优质蓝莓转LEA基因及耐寒性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活质量和生活水平的提高,人们的保健意识逐渐增强,许多外国水果备受人们的青睐,其中蓝莓更是深受欢迎。由于蓝莓鲜果价格昂贵、加工工艺不断完善,以及人们逐渐认识到蓝莓对身体健康有益,世界各地蓝莓的种植面积逐年增加。近年来,我国的蓝莓产业也逐渐受到了重视。在我国北方地区,由于冬季低温干燥,蓝莓产业的发展受到了一定限制。因此,为我国北方地区培育营养价值高、对低温耐受能力强的蓝莓新品种已迫在眉睫。本研究对我国北方地区主要蓝莓栽培品种进行了营养价值分析。同时,分别以蓝莓的茎段和叶片为外植体,建立了高效组培再生体系。通过根癌农杆菌介导法将来源于柽柳cDNA文库中的LEA基因转化至营养价值相对较高的蓝莓品种——北陆基因组中,为蓝莓品种选育开辟新的途径。具体研究结果如下:
     1.对供试的7个蓝莓品种分别进行了氨基酸含量、总糖含量、蛋白质含量、维生素含量及矿质元素含量的测定。结果表明,北陆各测试指标表现突出,除Vb2和钙含量位居第二外,其他测试指标均列于首位;
     2.以不同蓝莓品种的茎段和叶片为外植体,选择基本培养基类型,同时确定植物生长调节物质的种类和适宜浓度。结果表明,在附加玉米素(Zt)的改良WPM培养基中,各品种分化率均较高,但Zt的适宜浓度在各基因型中有所差异;
     3.筛选出头孢噻肟钠为蓝莓遗传转化体系的抑菌抗生素,使用浓度为250 mg·L-1;蓝莓遗传转化的选择类抗生素为卡那霉素,其使用浓度为30 mg·L-1;应用农杆菌介导法对蓝莓进行遗传转化,将抗逆LEA基因转化至北陆基因组中,并确定了最优北陆遗传转化体系为:8-10周龄不定芽的中部叶片于25±1℃条件下暗培养48h,然后将其浸泡在工程菌液(OD600=0.5)中于28℃侵染60min。侵染之后于共培养培养基中暗培养4 d,转移到延迟选择培养基上,于25±1℃条件下暗培养48 h后将叶片转移到抗性芽筛选培养基上进行选择培养,此阶段需先暗培养7 d后再转至光下培养,并每隔5-7d脱菌一次;
     4.利用农杆菌介导法对蓝莓进行遗传转化初步获得卡那霉素抗性植株13个,经增大选择压,排除5个假阳性株系。对剩余8个阳性株系分别进行了PCR、Southern杂交和RT-PCR检测。结果表明,LEA基因已经整合到北陆基因组中,但不同转化子拷贝数不同。经一步法RT-PCR检测2个株系为转录水平沉默,其他转化子能够正常转录;
     5.对8个转基因株系进行低温胁迫,分别测定了胁迫前后丙二醛(MDA)含量、相对电导率(REL)、超氧化物歧化酶(SOD)活性和过氧化物酶(POD)活性。结果表明,在未发生转录水平沉默的6个转基因株系中,胁迫后的MDA含量和REL均低于对照,SOD活性和POD活性在胁迫后均高于对照,且均存在显著差异。说明转入的LEA基因能够正常表达,并提高了转基因北陆的耐寒能力。
With improving quality and standards of people's lives, people gradually increase health awareness. Many people favor the subject of foreign fruit, in which blueberry is much more welcome. As the blueberry fruit is expensive, processing technology constantly improving, and the fruit benefit to the physical health, planted area of blueberry is increased year by year around the world. In recent years, Chinese blueberry industry is gradually being taken seriously. In North China, due to the winter cold and dry, blueberry industriy has been limited. Therefore, in northern China, cultivation new variety of blueberry with high nutritional value and low temperature tolerance ability is imminent. In this study, the nutritional value of mainly blueberry cultivars in northern China was analysed. Meanwhile, the stems and leaves were used as explants to establish an efficient system for tissue regeneration, respectively. By Agrobacterium-mediated method, the LEA gene from cDNA library of Tamarix androssowii was introduced into Northland genome, which is a new way to genetic transformation to blueberry. The results are as follows:
     1. The content of amino acid, total sugar, protein, vitamin and mineral element were carried out in the tested seven blueberry varieties. The results showed that the test targets of Northland were outstanding, except Vb2 and calcium content in second place, the other test indicators were all listed in the first place;
     2. In different varieties of blueberry, the stems and leaves were used as explants, selected the type of basic medium, while identifying the types and the appropriate concentration of plant growth regulators. The results indicated that the modified WPM medium containing zeatin (Zt) was benefitted to differentiation, but the suitable concentration of Zt is different in different genotypes;
