甲壳动物血蓝蛋白免疫学活性及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国是世界上最大的甲壳动物(虾蟹)集约化养殖生产国。然而,与国际虾蟹养殖业相比,我国商业化的虾蟹养殖整体效益较低,可持续发展前景不容乐观。究其原因,主要与虾蟹病害和生物安全等有关。为此,学者们认为选育优质、抗逆优良虾蟹品种,建立安全、生态、环保的健康养殖模式,是解决目前虾蟹养殖疾病,提高虾蟹品质的有效途径。要成功解决这些问题,关键环节之一就是揭示虾蟹自身免疫防御机制,寻找虾蟹病害防治的有效方法。近年来研究表明,存在于对虾等无脊椎动物血淋巴中的血蓝蛋白是一种具有抗病毒和抗细菌等多种免疫活性的多功能蛋白。本研究以凡纳滨对虾、锯缘青蟹血蓝蛋白为研究对象,在国内外所获研究结果的基础之上,进一步对其免疫学活性及作用机理等进行了深入的研究,所获研究结果具体如下:
     1、发现凡纳滨对虾血蓝蛋白抑菌活性与其糖基化修饰有关,且OmpC为其抑菌作用靶标之一
     首先,在本课题组已分离得到的2种糖含量和抑菌活性存在显著差异的凡纳滨对虾血蓝蛋白(LHt和LH75)的基础之上,本研究采用凝集素印迹、Tricine-SDS-PAGE和HPLC等技术,进一步发现LH75、LHt糖基化修饰存在显著性差异,其中前者α-D-甘露糖、α-D-葡萄糖修饰程度比后者高;前者胰酶水解肽段分子量明显高于后者;前者胰酶酶解HPLC图谱表现为10个峰,而后者为24个峰。同时,2-DE显示,LHt主要蛋白点为7个,大小亚基分别为3和4个点,LH75主要蛋白点为6个,大小亚基分别为4和2个点。由此说明该2种血蓝蛋白不仅在蛋白质水平存在差异,其糖基化修饰也存在差异。
     继而,选用副溶血弧菌人工感染对虾,发现对虾刺激后虾血清中LHt、LH75表达均呈上升趋势,且LH75上升幅度明显高于LHt。结合前期研究发现LH75抑菌活性显著高于LHt抑菌活性的研究结果,提示LH75可能是血蓝蛋白发挥抑菌作用的重要组分,其抑菌活性应该与糖基化修饰有关。
     最后,利用亲和孵育获得3种与LH75相结合的副溶血弧菌外膜蛋白(Omp), p1、p2和p3,经质谱鉴定p2为OmpC,根据前期研究发现LH75对外膜蛋白敲除菌△OmpC的抑菌活性明显降低的结果,推测OmpC应为为LH75抑菌作用靶标之一,至于其是否还存在其他作用靶标还有待于进一步研究和证实。
     2、发现锯缘青蟹血蓝蛋白具有凝集活性,凝集作用靶标为OmpA和OmpX
     首先,采用亲和蛋白质组学策略,发现锯缘青蟹血蓝蛋白由分子量分别为70、72、75、76、80 kDa的5个亚基组成,其与岸蟹(Carcinus aestuarii)、蓝蟹(Callinectes sapidus)和黄道蟹(Cancer magister)血蓝蛋白亚基具有高度的同源性,且3个主要亚基(p75、p76和p80)与兔抗虾血蓝蛋白抗血清呈显著阳性,说明所获得的青蟹血蓝蛋白成分单一、可靠,适合于进一步研究。
     继而,采用凝集实验和凝集抑制实验,发现青蟹血蓝蛋白对副溶血弧菌、溶藻酸弧菌、河弧菌、哈维氏弧菌、嗜水气单胞菌、大肠杆菌K12和金黄色葡萄球菌等7种细菌具有凝集活性,且其凝集活性能被葡萄糖、半乳糖、木糖和N-乙酰神经氨酸部分或完全抑制。说明青蟹血蓝蛋白确实具有凝集活性。
     最后,运用SDS-PAGE、Western-blotting、凝集抑制实验、基因敲除凝集实验等发现青蟹血蓝蛋白凝集活性作用亚基为76 kDa亚基;大肠杆菌Omp能够抑制血蓝蛋白对7种细菌的凝集活性;与大肠杆菌K12野生菌株相比,血蓝蛋白对△OmpA和△OmpX凝集活性明显降低。由此推测,青蟹血蓝蛋白可能主要依赖其76 kDa亚基,通过与病原菌OmpA和OmpX相结合而发挥凝集活性。
     3、发现锯缘青蟹血蓝蛋白具有溶血活性,溶血作用机制为胶体渗漏机制采用溶血实验发现锯缘青蟹血蓝蛋白对鸡、鼠、兔、人等多种红细胞表现出依赖于钙离子的溶血活性。其溶血活性具有“剂量-效应”效应,同时对pH、温度敏感,在pH 5-8范围内,溶血活性随pH上升而降低;随着温度的升高,溶血活性逐渐增强, 37℃时溶血活性达到100%。
     在上述研究的基础之上,进一步采用SDS-PAGE、Western-blotting、渗透保护实验等,发现锯缘青蟹血蓝蛋白5个亚基均可与红细胞膜相结合,且青蟹溶血活性随着渗透保护剂分子的增大而降低。由此推测,青蟹血蓝蛋白可能依赖其全部亚基通过胶体渗漏机制而发挥溶血活性。
     综上所述,本课题研究主要发现:甲壳动物(虾、蟹)血蓝蛋白具有凝集活性、抑菌活性和溶血活性,其中凝集、抑菌活性作用靶标为细菌外膜蛋白,溶血作用机制为胶体渗漏机制。所获研究结果为揭示血蓝蛋白的免疫学分子作用机制,阐明血蓝蛋白与病原菌的识别模式奠定了良好的基础,同时为研究血蓝蛋白在虾蟹中的免疫抗病作用提供了较好的实验依据,对丰富和发展甲壳类动物免疫系统的基础研究及指导免疫学防治具有重要的意义。
At present, crustaceans production of China is the largest in the world. However, the whole benefit of commercial crustaceans cultivation in our country is lower compared with the international shrimps and crabs farming, and the outlook of sustainable development is not optimistic. For the reasons related with disease and bio-security, most researchers consider that the effective strategies to prevent crustacean diseases and improve crustacean quality are breeding for stress tolerance species and establishing safe, ecotypic, protecting environmental and healthy culture model. It has been proved that one of the key to successfully resolve these problems is to reveal the self-defense mechanism of crustacean and search for the effective strategy to prevent crustacean diseases. Recently, hemocyanin of mollusks and arthropods was reported as an important non-specific immune protein present in the hemolymph with multifunction such as antiviral and antibacterial activities. In this paper, an attempt was made to investigation the immunological functions and their mechanisms of hemocyanins from Litopenaeus vannamei and Scylla serrata. The main findings are as follows:
     1. Hemocyanin from L. vannamei showing antibacterial activity was related to its glycosylation and OmpC was appeared to be one of the antibacterial target
     Firstly, on the basis of our previous findings that two L. vannamei hemocyanins (named LHt and LH75) presenting different carbohydrate content and antibacterial activity were purified, in the current study, the methods of lectin-blotting, Tricine-SDS-PAGE and HPLC were used to analyse the variation of the two hemocyanins. The results indicated that the glycosylation level ofα-D-mannose /α-D-glucose content of LH75 was higher than that of LHt. And molecular weights of main peptides digested by trypsin,of LH75 were also higher than those of LHt. In additional, 10 and 24 peaks of digested LH75 and LHt were observed in HPLC map, respectively. Furthermore, 7 and 6 protein spots were appeared in the 2-DE map of LHt and LH75, respectively, in which, the former contained 3 big subunit spots and 4 small subunit spots, while the later contained 4 big subunit spots and 2 small subunit spots. Thus, these results suggested two hemocyanins were probably discrepant with glycosylation.
