [102] Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature immunology, 2002, 3(7): 687-694.
    [103] Domenech J, Carion A, Herault O, Benboubker L, Thibault G, Heraud N, Bernard MC, Colombat Ph, SensebéL, Binet C. Reversibility of low VLA-4, and CXCR-4 expression on peripheral blood CD34~+ cells. Abstracts of Experimental hematology, 2000, 28(7): 49-50.
    [104] Petros W P. Pharmacokinetics and administration of colony-stimulating factors. Pharmacotherapy, 1992, 12(2): 32-38.
    [105] Magen D, Mandel H, Berant M, Ben-Izhak O, Zelikovic I. MPGN type Ⅰ induced by granulocyte colony stimulating factor. Pediatric Nephrology, 2002, 17(5): 370-3721.
    [106] 付平,许国章.巨噬细胞与肾损伤.国外医学泌尿系统分册,2000,20(6):264-266.
    [107] 甘卫华,姜新猷,王晓燕,胡明昌,费丽,郭梅,潘晓勤.血小板活化因子刺激肾小球系膜细胞的自分泌作用.肾脏病与透析肾移植杂志,1994,3(3);181-184.
    [108] 胡明昌,蔡毅,陈荣华.细胞粘附分子在肾脏疾病中作用.国外医学.儿科学分册,1996,23(6):285-288.
    [109] 周同,李晓,宋巍 吴佩,张东华,张明均,陈楠,董德长.粘附分子在缺血再灌注肾损伤中的作用及阻断意义.上海医学,2001,24(2):85-88.
    [110] Docherty NG, Barriocanal FP, Balboa NE, Lrpez-Novoa JM. Transforming growth factor-131: a potential recovery signal in the post-ischemic kidney. Renal failure, 2002, 24(4): 391-406.
    [111] Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR. Hepatocyte growth factor/scatter factor in produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human
    
    hematopoietic progenitor cells. Experimental haematology, 1998, 26(9): 885-894.
    [112] Homsi E, Ribeiro-Alves MA, Loes de Faria JB, Dias EP. Interlrukin-6 stimulates tubular regeneration in rats with glycerol-induced acute renal failure. Nephron, 2002, 92(1): 192-199.
    [113] Sugimura K, Goto T, Tsuchida K, Takemoto Y, Kim T, Kishimoto T. Production and activation of hepatocyte growth factor in acute renal failure. Renal failure, 2003, 23(3&4): 597-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700