     3. Cefotaxime sodium is the optimized antibacterial antibiotics, it's effective concentration is 250 mg-L-1; Kanamycin is the optimized antibiotics for the transformant selection, it's effective concentration is 30 mg·L-1. The resistance LEA gene was transformed into blueberry by Agrobacterium-mediated method. The optimal genetic transformation system for Northland as follows:Leaves from 8- to 10-week-old adventitious shoot were used as explants for pre-culturing for 48 h in the dark at 25±1℃. The pre-cultured explants were then infected with A. tumefaciens diluted by liquid MWPMZ to OD600=0.5 for 1 h at 28℃. The infected explants were co-cultivated on solid MWPMZ in the dark for 4 days. Then the explants were transferred to MWPMZ+250 mg l-1 cefotaxime for 48 h in the dark at 25℃. The explants were then transferred to selection medium (solid MWPMZ+30 mg l-1 Km+250 mg l-1 cefotaxime) for 7 d in the dark at 25℃, followed by subculturing on fresh selection medium at 5-7 d intervals under a 16 h photoperiod with a photosynthetic photon flux density of 50μmol m-2 s-1.
     4.13 kanamycin resistant shoots were initially gained using Agrobacterium-mediated genetic transformation of blueberry. Five false-positive clones were removed by increasing the selection pressure. The remaining eight positive clones were carried out PCR, Southern blotting and RT-PCR detection. The results involved that, LEA gene was integrated into the genome of Northland, but different transformants with different copy numbers. The results of the one-step RT-PCR indicated that two lines were transcription silence, while the other transgenic lines were normal transcription;
     5. The 8 transgenic lines were tested for cold tolerance by measuring the activities of peroxidase (POD) and superoxide dismutase (SOD), malondialdehyde (MDA) content and relative electrolyte leakage (REL). The results showed that the MDA content and REL were lower than the control, SOD activity and POD activity was higher than the control after stress in the six transgenic lines which normal transcription, and there were significant differences. The results above illuminate that the exogenous LEA genes in Northland could normal expression, and increased transgenic Northland cold tolerance ability.
引文
[1]乌凤章,王贺新,陈英敏,李根柱.我国蓝莓生理生态研究进展.北方园艺,2006,3:48-49
    [2]Eck P. Blueberry Culture. Rugers University Press. New Brunswick, NJ,1966
    [3]Hancock J.F., A.D. Draper. Blueberry culture in North America. HortScience,1989,24 (4):551-556
    [4]陈宏毅,于战平,曲福玲.蓝莓的综合开发利用与产业化发展对策研究.世界农业,2009,2:67-69
    [5]高建华.蓝莓新品种.北方果树,2008,1:53-54
    [6]孔祥强.谈蓝莓中花青素的保健功能.现代农业科技,2009,15:130
    [7]张慧琴,谢鸣,梁英龙,陈俊伟,吴延军,徐红霞.我国蓝莓研发现状及产业化发展潜在优势.浙江农业科学,2009,3:444-447
    [8]李亚东,姜惠铁,张志东,吴林.中国蓝莓产业化发展的前景.沈阳农业大学学报(社会科学版),2001,3(1):39-42
    [9]Marvin P Pritts, james F Hancock. Highbush Blueberry Production Guide. Northeast Regional Agricultural Engineering Service,1992,4-7
    [10]聂飞,韦吉梅,文光琴,方品武.蓝莓的生物学特性与栽培管理技术.中国果菜,2007,3:25-27
    [11]范仲先.蓝莓主要优良品种介绍.新农村,2009,4:14-15
    [12]苏佳明,段小娜,李灿.蓝莓主要优良品种介绍.烟台果树,2006,4:7-8
    [13]刘庆忠.世界高灌蓝莓种植业的发展及现状.落叶果树,2007,4:47-50
    [14]Rieger M. Introduction to fruit crops. In:Chapter 7 Blueberry (Vaccinium spp.). Binghamton, New York,2006, pp 105-118
    [15]苏佳明,沙玉芬,段小娜,于强.蓝莓主要优良品种简介.山西果树,2007,1:17-18
    [16]Kalt W, Mcdonald J E. Anthocyanins, phenolics, and antioxidant capacity of processed lowbush blueberry products. J. Food Sci,2000,65(3):390-393
    [17]Benvenuti S,Pellati F. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia.J. Food Sci,2004,69(3):164-169
    [18]Kader F, Rovel B. Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium Corymbosum L.). Food Chemistry,1996,55(1):35-40
    [19]孙贵宝.蓝莓的保健作用及各国栽培发展趋势.农机化研究,2002,3:225
    [20]李亚东,张志东,吴林.蓝莓果实的成分及保健功能.中国食物与营养,2002,1:27-28
    [21]胡雅馨,李京,慧柏棣.蓝莓果实中主要营养及花青素成分的研究.食品科学,2006,27(10):600-603