     Secondly, more LH75 increased than that of LHt in serum after injecting Vibro parahaemolyticus. Combined to the previous results that antibacterial activity of LH75 was obvious higher than that of LHt, these results suggested that LH75 was a important component of hemocyanin with antibacterial activity, which was related to glycosylation.
     Finally, three V. parahaemolyticus outer membrane proteins (Omps) binding to LH75 was separated by affinity incubation, which named p1, p2, p3 respectively. The p2 was identified as OmpC by MALDI-TOF-TOF MS. Our previous research showed that antibacterial activity of LH75 with E. coli Omps gene-deleted mutants,△OmpC, decreased obviously in comparison with that of wild type. Thus, the results manifested that OmpC appeared to be one of the antibacterial target of LH75 and its other antibacterial target need further examination.
     2. S. serrata hemocyanin mediates agglutination by recognizing OmpA and OmpX of bacteria.
     First of all, we identified the S. serrata hemocyanin using affinity proteomics and the results showed that S. serrata hemocyanin consisted of five subunits with molecular weights of 70, 72, 75, 76 and 80 kDa, respectively. All five subunits showed high homology with hemocyanin subunits from other crab species including Carcinus aestuarii, Callinectes sapidus and Cancer magister, and three mainly subunit p75、p76 and p80 reacted with the rabbit anti-hemocyanin IgG. Together, these results suggested that S. serrata hemocyanin was purified to homogeneity and suitable for further investigation.
     Furthermore, seven bacterial species including V. parahaemolyticus, V. alginolyticus, V. harveyi,V. fluvialis, Aeromonas hydrophila, Staphylococcus aureus and Escherichia coli K12 were selected for agglutination and agglutination inhibition analysis. S. serrata hemocyanin presented agglutinative activities against the seven pathogenic bacteria ranging from 7.5-30 g/mL, which was inhibited by N-acetylneuraminic acid,α-D-glucose, D-galactose and D-xylose, respectively. These results suggested that S. serrata hemocyanin possessed agglutination properties.
     Additionaly, SDS-PAGE, Western-blotting, agglutination inhibition and gene knock-down analysis were performed. The results showed that the 76 kDa subunit of S. serrata hemocyanin was responsible for its agglutinative activities. Moreover, Omps of bacteria could completely stop the agglutination. The agglutinative activities of hemocyanin with△OmpA and△OmpX were obviously decreased. Together, the data suggest that the 76 kDa subunit of S. serrata hemocyanin mediates agglutination by recognizing OmpA and OmpX of bacteria.
     3. S. serrata hemocyanin mediated hemolysis by binding tightly to erythrocyte membranes and following a colloid-osmotic mechanism.
     Hemolysis assays was performed to investigate the hemolytic activity of S. serrata hemocyanin. The results showed that S. serrata hemocyanin exhibited Ca2+-dependent hemolytic activities against vertebrate erythrocytes including chicken, mouse, rabbit and human erythrocytes. The hemolysis assay of hemocyanin showed the“dose-response”positive relativity, and the hemolysis was sensitive to pH and temperature. The hemolytic activity of hemocyanin decreased with increasing pH from 5 to 8, and increased with the increasing temperature, the 100% hemolysis was occured at 37 oC. Further evidence revealed that the five subunits of hemocyanin were presented in the solubilized incubation products of erythrocytes with hemocyanin, and the hemolysis could be inhibited to different degrees by osmoprotectants with various molecular masses, indicating that S. serrata hemocyanin mediated hemolysis by binding tightly to erythrocyte membranes and following a colloid-osmotic mechanism. Thus, these finding suggested that S. serrata hemocyanin also can act as a hemolysin.
     In summary, our results indicated that hemocyain of crustacean (shrimps and crabs) showed agglutinative activity, antibacterial activity and hemolytic activity. And bacterial Omps were acted as the agglutinative and antibacterial targets of pathogen recognized by hemocyanin. Importantly, the mechanism of hemocyanin-induced hemilysis was colloid-osmotic. These findings lay the foundation for revealing the mechanism of immunological functions of hemocyanin and elucidating the pattern of recognizing pathogenic bacteria by hemocyanin. Also, they can provide evidence on the anti-diseases activitives of hemocyanin in crustacean, and will help us understand the immune status of hemocyanin in shellfish such as shrimps and crabs and develop the knowledge of shellfish’s immune system and immune prevention.
引文
Adachi K, Hirata T, Nishioka T, Nishioka T, Sakaguchi M. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comp Biochem Physiol 2003; 134 B: 135-41
    Alabi AO, Jones DA, Latchford JW. The efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture 1999; 178: 1-11
    Anderson DP. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annu Rev Fish Dis 1992; 2: 281-307
    Andreeva ZI, Nesterenko VF, Yurkov IS, Budarina ZI, Sineva EV, Solonin AS. Purification and cytotoxic properties of Bacillus cereus hemolysinll. Protein Express Purif 2006; 47: 186-93
    Apirakaramwong A, Fukuchi JI, Kashiwagi K, Kakinuma Y, Ito E, Ishihama A, Igarashi K. Enhancement of cell death due to decrease in Mg2+ uptake by OmpC (cation-selective porin) deficiency in ribosome modulation factor-deficient mutant. Biochem Biophys Res Commun 1998 251:482-7
    Aranda FJ, Teruel JA, Ortiz A. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturinA. BiochimBiophys Acta 2005; 1713: 51-6
    Ashida M, Yamazaki HI. Biochemistry of the Phenoloxidase System In Insects: With Special Reference to its Activation. In Ishizki H ed. Molting and Metamorphorsis. Springer Verlag Berlin: Japan Sci Soc Press 1990; 239-63.
