山羊IL-18定量抗原捕获ELISA检测方法的建立及其免疫增强作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IL-18是一种属于IL-1家族且分布广泛的细胞因子,具有多种生物学功能,其中对机体的免疫增强调节和抗肿瘤作用已受到研究者们的极大关注。人类医学研究证明IL-18在抗微生物感染,尤其是在抗肿瘤免疫方面具有重要的潜在应用价值。且单克隆抗体比多克隆抗体具有较好的优越性,广泛应用到各种疾病的检测、诊断及防治中,并为各种病原微生物的流行病学的分析提供了强有力的工具,极大地提高了临床疾病诊断和治疗的效率。
     本课题对山羊IL-18(gIL-18)的单克隆抗体进行了研究。将山羊IL-18的成熟蛋白基因经扩增后克隆入原核表达载体pET-28a(+)中,经鉴定和测序后,构建了重组质粒pET-28a-gIL-18。将该质粒转化入表达菌Rosetta(DE3)的感受态细胞中,经诱导表达后获得重组蛋白的表达,并利用载体上所带有的His标签蛋白这一特点,采用Ni-NTA亲和层析法纯化重组蛋白gIL-18,从而获得了纯度较高的蛋白,为下一步进行小鼠免疫及单抗的筛选鉴定做好准备。
     利用纯化的重组gIL-18蛋白对BALB/c小鼠进行免疫,并建立了检测小鼠抗体水平和单抗鉴定的间接ELISA检测方法,融合前抗体效价达到1:107,满足融合时对小鼠抗体的要求。SP2/0骨髓瘤细胞与加强免疫后的小鼠脾细胞在PEG作用下进行融合,经间接ELISA方法检测融合细胞,对于阳性杂交瘤细胞,通过有限稀释法进行多次克隆化,以筛选出能稳定分泌抗体的杂交瘤细胞,并最终确定下两株单抗2E8和4C4作为试验研究对象,并进行了单抗腹水的大量制备,利用饱和硫酸铵法对腹水进行粗提,再进一步利用Protein G亲和层析柱进行纯化,通过SDS-PAGE电泳分析,得到了纯度较高的IgG。
     通过对此两种单抗的亚型鉴定表明,此两种单抗均属于IgG1亚型。两种单抗2E8和4C4的效价分别为1:105和1:104。经ELISA叠加试验分析表明2E8和4C4可分别结合到IL-18的不同的抗原位点上,两者具有叠加性。经Western blot鉴定表明,单抗2E8和4C4能够与重组gIL-18蛋白发生特异性的反应,且anti-His单抗也可以与重组gIL-18蛋白发生特异反应,而与hIFN-γ蛋白不发生特异反应,与多抗相比,单抗特异性较强,蛋白印迹条带清晰。经IFA鉴定表明,对于gIL-18的重组真核质粒pcDNA3.1-gIL-18转染293FT细胞表达情况的检测,可以利用单抗的特异性,试验证实单抗可以特异性的检测真核质粒在细胞上的表达,产生特异明显的荧光,且对重组Bacmid-gIL-18转染sf9昆虫细胞的表达进行IFA检测也获得相似的结果。
     通过对山羊IL-18单抗的研究旨在建立山羊IL-18定量抗原捕获ELISA检测方法,利用对其中一种单抗2E8进行辣根过氧化物酶(HRP)的标记并对其特性及效价(1:6000)进行测定,另一种单抗4C4作为捕获抗体,通过对所需包被抗体(单抗4C4)最佳工作浓度、HRP-2E8-IgG二抗最佳稀释比例和ELISA最佳反应条件等进行研究,经方阵滴定试验最终确立了检测山羊IL-18的定量抗原捕获ELISA的检测方法,并依次建立了检测山羊IL-18的标准曲线,检测灵敏度为16pg/mL,且对其他细胞因子如hIFN-γ和hIL-18应用此检测方法进行反应,结果表明无交叉反应,检测值均低于16pg/mL的最小检出限,此检测方法对于山羊IL-18的检测具有一定的特异性。应用此方法检测体外山羊PBMC在LPS刺激下产生的IL-18的水平,及其健康奶牛和奶牛乳腺炎患牛(山羊IL-18和牛IL-18氨基酸同源性为98%)的血清及乳清进行检测,结果表明,山羊PBMC在LPS刺激下IL-18检测含量为85~267 pg/mL,与细胞阴性对照相比,gIL-18含量有显著提高;健康奶牛血清中IL-18含量为44~135 pg/mL,相比之下,病患牛血清中IL-18含量有明显升高,在111~534 pg/mL之间;健康奶牛乳清中IL-18含量为83~167 pg/mL,病患牛乳清中IL-18含量有明显升高,在171~658 pg/mL之间。此检测方法可以对机体体内和体外在炎症反应时IL-18的水平进行定量的检测,从而为各种临床疾病的诊断和治疗奠定基础。