    [22]www.blueberry.org/health.htm
    [23]Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry,2003,64(5):923-933
    [24]Smith MAL, Marley KA, Seigler D, Singletary KW, Meline B. Bioactive properties of wild blueberry fruits. Food Sci,2000,65(2):352-356
    [25]Read PE, Hartley CA, Sandahl JG, Wildung DK. Field performance of in vitro propagated blueberryes. Comb. Proc. Intl. Plant Prop. Soc.,1987,37:450-452
    [26]ElShiekh A, Wildung DK, Luby JJ, Sargent KL, Read PE. Long-term effects of propagation by tissue culture or softwood single-node cuttings on growth habit, yield, and berry weight of'Northblue'blueberry. Journal of the American Society for Horticultural Science,1996,121:339-342
    [27]Nickerson NL. In vitro shoot formation in lowbush blueberry seedling explants. HortScience,1978,13:698
    [28]Meiners J, Schwab M, Szankowski I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tiss. Org. Cult,2007,89:169-176
    [29]Litwinczuk W, Wadas M. Auxin-dependent development and habituation of highbush blueberry(Vaccinium×covilleanum But. et PI.)'Herbert'in vitro shoot cultures. Scientia Horticulturae,2008,119:41-48
    [30]Takuya T, Yasuyo M, Makiko S, Chitose H, Kensuke Y, Haruki K, Yasuhiro S, Hisato K. Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Scientia Horticulturae,2008,119(1):72-74
    [31]Brissette L, Tremblay L, Lord D. Micropropagation of lowbush blueberry from mature field-grown plants. HortScience,1990,25:349-351
    [32]Samir C, Debnath. In vitro Culture of lowbush blueberry (Vaccinium angustifolium Ait.). Small Fruits Review,2004,3(3):393-408
    [33]Samir C, Debnath. Influence of indole-3-butyric acid and propagation method on growth and development of in vitro- and ex vitro-derived lowbush blueberry plants. Plant Growth Rrgul,2007,51:245-253
    [34]Grout JM, Read PE, Wildung DK. Influence of tissue culture and leaf-bud propagation on the growth habit of'Northblue'blueberry. Journal of the American Society for Horticultural Science,1986,111:372-375.
    [35]Read PE, Wildung DK, Hartley CA, Sandahl JM. Field performance of in vitro-propagated 'Northblue' blueberries. Acta Horticulturae,1989,241:191-194
    [36]Rowland LJ, Ogden EL. Use of a cytokinin conjugate for efficient shoot regeneration form leaf sections of highbush blueberry. HortScience,1992,27:1127-1129
    [37]Frett JJ, Smagula JM. In vitro shoot production of lowbush blueberry. Can. J. Plant Sci., 1982,63:467-472
    [38]Garley B, Stushnoff C, Wildung D, Read PE. In vitro micropropagation of blueberry hybrids using single bud stem segments and stem tips. Hortscience,1979,14:477
    [39]ElShiekh A, Wildung DK, Luby JJ, Sargent KL, Read PE. Long-term effects of propagation by tissue culture or softwood single-node cuttings on growth habit, yield, and berry weight of'Northblue'blueberry. Journal of the American Society for Horticultural Science,1996,121:339-342
    [40]Lyrene PM. Micropropagation of rabbiteye blueberries. HortScience,1981,15(1):80-81
    [41]孙阳,刘顺标,程淑云,魏海蓉,刘庆忠,李宪利.3个蓝莓品种叶片离体再生及生根技术研究.安徽农业科学,2008,36(11):4411-4412
    [42]宁志怨,江芹,陈静娴,廖华俊,董玲.蓝莓丛生芽的诱导及植株再生.分子植物育种,2007,5(6S):64-66
    [43]崔广荣,陆峰,曹华龙,刘淼才,丁为群, 张子学.蓝莓离体叶片胚状体高效发生及其组织学观察.激光生物学报,2008,17(5):599-607
    [44]Parmentier-Line Cecile M., Panta Ganesh R., Rowland Lisa J. Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. Plant Science,2002,162:273-282
    [45]J.S. Boyer. Plant productivity and environment. Science,1982,218:443-448