    Aspan A, Sturtevant J, Smith VJ. Purification and characterization of a prophenoloxidase activating enzyme from crayfish blood cells. Insect. Biochem 1991; 20: 709-18
    Baden SP, Pihl L, Rosenberg R. Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster Nephrops norvegicus. Mar Ecol Prog Ser 1990; 67: 141-55
    Barracco MA, Ameirante GA. Morphological and cytochemical studies of hemocytes of Squilla mantis. J Crust Biol 1992; 12: 372-82
    Barracco MA, de-Lorgeril J, Gueguen Y, Bachere E. Molecular characterization of penaeidins from two Atlantic brazilian shrimp species, Farfantepenaeus paulensis and Litopenaeus schmitti. FEMS Microbiol Lett 2005; 250: 117-20
    Bartlett TC, Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS, Warr GW. Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar Biotechnol 2002; 4: 278-93
    Bashford CL, Alder GM, Menestrina G Micklem KJ, Murphy JJ, Pasternak CA. Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents. J Biol Chem 1986; 261: 9300-8
    Bechteler C, Holler D. Preliminary studies of the immunization of shrimp (Penaeus monodon) against vibrio infection. Berl Munch Tierarztl Wochenschr 1995; 108: 462-5
    Beck A, Hillen N, Dolashki A, Stevanovic S, Salvato B, Voelter W, Dolashka-Angelova P. Oligosaccharide structure of a functional unit RvHl-b of Rapana venosa hemocyanin using HPLC / electrospray ionization mass spectrometry. Biochim 2007; 89: 938-49
    Becker MI, Fuentes A, Campo MD, Manubens A, Nova E, Oliva H, Faunes F, Valenzuela MA, Campos-Vallette M, Aliaga A, Ferreira J, Ioannes AED, Ioannes PD, Moltedo B. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties. Int Immunopharmacol 2009; 9: 330-9
    Beecher DJ, Wong ACL. Tripartite hemolysin BL from Bacillus Cereus, Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem 1997; 272: 233-9
    Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 2000; 289: 1185-7Bhakdi S, Tranum-Jensen J, Sziegoleit A. Mechanism of membrane damage by streptolysin-O. Infect Immunity 1985; 47: 52-60
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54
    Brockton V, Hammond JA, Smith VJ. Gene characterisation, isoforms and recombinant expression of carcinin, an antibacterial protein from the shore crab, Carcinus maenas. Mol Immunol 2007;44: 943-9
    Brouwer M, Brown-Peterson NJ, Larkin P. Molecular and whole animal responses of grass shrimp, Palaemonetespugio, exposed to chronic. J Exp Mar Biol Ecol 2007; 341: 16-31
    Burmester T. Evolutionary history and diversity of arthropod hemocyanins. Micron 2004; 35:121-2
    Cerenius L, Lee BL, Soderhall K. The proPO-system:pros and cons for its role in invertebrate immunity. Trends Immunol 2008; 29: 263-71
    Chen MY, Hu KY, Huang CC, Song YL. More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Dev Comp Immunol 2005;29: 1003-16
    Chernitsky E, Senkovich O. Mechanisms of anionic detergent-induced hemolysis. Gen Physiol Biophys 1998; 17: 265-70
    Chiou TT, Wu JL, Chen TT, Lu JK. Molecular cloning and characterization of cDNA of penaeidin-like antimicrobial peptide from tiger shrimp (Penaeus monodon). Mar Biotechnol2005; 7: 119-27
    Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Daniellil A, Dimopoulos G Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashinal EA, Loukeris TG, Lycettl G Meisterl S, Michell K, Moital LF, Mullerl HM, Ostal MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernickl KD, Vlachoul D, Volz J, Mering CV, Xu JN , Zheng LB, Borkl P, Kafatosl FC. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298: 159-65Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 2005; 125: 629-37
    Cong Y, Zhang QF, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu SJ, Decker H: Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy. Structure 2009; 17: 749-58
    Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS. Diversity of the penaeidin antimicrobial peptides in two shrimp species. Immunogenetics 2002; 54: 442-5
    Cuthbertson BJ, Yang Y, Bachere E, Biillesbach EE, Gross PS, Aumelas A. Solution Structure of Synthetic Penaeidin-4 with Structural and Functional Comparisons with Penaeidin-3. J Biol Chem 2005; 280: 16009-18
    de Kort G, van der Bent-Klootwijk P, van de Klundert JA. Immuno-detection of the virulencedeterminant OmpX at the cell surface of Enterobacter cloacae. FEMS Microbiol Lett 1998; 158: 115-20
    Decker H, Jaenicke E. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol 2004; 28: 673-87
    Decker H, Rimk T. Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 1998; 273: 25889-92
    Decker H, Ryan M, Jaenicke E, Terwilliger N. SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Bio Chem 2001; 276: 17796-9
    Delcour AH. Function and modulation of bacterial porins: insights from electrophysiology. FEMS Microbiol Lett 1997; 151: 115-23
    Destoumieux D, Bulet P, Loew D, van-Dorsselaer A, Todriguez J, Bachère E. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Docapoda). J Biol Chem 1997; 272: 28398-406
    Destoumieux D, Mu(?)oz M, Bachère E. Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci 2000; 57: 1260-71
    Destoumieux D, Munoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachere E. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 2000; 113: 461-9
    Dolashka-Angelova P, Dolashki A, Savvides SN, Hristova R, Beeumen JV, Voelter W, Devreese B, Weser U, Muro PD, Salvato B, Stevanovic S. Structure of hemocyanin subunit CaeSS2 of the crustacean mediterranean crab Carcinus aestuarii. J Biochem 2005; 138: 303-12
    Dolashka-Angelova P, Lieb B, Velkova L, Heilen N, Sandra K, Nikolaeva-Glomb L, Dolashki A, Galabov AS, Van Beeumen J, Stevanovic S, Voelter W, Devreese B. Identification of
    Glycosylated Sites in Rapana Hemocyanin by Mass Spectrometry and Gene Sequence, and Their Antiviral Effect. Bioconjugate Chem 2009; 20: 1315-22
    Dolashka-Angelova P, Stevanovic S , Dolashki A, Devreese B, Tzvetkova B, Voelter W, Van Beeumen J, Salvato B. A challenging insight on the structural unit 1 of molluscan Rapana venosa hemocyanin. Arch Biochem Biophy 2007; 459: 50-8
    Dubovskiy IM, Krukova NA, Glupov VV. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. J Invertebr Pathol 2008; 98: 360-2
    Durstewitz G, Terwilliger N. Northern blot analysis of the differential expression of hemocyanin subunits in various tissues and developmental stages of the Dungeness crab (Carcinus magister). Physiol Zool 1995; 68: 149-56
    Duvic B, S(?)derh(?)ll, K. Purification of aβ-1, 3-glucan binding protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. Eur J Biochem 1992; 207: 223-8 Fan T, Zhang Y, Yang L, Yang X, Jiang G, Yu M, Cong R. Identification and characterization of a hemocyanin-derived phenoloxidase from the crab Charybdis japonica. Comp Biochem Physiol 2009; 152 B: 144-9
    Figueroa-Soto CG, de la Barca AMC, Vazquez-Moreno L, Higuera-Ciapara I, Yepiz-Plascencia G. Purification of Hemocyanin from White Shrimp (Penaeus vannamei Boone) by Immobilized Metal Affinity Chromatography. Comp Biochem Physiol 1997; 117 B: 203-8
    Gargioni R, Barracco MA. Hemocytes of the palaemonids Macrobrachium rosenbergii and M. acanthurus, and of the Penaeid Penaeus paulensis. J Morphol 1998; 236: 209-21 Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Annu Rev of Entomol 1997; 42: 611-43
    Giomi F, Beltramini M. The molecular heterogeneity of hemocyanin: its role in the adaptive plasticity of crustacea. Gene 2007; 398: 192-201
    Goarant C, Boglio E. Changes in hemocyte counts in Litopenaeus stylirostris subjected to sublethal infection and to vaccination. J World Aquacul Soc 2000; 31:123-9
    Grondel JL, Nonws JFM, Muiswinkel WB. The influence of antibiotics on the immune system: Immunopharmacokinetic investigations on the primary anti-SRBC response in carp after oxyteracycline injection. J Fish Dis 1987; 10: 35-44
    Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, Julien-de-Lorgeril JD, Janech M, Paul S, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachère E. PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Dev Comp Immunol 2006; 30: 283-8
    Guo D, Zhang Y, Zeng D, Wang H, Li X, Li Y, Fan X. Functional properties of hemocyanin from Oncomelania hupensis, the intermediate host of Schistosoma japonicum. Exp Parasitol 2009; 123: 277-81
    Hagen HE, Kl?ger SL. Integrin-like RGD-dependent cell adhesion mechanism is involved in the rapid killing of Onchocerca microfilariae during early infection of Simulium damnosum s.l. Parasitology 2001; 122: 433-38
    Hall RL, Wood EJ, Kamberling JP, Gerwig GJ, Vliegenthart JFG. 3-O-methyl sugars as constituents of glycoproteins. Identification of 3-O-methylgalactose and 3-O-methylmannose in pulmonate gastropod haemocyanins. Biochem J 1977; 165: 173-6
    Hari-Dass R, Shah C, Meyer DJ, Raynes JG. Serum amyloid A protein binds to outer membrane protein A of Gram-negative bacteria. J Biol Chem 2005; 280: 18562-7
    Hatakeyama T, Furukawa M, Nagatomo H, Yamasaki N, Mori T. Oligomerization of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata induced by the binding of carbohydrate ligands. J Biol Chem 1996; 271: 16915-20
    Hatakeyama T, Nagatomo H, Yamasaki N. Interaction of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata with the erythrocyte membrane. J Biol Chem 1995; 270: 3560-4
    Herlax V, Bakas L. Acyl chains are responsible for the irreversibility in the Escherichia coli α-hemolysin binding to membranes. Chem Phys Lipids 2003; 122: 185-90
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313-8.