     同时,针对IL-18具有免疫治疗及免疫增强作用这一功能,将山羊具有生物学活性IL-18蛋白(由本实验室构建、表达并保存的重组杆状病毒表达的rBgIL-18蛋白)作为免疫调节剂,联合口蹄疫O型、亚洲1型二价灭活疫苗对实验动物山羊分别进行rBgIL-18蛋白与疫苗共免疫组(Ⅰ组)、rBgIL-18蛋白预免疫+疫苗组(Ⅱ组)、单用疫苗组(Ⅲ组)和生理盐水阴性对照组(Ⅳ组)等分组试验,以期对IL-18的免疫增强作用更好地进行诠释和应用,从体液免疫和细胞免疫水平上分析试验结果。通过使用口蹄疫O型和亚洲1型检测试剂盒检测各试验期血清中的抗体滴度,从统计学意义上分析处理数据,结果表明,与免疫前相比,Ⅰ、Ⅱ、Ⅲ组都有较好的免疫效果,抗体水平都较高且维持时间也较长,Ⅰ组可以较快(42d)达到高抗体水平;与阴性对照组相比,Ⅰ组效果最好,抗体效价最高,维持时间也最长,Ⅱ组次之。而且,利用MTT法从细胞免疫水平上分析淋巴细胞的增殖能力,结果表明,免疫前后相比,PI指数明显有所升高,淋巴细胞在免疫后免疫物的刺激下进行增殖分化。同时,通过对全血细胞的分析也可知,与免疫前相比,免疫后各试验组山羊的淋巴细胞数明显增殖,且所占比例也得到提高。因此,IL-18作为免疫增强佐剂有利于提高机体免疫力,提高疫苗的免疫效力,较好地提高机体抵抗力,为以后在生产实践中的应用打下良好的基础。
Interleukin-18 is a member of the IL-1 cytokine superfamily and distributed widely and possesses variety of bioactive functions. The immunity regulation and tumor-resistant system to the organisms were payed close attention by the researchers. The human medical researches show that IL-18 plays an important role in the resistance to a variety of diseases, especially in tumor-resistant immunity. The Mabs have more superiority than the polyclonal antibodies and were applied to the detection, diagnosis and treatment of variety of diseases. The Mabs can provide powerful tools for the analysis of variety of micrograms’epidemiology and greatly enhance the diagnosis and treatment of clinical diseases.
     In this study, the Mabs were prepared and studied. The gene of goat mature IL-18 proteins was amplified and cloned into prokaryotic expression vector pET-28a(+). By the identification and sequencing, the recombinant plasmid pET-28a-gIL-18 was constructed. The recombinant plasmid pET-28a-gIL-18 was transformed into Rosetta (DE3) competent cells and induced and obtain the expression of the recombinant proteins. Using the feature of the His tags in the vector, the recombinant gIL-18 proteins were purified by Ni-NTA Resin affinity chromatography. The purified proteins were used for the immunity of the mice, screening and identification of the Mabs.