    [46]C.L. Guy, Cold acclimation and freezing stress tolerance:role of protein metabolism, Ann. Rev. Plant Physiol. Plant Mol. Biol.,1990,41:187-223
    [47]K. Shinozaki, K. Yamaguchi-Shinozaki, Molecular responses todrought and cold stress, Curr. Opin. Biotech.,1996,7:161-167
    [48]M.F. Thomashow. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms, Ann. Rev. Plant Physiol. Plant Mol.Biol.,1999,50:573-599
    [49]P.J. Steponkus, A unified concept of stress in plants, in:D.W. Rains, R.C. Valentine, A. Hollaender (Eds.), Genetic Engineering of Osmoregulation, Plenum Press, NY, USA,1980, pp.235-255
    [50]J. Levitt, Frost, drought and heat resistance, in:Protoplasmologia Viii. Physiologie des Protoplasmes, Springer-Verlag, Vienna,1958, pp.1-87
    [51]K. Shinozaki, K. Yamaguchi-Shinozaki, Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol.,2000,3:217-223
    [52]T.H.H. Chen, P.H. Li, M.L. Brenner, Involvement of abscissic acid in potato cold acclimation, Plant Physiol.,1983,71:362-365
    [53]J. Levitt, C.Y. Sullivan, E. Krull, Some problems in drought resistance, Bull. Counc. Isr. 1960,80:173-179
    [54]T. Anisko, O.M. Lindstrom, Seasonal changes in cold hardiness of Rhododendron L 'catawbiense Boursault'grown under continuous and periodic water stress, J. Am. Soc. HortScience,1996,121:301-306
    [55]P. Chen, P.H. Li, C.J. Weiser, Induction of frost hardiness in red osier dogwood stems by water stress, HortScience,1975,10:372-374
    [56]Arora R., Rowland L.J., Lehman J.S., Lim C.C., Panta G.R., Vorsa N. Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor Appl Genet.,2000, 100:690-696
    [57]Dhanaraj Anik L., Slovin Janet P., Rowland Lisa J. Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Science,2004,166:963-872
    [58]Dhanaraj Anik L., Slovin Janet P., Rowland Lisa J. Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry. Plant Science,2005,168:949-957
    [59]Dhanaraj Anik L., Alkharouf Nadim W., Beard Hunter S., Chouikha Imed B., Matthews Benjamin F., Wei Hui, Arora Rajeev, Rowland Lisa J. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta,2007,225:735-731
    [60]詹亚光.白桦的组织培养和遗传转化研究.东北林业大学博士毕业论文.2001
    [61]Graham J, Greig K, McNicol Rj. Transformation of blueberry without antibiotic selection. Ann. Appl. Biol.,1996,128:557-564
    [62]Cao X, Liu Q, Rowland LJ, Hammerschlag FA. GUS expression in blueberry(Vaccinium spp.):factors influencing Agrobacterium-mediated gene transfer effixiency. Plant Cell Rep., 1998,18:266-270
    [63]Song GQ, Sink KC. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep.,2004,23:475-484
    [64]刘捷,杨丽娜,章镇,蔡斌华,陶建敏.蓝浆果农杆菌介导法基因转化条件研究.江苏农业科学,2008,24(5):624-628
    [65]俞嘉宁,山仑.LEA蛋白与植物的抗旱性.生物工程进展,2002,22(2):10~14
    [66]H J Bohnert, DF. Nelson, RG Jenson. Adaptation to environmental stresses, Plant Cell, 1995,7:1099-1111
    [67]Ingram J, Bartels D et al. The molecular basis of dehydration tolerance in plant. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403
    [68]Dure L 3rd, Greenway SC, Galau GA. Developmental biochemistry of cottonseed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry,1981,20(14):4162-4168
    [69]Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S. Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late-embryogenesis abundant proteins. Plant Physiol,2001, 126(4):1588-1597
    [70]NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol,2002,129(3):1368-1381
    [71]Honjoh KI, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S. Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem,2000,64(8): 1656-1663