    Houdai T, Matsuoka S, Matsumori N, Murata M. Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate. Biochim Biophys Acta 2004; 1667: 91-100
    Huang X, Zhou H, Zhang H. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 2006; 20: 750-7
    Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immunol 2003; 15: 12-19
    Idakievaa K, Siddiquib NI, Meersmanc F, Maeyer MD, Chakarskaa I, Gielensb C. Influence of limited proteolysis, detergent treatment and lyophilization on the phenoloxidase activity of Rapana thomasiana hemocyanin. Int J Bio Macromolecules 2009; 45: 181-7
    Imjongjirak C, Amparyup P, Tassanakajon A, Sittipraneed S. Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain: molecular cloning, genomic organization and theantimicrobial activity of its synthetic LPS binding domain. Mol Immunol 2007; 44: 3195-203 Imjongjirak C, Amparyup P, Tassanakajon A, Sittipraneed S. Molecular cloning and
    characterization of crustin from mud crab Scylla paramamosain. Mol Biol Rep 2009; 36: 841-50
    Immesberger A, Burmester T. Putative phenoloxidases in the tunicate Ciona intestinalis and the origin of the arthropod hemocyanin superfamily. J Comp Physiol 2004; 174: 169 -80
    Itami T, Takahashi Y, Nakamura Y. Efficacy of vaccination against vibriosis in cultured kuruma prawns Penaeus japonicus. J Aquat Anim Health 1989; 1: 238-42
    Jaenicke E, F(?)ll R, Decker H. Spider hemocyanin binds ecdysone and 20-OH-ecdysone. J Biol Chem 1999; 274: 34267-71
    Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197-216
    Jeannin P, Magistrelli G, Goetsch L, Haeuw J-F, Thieblemont N, Bonnefoy JY, Delneste Y. Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells—impact on vaccine strategies. Vaccine 2002; 20 Suppl: A23-7
    Jiang N, Tan NS, Ho B, Ding JL. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol 2007; 8: 1114-22.
    Johansson MW, S(?)derh(?)ll K. Isolation and purification of a cell adhesion factor from crayfish blood cells. J Cell Biol 1988; 106: 1795-803
    Johnson BA. Structure and function of the hemocyanin from a semi-terrestrial crab, Ocypode quadrata. J Comp Physiol B 1987; 157: 501-9
    Johnson PT. A review of fixed phagocytic and pinocytotic cells of decapod crustaceans, with remarks on hemocytes. Dev Comp Immunol 1987; 11: 679-704
    Jomori T, Natori S. Function of the lipopolysaccharide-binding protein of Periplaneta americana as an opsonin. FEBS 1992; 296: 283-6
    Ju JS, Cho MH, Brade L, Kim JH, Park JW, Ha N-C, S(?)derh(?)ll I, S(?)derh(?)ll K, Brade H, Lee BL. A Novel 40-kDa Protein Containing Six Repeats of an Epidermal Growth Factor-Like Domain Functions as a Pattern Recognition Protein for Lipopolysaccharide. J Immunol 2006; 177: 1838-45
    Jurgens D, Ozel M, Kikuni NBT. Production and characterization of Eschrichia coli enterohemolysin and its effects on the structure of erythrocyte membranes. Cell Biol Int 2002; 26: 175-86
    Kang CJ, Wang JX, Zhao XF, Yang XM, Shao HL, Xiang JH. Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 2004; 16: 513-25
    Kanost MR, Jiang H, Yu XQ. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 2004; 198: 97-105
    Ko CF, Chiou TT, Vaseeharan B, Lu JK, Chen JC. Cloning and characterisation of a prophenoloxidase from the haemocytes of mud crab Scylla serrata. Dev Comp Immunol 2007; 31: 12-22
    Koebnik R, Locher K, Van Gelder P. Structu re an d function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 2000; 37: 239-52
    Kondo M, Itami T, Takahashi Y. Preliminary characterization of lectins in the hemolymph of kuruma prawn. Fish Pathol 1998; 33: 429-35
    Koshiba T, Hashii T, Kawabata S-i. A structural perspective on the interaction between lipopolysaccharide and factor C, a receptor involved in recognition of Gram-negative bacteria. J Biol Chem 2007; 282: 3962-7
    Kusche K, Ruhberg H, Burmester T. A hemocyanin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 2002; 99: 10545-8
    Lamy J, Sizaret PY, Frank J, Verschoor A, Feldmann R, Bonaventura J. Architecture of Limulus polyphemus hemocyanin. J Biol Chem 1982; 21: 6825-33
    Lanz-Mendoza H, Bettencourt R, Fabbri M, Faye I. Regulation of the Insect Immune Response: The effect of hemolin on cellular immune mechanisms. Cell Immunol 1996; 169: 47-54
    Latchfood JW, Prayitno SB, Alabi A. The use of vaccines in the culture of penaeid prawns. J Shellfish Res 1996; 15: 456
    Lee KY, Horodyski FM, Valaitis AP, Denlinger DL. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar. Insect Biochem Molec Biol 2002; 32: 1457-67
    Lee MH, Shiau SY. Dietary vitamin C and its derivatives affect immune responses in grass shrimp, Penaeus monodon. Fish Shellfish Immunol 2002; 12: 119-29
    Lei KY, Li F, Zhang MC, Yang HJ, Luo T, Xu X. Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 2008; 32: 808-13
    Lewis DH, Lawrence AL. Immunoprophylaxis to Vibrio sp. in pond reared shrimp. In: Rogers GL, Day R, Lim A, eds. Proceegings of the first international conference on warm water aquaculture-crustacea. Hawaii: Brigham Young University Hawaii Campus 1983; 304-7
    Li C, Zhao J, Song L, Mu C, Zhang H, Gai Y, Qiu L, Yu Y, Ni D, Xing K. Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol 2007; 32: 784-94
    Li DF, Zhang MC, Yang HJ, Zhu YB, Xu X.β-integrin mediates WSSV infection. Virology 2007; 368: 122-32
    Lin J, Huang S, Zhang Q. Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 2002; 4: 325-31
    Lin YC, Vaseeharan B, Chen JC. Identification of the extracellular copper–zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections. Mol Immunol 2008; 45: 1346-55
    Li YY, Xia XA, Wu QY, Liu WH, Lin YS. Infection with Hematodinium sp. in mud crabs Scylla serrata cultured in low salinity water in southern China. Dis Aquat Org 2008; 82: 145-50