     The mice were immunized using purified gIL-18 proteins. And, the indirect ELISA detection was constructed for detection of mice’antibodies and identification of Mabs. The titers of mice were up to 1:107 before the fusion at the satisfaction of the conditions of the fusion. The splenocytes were fused with SP2/0 myeloma cells under the effect of PEG. The fusion cells were detected by indirect ELISA. The positive hybridoma cells were sub-cloned twice by limited dilution methods to obtain the hybridoma cells secreting antibodies stably. Finally, the two Mabs (2E8 and 4C4) were obtained. The ascites fluids were harvested and purified by ammonium sulfate precipitation followed by Protein G affinity chromatography. The purified IgG was obtained and analyzed by SDS-PAGE.
     The identification of isotype of Mabs showed that the two Mabs were IgG1 isotype. The titers of 2E8 and 4C4 were 1:10~5 and 1:10~4, respectively. ELISA additity test showed that the binding of two Mabs, 2E8 and 4C4, was additive and both bound to the distinct epitopes. Western blot showed that two Mabs, 2E8 and 4C4, could react with recombinant gIL-18 proteins specifically and anti-His Mabs could also react with recombinant gIL-18 proteins specifically and could not react with hIFN-γproteins. Moreover, compared with the polyclonal antibody, the Mabs had high specificial and clear bands. The Mabs could be used to detect the expression of recombinant eukaryotic plasmid pcDNA3.1-gIL-18 transfected into the 293FT cells specifically by IFA. IFA displayed intense green fluorescence. Also, the expression of recombinant Bacmid-gIL-18 transfected into sf9 was detected specifically by IFA.
     The goat IL-18 quantitative sandwich ELISA detection was constructed using two Mabs. The Mab 2E8 was marked with HRP and the titer of HRP-2E8-IgG was identified as 1:6000.The other Mab 4C4 was used as the capture antibody. By the phalanx trial to optimize the concentration of coated antibody (4C4), dilution of HRP-2E8-IgG and condition of ELISA, the goat IL-18 quantitative sandwich ELISA detection was constructed. The standard curve of goat IL-18 was determined by the quantitative sandwich ELISA and the minimum detection was 16pg/mL. This ELISA to detect hIFN-γand hIL-18 showed that there were no cross reaction and the minimum detection were below 16pg/mL. Thus, the quantitative sandwich ELISA detection for goat IL-18 was specific.The quantitative sandwich ELISA was applied to detect the IL-18 levels of the goat PBMC at the stimulation of LPS and the sera and whey of the healthy cows and cows infected with mastitis. The results showed that the detection values of goat PBMC were 85~267 pg/mL. Compared with negative control cells, goat IL-18 levels were improved. For detection of sera, the detection values of healthy cows were 44~135 pg/mL.And, the detection values of cows infected with mastitis were 111~534 pg/mL and were improved compared with the forth. For detection of whey, the detection values of healthy cows were 83~167 pg/mL. And, the detection values of cows infected with mastitis were 171~658 pg/mL and the values of IL-18 were improved. The quantitative sandwich ELISA could detect IL-18 levels quantitatively at the inflammation in vitro and in vivo and set the basis for the diagnosis and treatment of variety of diseases.
     And, to study the immunity enhancement of IL-18, rBgIL-18 proteins were used as adjuvants to co-administrate goats with the vaccine (FMD bivalent inactive vaccine of O type and Asian 1 type). The goats were distributed as four groups:Ⅰgroup: rBgIL-18 + vaccine; Ⅱgroup: pre-rBgIL-18 + vaccine;Ⅲgroup: vaccine;Ⅳgroup: control. The results were analyzed at the level of humoral and cellular immunity to interpret the immunity enhancement of IL-18.The titers at variety of times post-immunization in sera were detected by FMD O type and Asian 1 type ELISA kit. The results showed that compared with pre-immunization,Ⅰ、ⅡandⅢgroup had higher titers of antibodies and maintained high titer levels for longer times andⅠgroup could arrive at higher titer levels faster. Compared with the control, the immunity levels ofⅠgroup were better and had higher titers and maintained high titer levels for longer times. The results ofⅡgroup were next to that ofⅠgroup. Moreover, the cellular immunity was detected by MTT to analyze the proliferation of lymphocytes. The results showed that in contrast with the control, PI values were greatly improved and the lymphocytes could proliferate at the stimulation of vaccine.And, the analysis of the blood cells showed that compared with pre-immunization, the lymphocytes of goats were significantly proliferated and the proportion of the lymphocytes were also improved. Thus, as immunity adjuvant, IL-18 plays an important role in enhancing immunity and immunity effects.