    [72]Wang Y, Jiang J, Zhao X, Liu G, Yang C, Zhan L. A novel LEA gene form Tamarix androssowii confers drought tolerance in transgenic toacco. Plant Sci,2006,171:655-662
    [73]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003,218(1):1-14
    [74]Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem,2000,275(8):5668-5674
    [75]Kermode AR et al. Approaches to elucidate the basis of desiccation tolerance in seeds. Seed Sci Res,1997,7:75-95
    [76]Dure L, Crouch M, Harada J et al. Common amino acid sequence domains among the LEA proteins of higher plant. Plant Mol Biol,1989,12:475-486
    [77]Bray EA. Molecular Responses to water deficit. Plant Physiol,1993,103(4):1035-1040
    [78]Shao HB, Liang ZS, Shao MA. LEA proteins in higher plants:structure, function, gene expression and regulation. Colloids and Surfaces B:Biointerfaces,2005,45:131-135
    [79]Anna Campalans, Tamon Messeguer, Adela Goday et al. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol. Biochem,1999,37(5):327-340
    [80]Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol,1996,110(1):249-257
    [81]Sivamani E, Bahieldinl A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci.,2000,155:1-9
    [82]Rohila JS, Jain RK, Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Sci.,2002,163:525-532
    [83]Lal S, Gulyani V, Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res,2008,17(4):651-663
    [84]Luo K, Zhang G, Deng W, Luo F, Qiu K, Pei Y. Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Rep, 2008,27(4):707-717
    [85]Wang L, Li X, Chen S, Liu G. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett,2009,31(2):313-319
    [86]苗盈泰.柽柳--河套平原生态建设的宝贝.内蒙古林业,2000,9:28
    [87]张道远,尹林克,潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价.中国沙漠,2003,23(3):252~256
    [88]林士杰,李俊涛,姜静,白爽,于影,赵鑫,王玉成.转柽柳晚期胚胎富集蛋白基因烟草的耐低温性分析.生物技术通讯,2006,17(4):563-566
    [89]姜静,于影,赵鑫,刘焕臻,王玉成,杨传平,刘桂丰.转LEA基因烟草的耐盐性分析.生物技术,2006,16(1):16-20
    [90]刘甜甜,于影,赵鑫,刘桂丰.转LEA基因烟草的NaHCO3抗性分析.分子植物育种,2006,4(2):216-222
    [91]宁丽,郭立忠,李翠翠,宫巍,毕建水.白灵菇子实体的氨基酸及多糖含量的测定.青岛农业大学学报(自然科学版),2007,24(2):94-96
    [92]张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003
    [93]李志军,黄芳,赵晨,孟玲,宋爱荣.蒽酮-比色法测定灰树花多糖条件的研究.食用菌,2009(4):73-74
    [94]高星.高效液相色谱法(HPLC)双柱串联方式测定饲料中Va和维生素D3.中国奶牛,2006,3:16-19
    [95]王安群,邓益群,彭凤仙.HPLC法测定时料中Va、维生素D3和Ve.环境监测管理与技术,2005,17(2):33-34
    [96]商军,潘娟,华贤辉.高效液相色谱法测定Ve原料含量.饲料工业,2009,30(4):51-53
    [97]杨云霞,刘彤,王不军.高校液相色谱法测定小米中维生素B1.食品科学,2008,29(2):337-339
    [98]王晴.高效液相色谱法测定饲料中Vb2.黑龙江畜牧兽医,2000,7:14-15
    [99]张秀梅,杜丽清,谢江辉,弓德强,陈佳瑛,李伟才.高效液相色谱法测定菠萝果实Vc含量.福建果树,2007,1:20-22
    [100]苗延林,邵秀芝.等离子发射光谱法测定大麦芽中多种微量元素的研究.郑州工程学院学报,2004,25(3):55-57
    [101]马爱枝,白玉萍,王金娥,纂文霞,杨云芳.ICP等离子发射光谱仪测量复合肥料中铜、铁、锰、锌、硼、钼的含量.分析仪器,2007,40-42
    [102]赵小亮,邓芳,王金磊,龙淑梅.杜梨叶片氨基酸及矿质元素含量的测定.塔里木大学学报,2007,19(2):57-59
    [103]姜萍萍,韩烨,顾赛红,张卫萍,刑增涛.五种食用菌氨基酸含量的测定及营养评价.氨基酸和生物资源,2009,31(2):67-71
    [104]Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Intl. Plant Prop. Soc,30:421-427
    [105]Liu QZ, Zhao HJ, Zheng YQ, Wang XL, Shi LY. Preliminary reports on micropropagation of highbush blueberry. Deciduous Fruits,2001,5:1-3
    [106]赵建萍,柏新富,蒋小满,张萍,Bi Kehua.北高灌越桔芽器官离体培养与快繁体系的建立.林业科学,2007,43(5):111-116
    [107]Eccher T, Noe N. Comparison between 2ip and zeatin in the micropropagation of highbush blueberry(Vaccinium corymbosum). Acta Horticulturae,1989,241:185-190
    [108]Cao X, Hammerschlag FA. Improved shoot organogenesis from leaf explants of highbush blueberry. HortScience,2000,35:945-947.