    Liu HP, Chen FY, Gopalakrishnan S, Qiao K, Bo J, Wang KJ. Antioxidant enzymes from the crab Scylla paramamosain: Gene cloning and gene/protein expression profiles against LPS challenge. Fish Shellfish Immunol 2009; 28: 826-71
    Lommerse JPM, Thomas-Oates JE, Gielens C, Preaux G, Kamerling J, Vliegenthart JFG. Primary Structure of 21 Novel Monoantennary and Diantennary N-Linked Carbohydrate Chains from D-Hemocyanin of Helix Pomatia. Eur J Biochem 1997; 249: 195-222
    Lópeza N, Cuzonb G, Gaxiolac G, Taboadac G, Valenzuelac M, Pascualc C, S(?)nchezc A, Rosasc C. Physiological, nutritional, and immunological role of dietary h 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture 2003; 224: 223-43
    Malovrh P, Sep(?)i(?) K, Turk T, Ma(?)ek C. Characterization of hemolytic activity of 3-alkylpyridinium polymers from the marine sponge Reniera sarai. Comp Biochem Physiol 1999; 124 C: 221-6
    Maria TS, Olianasa A, Castagnolab M, Sollaia L, Manconi B, Salvadori S, Giardina B, Pellegrini M. Oxygen-binding modulation of hemocyanin from the slipper lobster Scyllarides latus. Comp Biochem Physiol 2004; 139 B: 261-8
    Markl J, Lieb B, Gebauer W, Altenhein B, Meissner U, Harris R. Marine tumor vaccine carriers: structure of the molluscan hemocyanins KLH and HtH. J Cancer Res Clin Oncol 2001; 127: R3-R9
    Markl J, Schmid R, Czichos-Tiedt S, Linzen B. Haemocyanins in spiders, III. Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe-Seylers Z Physiol Chem 1976; 357: 1713-25
    Marques MRF, Barracco MA. Lectins, as non-self recognition factors, in crustaceans. Aquaculture 2000; 191: 23-44
    Martin GG, Graves BL. Fine structure and classification of shrimp hemocytes. J Morphol 1985; 185: 339-48
    Martin GG, Hose JE, Choi M, Provost R, Omori G, McKrell N, Lam G. Organization of hematopoietic tissue in the intermoult lobster Homarus americanus. J Morphol 1993; 261: 65-78
    Martin GG, Kay J, Poole C. In vitro nodule formation in the ridgeback, Sicyonia ingentis, and the American lobster, Homarus amerianus. Invertebr Biol 1998; 117: 155-6
    Mashewari R, Mullainadhan P, Arumugam M. Characterisation of a natural haemagglutinin with affinity for acetylated amino sugars in the serum of the marine prawn, Penaeus indicus (H Milne Edwards). Fish Shellfish Immunol 1997; 7: 17-28
    Medzhitov R, Janeway CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295-8
    Medzhitov R, Janeway CA. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997; 9: 4-9
    Medzhitov R, Janeway Jr CA. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296: 298-300
    Medzhitov R, Janeway Jr CA. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997; 9: 4-9
    Memoli A, Annesini MC, Petralito S. Surfactant-induced leakage from liposomes: a comparison among different lecithin vesicles. Int J Pharm 1999; 184: 227-35
    Meng FL, Zhang YZ, Kong J, Ma GR. The research review of prophenoloxidase activating system in crustacean. Oceanol Et Limnol Sin 1999; 30: 160-5
    MéréJ, Morlon-Guyot J, Bonhoure A, Chiche L, Beaumelle. Acid-triggered membrane insertionof Pseudomonas Exotoxin A involves an original mechanism based on pH-regulated tryptophan exposure. J Biol Chem 2005; 280: 21194-201
    Moltedo B, Faunes F, Haussmann D, De Ioannes P, De Ioannes AE, Puente J, Becker MI. Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. J Urol 2006; 176: 2690-5
    Mukherjee AK. Correlation between the phospholipids domains of the target cell membrane and the extent of Naja kaouthia PLA (2)-induced membrane damage: evidence of distinct catalytic and cytotoxic sites in PLA (2) molecules. Biochim BioPhys Acta 2007; 1770: 187-95
    Muthukkaruppan VR, Nandakumar K S, Palanivel V. Monoclonal antibodies against Salmonella porins: generation and characterization. Immunol Lett 1992; 33: 201-6
    Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 2000; 275: 29264-7
    Nagai T, Osaki T, Kawabata S. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 2001; 276: 27166-70
    Natori S, Kubo T. Role of lectins in development and morphogenesis in insects. In: S(?)derh(?)ll, K, Iwanaga S, Vasta GR Eds, New Directions in Invertebrate Immunology. SOS Publications, Fair Haven, 1996: 175-87
    Noronha FSM, Ramalho PFJ, Horta MF. Cytolytic activity in the genus Leishmania: involvement of a putative pore-forming protein. Infect Immun 1996; 64: 3975-82
    Pan D, He NH, Yang ZY, Liu HP, Xu X. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev Comp Immunol 2005; 29:103-12
    Pan JY, Zhang YL, Wang SY, Peng XX. Dodecamer is Required for Agglutination of Litopenaeus vannamei Hemocyanin with Bacterial Cells and Red Blood Cells. Mar Biotechnol 2008; 10: 645-52 Paul RJ, Pirow R. The physiological significance of respiratory proteins in invertebrates. Zoology 1998; 100: 298-306.
    Perazzolo LM, Lorenzini, DM, Daffte S, Barracco MA. Purification and partial characterization of the plasma clotting protein from the pink shrimp Farfantepenaeus paulensis. Comp Biochem Physiol 2005; 142 B: 302-7
    Perazzolo LM, Barracco MA.The Prohenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev Comp Immunol 1997; 21: 385-95
    Pless D, Aguilar M, Falcón A, Lozano-Alvarez E, de la Cotera EPH. Latent phenoloxidase activity and N-terminal amino acid sequence of hemocyanin from Bathynomus giganteus, a primitive crustacean. Arch Biochem Biophys 2003; 409: 402-10
    Promdonkoy B, Ellar DJ. Investigation of the pore-forming mechanism of a cytolyticδ-endotoxin from Bacillus thuringiensis. Biochem J 2003; 374: 255-9
    Rattanaehai A, Hirono I, Ohira T, Takahashi Y, Aoki T. Molecular cloning and expression analysis ofα2-macroglobulin in the kurumas shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 2004; 16: 599-611.
    Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 2000; 191: 271-88
    Robalino J, Bartlett TC, Chapman RW, Gross PS, Browdy CL, Warr GW. Double-stranded RNA and antiviral immunity in marine shrimp: Inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev Comp Immunol 2007; 31: 539-47
    Roch R. Defense mechanisms and disease prevention in famed marine invertebrates. Aquaculture 1999; 172: 125-14
    Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol 2002; 13: 69-83
    Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immunol 2002; 13: 69-83
    Savan R, Endo M, Sakai M. Characterization of a new C-type lectin from common carp Cyprinus carpio. Mol Immunol 2004; 41: 891-9
    Schmidt O, S(?)derh(?)ll K, Theopold U, Faye I. Role of Adhesion in Arthropod Immune Recognition. Annu Rev of Entomol 2010; 55: 485-504
    Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity.Cell 2000; 101: 671-84
    Sehnapp D, Kemp GD, Smith VJ. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 1996; 240: 532-9
    Sellos D, Lemoine S, Wormhoudt AV. Molecular cloning of hemocyanin cDNA from Penaeus vannamei (Crustacea, Decapoda): structure, evolution and physiological aspects. FEBS Lett 1997; 407: 153-8
    Siddiqui N I, Préaux G, Gielens C. Intrinsic and induced o-diphenoloxidase activity ofβ-hemocyanin of Helix pomatia. Micron 2004; 35: 91–2
    Smith VJ, Johnston PA. Differential haemotoxic effect of PCB congeners in the common shrimp, Crangon crangon. Comp Biochem Physiol 1992; 101 C: 641-9
    Snieszko SF. Diseases of fishes and their control in the US. In: The Two Lakes Fifth Fishery Management Training Course Report. Jansen, London, 1973; 55-66.
    S(?)derh(?)ll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 1998; 10: 23-8
    S(?)derh(?)ll K, Hall L. Lipopolysaccharide induced activation of the prophenoloxidase activating system in crayfish haemocyte. Biochem Biophys Acta 1984; 797: 99-104
    S(?)derh(?)ll K, Smith V J. The Prophenoloxidase Activating Cascade as a Recognition and Defence System in Arthropods, In: Humoral and Cellular Immunity in Arthropods. New York: John Wiley & Sons 1986; 251-85
    S(?)derh(?)ll K, Wingren A, Johansson MW, Bertheussen K. The cytotoxic reaction of hemocytes from the freshwater crayfish, Astacus astacus. Cell Immunol 1985; 94: 326-32
    Song YL, Liu JJ, Chan LC, Sung HH. Glucan-induced disease resistance in tiger shrimp (Penaeus monodon). Dev Bio Stand 1997; 90: 413-21
    Soulas C, Baussant T, Aubry JF, Delneste Y, Barillat N, Caron G, Renno T, Bonnefoy JF, Jeannin P. Cutting edge: Outer membrane protein A (OmpA) binds to and activates human macrophages. J Immunol 2000; 165: 2335-40
    Sritunyalucksana K, Sithisarn P, Withayachumnarnkul B, Flegel TW. Activation of prophenoloxidase, agglutinin and antibacterial activity in haemolymph of the black tiger prawn, Penaeus monodon, by immunostimulants. Fish Shellfish Immunol 1999; 9: 21-30
    Sritunyalucksana K, S(?)derh(?)ll K. The proPO and clotting system in crustaceans. Aquaculture 2000; 191: 53-69
    Stewart JE, Zwicher BM. Comparison of various vaccines for inducing resistance in the lobster, Homarus americanus, to the bacterial infection, gaffkemia. J Fish Res Board Can 1974; 31: 1887-92
    Stoeva S, Rachev R, Severov S, Voelter W, Genov N. Carbohydrate content and monosaccharide composition of Rapana thomasiana grosse (Gastropoda) hemocyanin and its structural subunits. Comparison with gastropodan hemocyanins. Comp Biochem Physiol 1995; 110 B: 761-5
    Stoorvoge J, van Bussel MJAWM, van de Klundert JAM. Cloning of aβ-lactam resistance determinant of Enterobacter cloacae affecting outer membrane proteins of Enterobacteriaceae. FEMS Microbiol Lett 1987; 48: 277-81
    Sun J, Wang L, Wang BJ, Guo ZY, Liu M, Jiang KY, Luo ZY. Purification and characterization of a natural lection from the serum of the shrimp Litopenaeus vannamei. Fish Shellfish Immunol 2007; 23: 292-9
    Sung HH, Song YL, Kou GH. Potential uses of bacterin to prevent shrimp vibriosis. Fish Shell Immunol 1991; 1: 311-2
    Terwilliger NB. Function adaptations of oxygen transport proteins. J Exp Biol 1998; .201:1085-98 Theopold U, Dorian C, Schmidt O. Changes in glycosylation during Drosophila development. The influence of ecdysone on hemomucin isoforms. Insect Biochem Molec Biol 2001; 31: 189-97.
    Theopold U, Samakovlis C, Erdjument-Bromage H, Dillon N, Axelsson B, Schmidt O, Tempst P, Hultmark D. Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Bio Chem 1996; 271: 12708-15
    Theopold U, Schmidt O, S(?)derh(?)ll K, Dushay MS. Coagulation in arthropods: defence, wound closure and healing. Trends Immunol 2004; 25: 289-94
    Tilley JS, Saibil RH. The mechanism of pore formation by bacterial toxins. Curr Opin Struc Biol 2006; 16: 230-6
    Toshkova R, Ivanova E, Nastke M, Stevanovic S, Velkova L, Voelter W, Dolashka-Angelova P. Hemocyanins as immunostimulators. Global J Mol Sci 2006; 1: 22-32
    Toshkova R, Velkova L, Voelther W, Dolashka-Angelova P. Protective effect of Rapana Venosa hemocyanin (RvH) on survivability of hamsters with transplanted myeloid graffi tumours. C RAcad Bulg Sci 2006; 59: 977-82
    Tweten RK. Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins. Infect Immunity 2005; 73: 6199-209
    Udden MM, Patton CS. Butoxyacetic acid-induced hemolysis of rat red blood cells: effect of external osmolarity and cations. Toxicol Lett 2005; 156: 81-93
    Uechi GI, Toma H, Arakawa T, Sato Y. Biochemical and physiological analyses of a hemolytic toxin isolated from a sea anemone Actineria villosa. Toxicon 2005; 45: 761-6
    van de Braak CBT, Botterblom MHA, Huisman EA, Rombout JHWM, van der Knaap WPW. Preliminary study on haemocyte response to white spot syndrome virus infection in black tiger shrimp Penaeus monodon. Dis Aquat Org 2002; 51: 149-55
    van de Braak CBT, Botterblom MHA, Taverne N, Rombout JHWM, van der Knaap WPW. The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaecus monodon shrimp. Fish Shellfish Immunol 2002;13: 293-309
    Vargas-Albores F, Yepiz-Plascencia G, Jiménez-Vega F,ávila-Villa A. Structural and functional differences of Litopenaeus vannamei crustins. Comp Biochem Physiol 2004; 138 B: 415-22
    Vargas-Albores F, Yepiz-Plascencia G. Beta glucan binding protein and its role in shrimp immune response. Aquaculture 2000; 191: 13-21
    Vaseeharan B, Lin YC, Ko CF, Chiou TT, Chen JC. Molecular cloning and characterisation of a thioester-containingα2-macroglobulin (α2-M) from the haemocytes of mud crab Scylla serrata. Fish Shellfish Immunol 2007; 22: 115-30
    Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 2000; 64: 655-71
    Vogt J, Schulz GE. The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 1999; 7: 1301-9
    Wang KJ, Huang WS, Yang M, Chen HY, Bo J, Li SJ, Wang, GZ. A male-specific expression gene, encodes a novel anionic antimicrobial peptide, scygonadin, in Scylla serrata. Mol Immunol 2007; 44: 1961-8
    Wang YC, Chang PS. Yellow head virus infection in the giant tiger prawn Penaeus monodon cultured in Taiwan. Fish Pathol 2000; 35: 1-10
    Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI,Schmucker D. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 2005; 309: 1874-8
    Whiteley NM, Taylor W, Elhaj AJ. Seasonal and latitudinal adaptation to temperature in crustaceans. J Therm Biol 1997; 22: 419-27
    Wirguin I, Suturkova Milosevic L, Briani C, Latov N. Keyhole limpet hemocyanin contains Gal(β1-3)-GalNAc determinants that are cross-reactive with the T antigen. Cancer Immunol 1995; 40: 307-10
    Wojtowicz WM, Flanagan JJ, Millard SS. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 2004; 118: 619-33
    Yan F, Zhang YL, Jiang RP, Zhong MQ, Hu Z, Du H, Lun JS, Chen JH, Li YY. Identification and Agglutination Properties of Hemocyanin from the Mud Crab (Scylla serrata). Fish Shellfish Immunol 2011; 30: 354-60
    Yedery RD, Reddy RKV. Identification, cloning, characterization and recombinant expression of an anti-lipopolysaccharide factor from the hemocytes of Indian mud crab, Scylla serrata. Fish Shellfish Immunol 2009; 27: 275-84
    Yoo BS, Kim SB, Lee JH, Yang KH. The subunit composition of Portunus trituberculatus hemocyanin polymers. Biochem Biophys Res Commun 1988; 153: 748-52
    Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from haemolymph of the silkworm, Bombyx mori. J Biol Chem 1996; 271: 13854-60
    Yu XQ, Kanost MR. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid: an immunoglobulin superfamily member from insects as a pattern-recognition receptor. Eur J Biochem 2002; 269: 1827-34
    Yuldasheva LN, Carvalho EB, Catanho M-TJA, Krasilnikov OV. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves. Braz J Med Biol Res 2005; 38: 1061-70.