引文
白雪帆,汪毅,潘蕾等.汉滩病毒核衣壳蛋白主要B细胞表位的识别及其基因定位[J].中华传染病杂志, 1999, 17(4): 245~249.
    白雪帆,张英,汪毅等.应用PEPSCAN技术研究单克隆抗体L13F3识别的抗原表位[J].第四军医大学学报, 2000,21(7):850~852.
    毕玉海,曹璐,李志杰等.鹅副粘病毒与鹅细小病毒主要免疫原性基因在Bac-to-Bac杆状病毒表达系统中的共表达及其免疫[J].中国兽医学报, 2008, 28(2): 125~127.
    高明华,张志琰,夏咸柱.狂犬病毒核蛋白基因的克隆及核蛋白主要抗原表位分析[J].细胞与分子免疫学杂志, 2009, 25(2): 169~171.
    贡树基,周浩,陈丽丹,梁冰锋等.登革2型病毒E基因克隆机B细胞抗原表位分析[J].白求恩军医学院学报, 2007,5(6): 333~334.
    何永强,盛祖恬,杜青云等.抗猪口蹄疫病毒单克隆抗体的抗原识别位点分析[J].中国兽医学报, 2003, 23(5): 433~434.
    李丹丹.猪戊型肝炎病毒V1蛋白单克隆抗体的制备及其抗原表位的鉴定[D].东北农业大学.2008.
    李静,张鲁安,陈少平等.绵羊口蹄疫Asia2O型双价疫苗免疫抗体消长情况的观察[J].中国畜牧兽医, 2008, 35(5): 102~103.
    刘文强.牛羊白细胞介素-18基因的克隆和表达[D].山东农业大学博士学位论文,2005.
    刘秀梵主编.单克隆抗体在农业上的应用[M].1994.
    裴仉福,陈瑞爱,唐秀英等.猪白细胞介素218基因表达及重组蛋白的纯化[J].中国兽药杂志,2007,41(2):5~9.
    芮理,沈洪薰,陈玉泉等. PGGT单克隆抗体制备及其鉴别梗阻性黄疸的价值[J].肝胆胰外科杂志, 1999, 11(4): 199~200.
    萨姆布鲁克等. 2002.分子克隆实验指南(第二版).黄培堂,等译.北京:科学出版社.
    宋帅,林彤,邵军军等.三株O型口蹄疫病毒单克隆抗体的抗原识别位点分析[J].中国兽医科学, 2008, 38(09): 747~752.
    谭友文,吴建成.RmIL-18多克隆抗体的制备及辣根过氧化物酶的标记[J].苏州大学学报(医学版),2005,25(5):831~833.
    童铁刚.重组马白细胞介素-18的鉴定及其定量抗原捕获ELISA检测方法的建立[J].中国农业科学院博士学位论文[D].2008.
    王芳,胡波,任雪枫等.兔出血症病毒衣壳蛋白在昆虫细胞中的表达及对家兔的免疫保护效果[J].畜牧兽医学报, 2008,39(10):1382~1387.
    王善辉,余兵兵,王希良等.呼吸道合胞病毒融合蛋白F在重组杆状病毒表达系统中的表达及抗原性研究[J].免疫学杂志, 2009, 25(3): 267~271.
    王晓俭.两种不同制备酶标记结合物方法的比较[J].青岛大学医学院学报, 2003, 39(1)49~51.