    [109]Cao X, Hammerschlag FA, Douglass L. A two-step pretreatment significantly enhances shoot organogenesis from leaf explants of highbush blueberry cv. Bluecrop. HortScience, 2002,37:819-821.
    [110]Debnath SC, McRae KB. An efficient adventitious shoot regeneration system on excised leaves of micropropagated lingonberry(Vaccinium vitis-idaea L.). The Journal of horticultural science and biotechnology,2002,77:744-752
    [111]马怀宇.越橘离体叶片再生体系的建立及其影响因素的研究.吉林农业大学硕士学位论文,2003:15-16
    [112]沈海龙.植物组织培养.北京:中国林业出版社,2004:70-71,35-36
    [113]徐凌飞.梨离体再生和遗传转化的研究.西北农林科技大学,2005
    [114]Marcotrigiano M, P.McGlew AS. Two-stage micropropagation system for cranberry. J. Amer so Hort sci,1991,116(5):911-916
    [115]Wolfe DE, Eck P, Chin C. Evaluation of seven media for micropropagation of highbush blueberry. Horscience,1983,18:703-705
    [116]Wolfe D, Chin C-K, Eck P. Relationship of the pH of medium to growth of'Bluecrop' highbush blueberry in vitro. HortScience,1986,21:296-298
    [117]Reed BM, Abdelnour-Esquivel A. The use of zeatin to initiate in vitro cultures of Vaccinium species and cultivars. HortScience,1991,26:1320-1322
    [118]Gonzalez MV, Lopez M, Valdes AE, Ordas RJ. Micropropagation of three berry fruit species using nodal segments from field-grown plants. Annals of Applied Biology,2000, 137:73-78
    [119]唐小杰,葛春华,杜凤国,程广有.北土越桔组织培养快速繁殖技术研究.北华大学 学报(自然科学版),2005,6(3):261-263
    [120]Tetsumura T, Matsumoto Y, Sato M, Honsho C, Yamashita K, Komatsu H, Sugimoto Y, Kunitake H. Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Scientia Horticulturae,2008,119:72-74
    [121]Xiaoling Cao, Ingrid Fordham, Larry Douglas, Freddi Hammerschlag. Sucrose level influences micropropagation and gene delivery into leaves from in vitro propagated highbush blueberry shoots. Plant Cell, Tissue and Organ Culture,2003,75:255-259
    [122]马怀宇,李亚东,刘庆忠,赵红军,孙清荣.高灌越橘离体叶片再生植株研究初报.东北农业大学学报,2004,35(2):129-134
    [123]刘庆忠,赵红军.高灌篮莓的组织培养及快速繁殖.植物生理学通讯,2002,38(3):253
    [124]Sharon GB, Chee KC, Jelenkovic G. Regeneration of blueberry plantlets from leaf segments. Hortscience,1988,23:763-766
    [125]Liu Q, Salihs, Hammerschlag FA. Etiolation of'Rayal Gala'apple (Malus domestica) shoots promotes high frequency organagenesis and enhanced β-glucuronidase expression from stem internodes. Plant Cell Reports,1998,18:32-36
    [126]Zimmerman RH, Broome OC. Blueberry micropropagation. In:Proceedings of the Conference on Nursery Production of Fruit Plants through Tissue Culture USDA-SEA, Agr. Res. Results ARR-NE,1980,11:44-47
    [127]Eccher T, Noe N, Piagnani C, Castelli S. Effects of increasing concentrations of BAP and 2ip on in vitro culture of Vaccinium corymbosum. Acta Horticulturae,1986,179:879-882.