    Zenteno R, Vazquez L, Sierra C, Pereyra A, Slomianny MC, Bouquelet S, Zenteno E. Chemical characterization of the lectin from the freshwater prawn Macrobrachium rosenbergii (De Man) by MALDI-TOF. Comp Biochem Physiol 2000; 127 B: 243-50
    Zhang XB, Huang CH, Qin QW. Antiviral properties of hemocyanin isolated from Penaeus monodon. Antivir Res 2004; 61: 93-9
    Zhang Y L, Wang S Y, Xu A L, Chen J, Lin BK, Peng XX. Affinity proteomic approach for identification of an IgA-like protein in Litopenaeus vannamei and study on its agglutination characterization. J Proteome Res 2006; 5: 815-21
    Zhang YL, Yan F, Hu Z, Zhao XL, Min SY, Du ZH, Zhao S, Ye XQ, Li YY. Hemocyanin from shrimp Litopenaeus vannamei shows hemolytic activity. Fish Shellfish Immunol 2009; 27: 330-5 Zhao L, Kanost MR. In search of a function for hemolin, a hemolymph protein from the immunoglobulin superfamily. J Insect Physiol 1996; 42: 73-79
    Zhu Y, Ng PML, Wang LH, Ho B, Ding JL. Diversity in lectins enables immune recognition and differentiation of wide spectrum of pathogens. Int Immunol 2006; 18: 1671-80
    Zlateva T, Di Muro P, Salvato B, Beltramini M. The o-diphenol oxidase activity of arthropod hemocyanin. FEBS Lett 1996; 384: 251-4
    白洁,李永祺,李岿然.久效磷对中国对虾血淋巴酚氧化酶活力影响的初步研究.海洋科学1998; 3: 35-7
    陈吉刚,杨季芳,王海丽,丁朋晓.养殖锯缘青蟹呼肠孤样病毒粒子的电镜观察.海洋学研究2008; 26: 93-6
    陈竞春,石安静.贝类免疫生物学研究概况.水生生物学报1996; 20: 74-8
    陈水土,苏国成.对虾弧菌制剂试制实验及其在长毛对虾养殖中的应用.海洋通报1997; 2: 25-31
    陈延坎.虾池混养锯缘青蟹技术.中国水产2003; (1): 60-1
    崔禾.纵观全球养殖对虾产业现状,分析我国对虾产业发展趋势.中国水产2006; (4): 14-7
    崔青曼,张耀江,袁春营.中草药、多糖复合添加剂提高河蟹机体免疫力的研究.水利渔业2001; 21: 40-1
    戴聪杰.甲壳动物血清中凝集素对微生物细胞的凝集活性.海洋科学2003; 27: 63-7
    邓欢,陈俅,刘卫东,安育新.中国对虾血细胞包掩作用的超微结构和组织化学观察.应用与环境生物学报1999; 5: 296-9
    丁理法,竺俊全,叶荣华,陈海伟,陈招友,陈飞.滩涂低坝高网养殖锯缘青蟹技术.中国水产2002; (9): 57-8
    丁熵,王雷,李光友.中国对虾复合疫苗的初步研究.海洋与湖沼1999; 30: 355-61
    丁熵,郑莲.对虾病毒性疾病研究最新进展.台湾海峡2001; 20: 396-404
    杜爱芳,叶均安,于涟.复方大蒜油添加剂对中国对虾免疫机能的增强作用.浙江农业大学学报1997; 23: 317-20
    杜欣军.中国明对虾先天免疫的模式识别与效应分子.山东大学博士学位论文, 2007
    冯蓓莉,陆森泉.乳铁蛋白的抗病毒作用.国外医学:微生物学册2002; 25(l): 5-6, 10
    高键.甲壳类的体液免疫因子及其环境作用.水产养殖1992; 6: 21-3
    高健,金义翠.水母毒素的分离提取及溶血活性研究.时珍国医国药2008; 19: 569-70
    管华诗.海水养殖动物的免疫、细胞培养和病害研究.山东科学技术出版社, 1999; l-21
    胡超群,陶保华.对虾弧菌病及其免疫预防的研究进展.热带海洋2000; 19: 84-94.
    黄美珍,李志棠.微生态制剂在虾病防治应用的研究进展.中山大学学报(自然科学版) 2000; 39 (增刊): 75-9
    黄琪琰.水产动物疾病学.上海:上海科学技术出版社, 1993: 139-41
    贾晓鸣,肖良,聂菲,樊军文,李玥,张黎明.发型霞水母毒素溶血活性研究.中国海洋药物杂志2008; 27: 5-8
    江晓路,刘树青,牟海津,王慧谧,管华诗.真菌多糖对中国对虾血清及淋巴细胞免疫活性的影响.动物学研究1999; 20 : 41-45.