    [128]Hood EE, Gelvin SB, Melchers LS, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res,1993,2(4):208-218
    [129]Lin JJ, Assadd-Garcis N, Kuo J. Plant hormone effect of antibiotics on the transformation efficiency of plant tissue by Abrobacterium tumefaciens cells. Plant Sci.,1995,109 (2): 171-177
    [130]Alsheikh MK, Suso H-P, Robson M, Battey NH, Wetten A. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F.v. semperflorens. Plant Cell Rep.,2002,20:1173-1180
    [131]张晓英,尹伟伦,朱祯,王华芳.抗生素对国槐愈伤组织诱导和生长的影响.北京林业大学学报,2004,26(6):62-65
    [132]詹立平,姜静,赵鑫,程贵兰,李淑娟,惠楠,刘桂丰.农杆菌抑菌剂的抑菌效果及其对小黑杨叶片不定芽产生率的影响.植物生理学通讯,2004,40(6):689-692
    [133]秦玲,李明,王永熙,韩礼星,黄贞光,赵改荣.根癌农杆菌介导苹果遗传转化研究进展.西北农林科技大学学报(自然科学版),2002,30(4):135~140
    [134]王萍.大豆组织培养体系优化与双价抗虫基因遗传转化的研究.东北农业大学博士学位论文,2002:26,74
    [135]刘灌,朱鑫泉.生物安全.北京:科学出版社,2001
    [136]谢龙旭,卫志明,徐培林.根癌农杆菌介导的aroAM12基因棉花植株的草甘磷抗性.植物生理与分子生物学报,2004,30(2):173-178.
    [137]张瑞萍.脱水素基因逆境表达模式与白桦遗传转化研究.东北林业大学博士学位论文,2009:47-49
    [138]吴延军.桃组织培养及遗传转化的研究.浙江大学博士学位论文,2004
    [139]尹淑萍.草莓栽培品种离体再生及遗传转化的研究.中国农业大学博士学位论文,2004
    [140]Borchardt JR, Wyse DL, Sheaffer CC, Kauppi KL, Fulcher RG, Ehlke NJ, Biesboer DD, Bey RF. Antimicrobial activity of native and naturalized plants of Minnesota and Wisconis. Journal of Medicinal Plants Research,2008,2(5):98-110
    [141]王慧梅.喜树组织培养与遗传转化的研究.东北林业大学博士毕业论文,2004:77
    [142]Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M, Motoyoshi F. Agrobacterium -mediated transformation and regeneration of Citrus spp. from suspension cells. JAP. J. Breed,1990,40:199-207
    [143]Songstd DD, Somers DA, Griesbach Rj. Advances in alternative DNA delivery techniques. Plant Cell Tiss Org Cult.,1995,40:1-15
    [144]Assad FF, Tucker KL, Singer ER. Epigenetic repeat induced gene Silencing (RIGS) in Arabidopsis. Plant Mol Bio.,1993,22:1067-1085
    [145]Cervera M, Pina JA, Juarez J, Navarro L, Pena L. A broad exploration of a transgenic population of citrus:stability of gene expression and phenotype. Theor Appl Genet,2000, 100:670-677
    [146]Yang H, Singst C, Wang A, Gonsalves D, Ozias-Akins P. Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Reports,1998,17:693-699
    [147]Rathore K, Chowdhury VK, Hodges T. use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol Biol,1993,21: 871-884
    [148]Kumpatla S, Teng W, Buchholtz, Hall T. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol,1997,115: 361-373
    [149]Hobbs SLA, Kpodar P, DeLong CMO. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformats. Plant Mol Biol,1990,15: 851-864
    [150]Flavell RB. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA,1994,91:3490-3496
    [151]Linn F, Heidmann L, Saedler H, Meyer P. Epigenetic changes in the expression of the maize Al gene in Petunia hybrida:role of numbers of integrated gene copies and state of methylation. Mol Gen Genet,1990,222:329-336
    [152]Meyer P. Repeat-induced gene silencing:common mechanisms in plants and fungi. Biol Chem Hoppe-Seyler,1996,377:87-95
    [153]Lakshminarayan MI, Kumpatla SP, Chandrasekharan MB, Hall TC. Transgene silencing in monocots. Plant Mol Biol,2000,43:323-346
    [154]Krol van der A, Mur LA, Beld M, Joseph MNM, Stuitje AR. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell,1990,2:291-299
    [155]华志华,朱雪峰,林鸿生,高振宇,钱前,颜美仙,黄大年.基因枪转化获得的转基因水稻中外源基因整合与表达规律研究.遗传学报,2001,28(11):1012-1018
    [156]杜艳.七叶树种子耐脱水性和苗木抗寒性研究.南京林业大学硕士学位论文,2004
    [157]罗广华,王爱国.几种检测超氧化物歧化酶活性反应的比较.植物生理学通讯,1983,5:46-49
    [158]朱广廉.植物生理学实验.北京,北大出版社.1990
    [159]Klessig DF, Malamy J. The salicylic acid signal in plant. Plant Mol. Biol.,1994,26(5): 1439-1458
    [160]Balakhnina TI, Bennicelli RP, Stepniewska Z, Stepniewski W, Fomina RI. Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil. doi:10.1007/s11104-009-0054-6
    [161]Larson RA. The antioxidants of higher plants. Phytochem,1988,27:969-978
    [162]赵鑫.晚期胚胎富集蛋白基因植物表达载体的构建及其功能验证.东北林业大学硕士毕业论文,2005:44
    [163]Li L, Ataden JV. Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjexted to water stress. Plant Growth Regul.,1998,24:55-56
    [164]Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling. Curr. Opin. Plant Biol., 2002,5:388-395
    [165]Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays,2006, 28,1091-1101
    [166]Senaratna T, McKersie BD, Stinson RH. Simulation of Dehydration Injury to Membranes from Soybean Axes by Free Radicals. Plant Phy.,1985,77:472-474
    [167]Gawel S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek.,2004,57(9-10):453-455.
    [168]Sairam RK, Rao KV, Arivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci.,2002,163:1037-1046
    [169]Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol. doi:10.1016/j.jplph.2009.09.008
    [170]李娜,房伟民,陈发棣,陈素梅,杨伟.低温下2个寒菊品种不同开放期舌状花生理指标变化及其抗寒性差异.江西农业学报,2009,21(11):36-39
    [171]曹慧,赵升,王孝威,崔英等.低温胁迫对葡萄幼苗相关生理指标的影响.安徽农业科学,2008,36(4):1351-1352,1364
    [172]王小丽,裴玉贺,郭新梅,张恩盈,宋希云.低温胁迫下玉米幼苗的几种生理生化指标的变化.植物生理学通讯,2009,45(5):487-490
    [173]高桂花,王瑞兵,刘艳芳,勒占忠,杜金友.低温胁迫下玉米幼苗生理变化研究.河北农业科学,2006,10(4):16-19
    [174]吴中军,赵业特.低温胁迫对彩叶草幼苗生理生化特性的影响.西南大学学报(自然科学版),2009,31(2):132-135
    [175]Mukherjee SP, Choudhuri MA. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiologia Plantarum,1983,58:166-170
    [176]宋志荣.水分胁迫对辣椒脂质过氧化作用和保护酶活性及相关生理指标的影响研究.湖南农业大学硕士学位论文,2001
    [177]魏鹏.茶树抗旱性部分生理生化指标的研究.西南农业大学硕士学位论文,2003
    [178]金丽丽,孙龙生.花卉抗寒性研究方法和测定指标概述.辽宁农业科学,2005,6:37-39
    [179]陈曦,张婷,刘志洋.低温胁迫对十种宿根花卉电导率的影响.北方园艺,2010,10:121-122
    [180]樊治成,贾洪玉,郭洪芸,杨梁.西葫芦耐冷性生理指标研究.园艺学报,1999,26(5):309-313
    [181]Lyons JM Chilling injury in plants. Ann Rev plant physiol.,1973,24:445
    [182]Chan HJ. Electrolyte leakage and Ethylene production induced by chilling injury of papayas. Hortscience,1985,20(6):1070-1072
    [183]Roberts Dwa. Changes in the forms of invertase during the development of wheat leaves growing under cold-hardening and non hardening conditions. Can J Bot.,1987,4:301-606
    [184]Gerloff ED. Soluble protein in Alfalfa roots as related to cold Hardness. Plant Phy.,1967, 42(7):895-899
    [185]Fridovich I. Superoxide dismutase. Annual Review of Biochemistry,1975,44:147-159
    [186]Prasad TK. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol.,1997,114:1369-1376
    [187]Yahubyan G, Gozmanova M, Denev I, Toneva V, Minkov I. Prompt response of superoxide dismutase and peroxidase to dehydration and rehydration of the resurrection plant Haberlea rhodopensis. Plant Growth Regul,2009,57:49-56
    [188]Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday S. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant, 2001,113:323-331
    [189]Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S. Overexpression of wheat alternative oxidase gene Waoxla alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst,2006, 81(5):349-354
    [190]沈静,杨青川,曹致中,孙彦,李燕,熊军波,康俊梅.低温胁迫对野牛草细胞膜和保护酶活性的影响.中国草地学报,2010,2:98-102
    [191]段瑞君,任有成,熊辉岩.低温胁迫对青稞幼苗抗寒性生理指标的影响.安徽农业科学,2009,37(34):16796-16797
    [192]陈虎,何新华,李小强,潘介春,朱建华.低温胁迫对龙眼幼树抗寒性的影响.广西农业科学,2010,41(1):7-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700