    江晓路,刘树青,张朝晖,管华诗.多糖对中国对虾免疫功能的影响.中国水产科学1999; 6: 66-8
    邝雪梅,杨文,何钢,曾锡钦,黄银姬.锯缘青蟹的围塘养殖试验.湛江海洋大学学报2002; 22: 6-9
    李冬野,崔玉东,胡晓亮,朱战波,侯喜林,朴范泽.金黄色葡萄球菌β溶血素研究进展.黑龙江八一农垦大学学报2009; 21: 55-8
    李光友,王青.中国对虾及其血细胞研究.海洋与湖沼1995; 26: 591-7
    梁华芳.我国9种养殖对虾形态特征之比较.湛江海洋大学学报2001; 21: 15-8
    廖绍安,李筠,张晓华,纪伟尚,徐怀恕.日本对虾血清凝集素及其免疫作用的初步研究.中国水产科学2002; 9: 224-7
    刘栋辉,阳会军,刘永坚.β-葡聚糖和维生素C对斑节对虾生长和抗病力的效果.中山大学学报(自然科学版)2002; 41: 59-62
    刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼1998; 29: 113-8
    刘树青,江晓路,牟海津,管华诗.免疫多糖对日本对虾血清酶活性的影响.中国水产科学1999; 6: 107-9
    刘树青,江晓路,牟海津,王慧谧,管华诗.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼1999; 30: 278-83
    刘岩,江晓路,吕青,管华诗.聚甘露糖醛酸对中国对虾免疫相关酶活性和溶菌溶血活性的影响.水产学报2000; 24: 549-53
    刘逸尘.中国明对虾凝结过程中免疫相关基因的克隆与表达研究.中国科学院研究生院博士学位论文, 2005
    刘永贵,李义,王玥,陈文典,孙汉.嗜水气单胞菌微胶囊疫苗对中华绒螯蟹免疫机能的影响.饲料工业2009; 30: 24-7
    陆庆泉,刘吉山.禽致病性大肠杆菌外膜蛋白研究现状与进展.中国兽药杂志2002; 36: 40-3
    吕宝忠,杨群.血蓝蛋白分子的结构、分类及其在进化上的演变.自然杂志2002; 25: 179-83
    罗日详.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼1997; 28: 573-7
    毛芝娟,卓华龙.锯缘青蟹细菌性传染病的病原菌研究.水产科学2001; 20: 8-11
    牟海津,江晓路,刘树青,管华诗.日本对虾溶血素的活性测定及性能研究.海洋与湖沼1999; 30: 362-7
    沈定霞,崔岩,赵丽萍,吴坚.对环丙沙星耐药的肺炎克雷伯氏菌外膜蛋白图谱分析.中国抗生素杂志1998; 23: 380-2
    沈锦玉,刘问,曹铮,尹文林,沈智华,钱冬,吴颖蕾.免疫增强剂对中华绒螯蟹免疫功能的影响.浙江农业学报2004; 16: 25-9
    施伟庆,陈芹,孙怀昌.可控细胞膜孔形成蛋白基因的克隆与表达.中国兽医科技2004; 34: 18-22
    宋振荣,倪子棉,霍振华,李文生,彭清明,彭宏椿.锯缘青蟹肌肉组织坏死的病理研究.集美大学学报2003; 8: 301-4
    陶保华,胡超群,任春华.海水鱼类病原弧菌对对虾的致病力及其疫苗的免疫预防.热带海洋学报2001; 20: 68-73
    陶保华,胡超群,任春华.弧菌疫苗对斑节对虾和日本对虾免疫预防的作用.水产学报2000; 24: 564-9
    汪敏,戴继勋.对虾病毒的研究进展.海洋湖沼通报2000; 2: 71-7
    王雷,李光友,毛远兴.中国对虾血淋巴中抗菌、溶菌活力与酚氧化物酶活力的测定及其特性研究.海洋与湖沼1995; 26: 34-41
    王雷,李光友.甲壳动物的体液免疫研究进展.海洋科学1992; 3: 18-9
    王伟庆,李爱杰,兰翠霞,郭健.用免疫消浊比浊法测定中国对虾血清中的免疫因子.水产学报1998; 22: 170-4
    王秀华,黄健,宋晓玲.免疫增强剂-肽聚糖在对虾养殖中的应用.海洋水产研究2003; 24: 69-74
    魏克强,许梓荣.对虾的免疫机制及其疾病预防策略的研究.中国兽药杂志2004; 38: 25-9
    吴剑波,周运和,王存国.酚氧化酶与虾蟹免疫机制.中国水产2003; 11: 83-4
    徐海圣,舒妙安,邵庆均,王美珍.锯缘青蟹常见病害及其防治技术.水产科学2000; 19: 24-6
    徐海圣.中华绒螯蟹常见病原的分离鉴定、致病及免疫机制研究.浙江大学博士学位论文, 2004
    许兵,纪伟尚,徐怀恕,石杰.麦胚凝集素促进对虾免疫功能的初步研究.青岛海洋大学学报1992; 22: 29-33
    许文军,绳秀珍,徐汉祥,施慧,李鹏飞.血卵涡鞭虫在养殖锯缘青蟹中的寄生.中国海洋大学学报2007; 37: 916-20
    薛清刚,张学雷,王雷,张志峰.虾、贝类免疫反应基础及作用.相建海主编:海水养殖生物病害发生与控制.海洋出版社, 2001: 74-84
    严芳,章跃陵,罗活强,胡忠,黄通旺,叶向群.凡纳滨对虾血蓝蛋白酚氧化酶活性的研究.水产科学2008; 27: 5-8
    严芳.凡纳滨对虾血蓝蛋白免疫学活性及其作用机制的研究.汕头大学硕士学位论文, 2008
    叶淑芳.中国对虾体液免疫实验方法的探讨.海洋科学1991; 6: 66-7
    叶孝经.对虾弧菌菌苗免疫的研究.海洋水产研究丛刊1990; 32: 13-8
    于建平.日本对虾血细胞分类、密度及组成.海洋大学学报1993; 23:107-13
    鱼艳荣,刘希成,张彦明,王晶钰.革兰氏阴性菌外膜蛋白研究进展.动物医学进展2000; 21: 35-9
    俞开康,战文斌,周丽.海水养殖病害诊断与防治手册.上海:上海科学技术出版社, 2000
    张庆利.中国明对虾免疫系统中抗氧化相关基因的克隆与表达分析.中国科学院研究生院博士学位论文, 2007
    章跃陵,林伯坤,陈俊,胡忠,黄通旺,严芳.凡纳滨对虾血蓝蛋白的细菌凝集活性.中国水产科学2006; 13: 1006-10
    章跃陵,罗芸,彭萱宪.血蓝蛋白功能研究新进展.海洋科学2007; 31: 77-80
    章跃陵,彭宣宪,王三英.日本对虾血清三类免疫球蛋白样物质的研究.海洋科学2001; 25: 37-41.
    章跃陵,邢立刚,严芳,黄锡望,杜志恒,乔杰,林仲,李远友. 5种凡纳滨对虾血蓝蛋白的糖
    基化修饰及功能对比分析.中国生物化学与分子生物学报2009; 25; 655-61
    章跃陵.南美白对虾类Ig的定性、功能和免疫分子进化的研究.厦门大学博士毕业论文, 2003
    章跃陵.南美白对虾类Ig的定性功能和免疫分子进化的研究.厦门大学博士学位论文, 2003
    赵杰,谷子林,崔青曼,李雯.生化黄腐酸对中国对虾生长发育及部分免疫机能的影响.饲料研究2001; 12: 23-4
    赵香汝.细菌外膜蛋白的结构与功能.中国兽医科技1999; 29: 20-3
    赵媛媛,王蔚,刘云章,汝少国.理化因子对集胞藻PCC6803溶血素溶血活性的影响.环境科学研究2007; 20: 139-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700