    王媛,金国平,马惠敏等.HO21基因真核表达载体pcDNA3.1-hHO-1的构建及表达[J].河南医学研究,2009,18(1): 19~21.
    魏亚红,郝建忠,孙岩等.釉成熟蛋白真核表达载体的构建及其在293T细胞中的表达[J].牙体牙髓牙周病学杂志,2009,19(6):338~342.
    徐晓霞,徐辉.白细胞介素18因多态性与疾病关系研究进展[J].中国伤残医学,2009, 17(6):156~158.
    杨春辉,杜珍武,杨光等.LIF真核表达载体的构建及其在MSCs中的稳定表达[J].中国实验诊断学,2009,13(1):15~18.
    杨秀环,郑瑞峰,刘小东等.进口佐剂羊O型口蹄疫高效苗免疫程序的研究与应用[J].当代畜牧, 2007, 11: 22~24.
    于翔翔,谭有将,姚文荣等.狂犬病毒核蛋白在昆虫细胞中的表达及免疫原性的研究[J]. 西南师范大学学报(自然科学版), 2009, 34(5): 107~110.
    于永志.牛O型、亚洲Ⅰ型口蹄疫不同免疫程序免疫抗体效价对比试验[J].农业科技与信息,2008,17:48~49.
    余斌.抗猪γ-干扰素单克隆抗体的制备及定量抗原捕获ELISA检测方法的初步建立[D].华中农业大学.2007
    余斌,张强,闫丽萍等.抗猪γ-干扰素单克隆抗体的制备和鉴定[J].中国预防兽医学报, 2007,29(2):146~149.
    张金平,王巍,张雷等.pEGFP-C2-GATA4真核表达载体的构建及在P19细胞中的表达[J].第四军医大学学报,2008,29(2):134~137.
    赵建勇,伏小平,独军政等.口蹄疫病毒受体猪源整联蛋白B6亚基配体结合域单克隆抗体识别的抗原表位分析[J].安徽农业科学, 2009, 37(4): 1583~1585.
    周国辉,李万,赵磊等.抗AsiaⅠ型口蹄疫病毒单克隆抗体的制备及抗原捕获ELISA检测口蹄疫病毒的研究[J].中国预防兽医学报,2007,29(12):960~964.
    Abrams V.K., Hwang B., Lesnikova M.,et al. A novel monoclonal antibody specific for canine CD25 (P4A10): Selection and evaluation of canine Tregs[J]. Veterinary Immunology and Immunopathology, 2010.in press.
    Adachi O., Kawai T., Takeda K., et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function[J]. Immunity, 1998,9:143~150.
    Afkarian M., Sedy J. R., Yang J., et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4(+) T cells[J]. Nat. Immunol., 2002,3:549~557.
    Aizawa Y., Akita K., Taniai M.,et al.Cloning and expression of interleukin-18 binding protein[J]. FEBS Letters, 1999, 445:338~342.
    Akira S., Takeda,K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity[J]. Nat. Immunol., 2001,2: 675~680.
    Akita, K., Ohtsuki, T., Nukada, Y., et al. Involvement of caspase-1 and caspase-3 in the production and processingof mature human interleukin 18 in monocytic THP.1 cells[J]. J. Biol.Chem.,1997,272:26595–26603.
    Ali H.Al-haj, Sawada T., Hatakeyama H.,et al. Characterization of a 39 kDa capsular protein of avian Pasteurella multocida using monoclonal antibodies[J].Veterinary Microbiology, 2004,100:43~53.
    Andre-Schmutz I., Hindelang C., Benoist C., et al. Cellular and molecular changes accompanying the progression from insulitis to diabetes. Eur[J]. J. Immunol., 1999,29: 245~255.
    Argyle D.J., McGillivery C., Nicolson L., Onions D.E. Cloning, sequencing, and characterization of dog interleukin-18[J]. Immunogenetics, 1999, 49: 541~543.
    Argyle,D.J.,McGillivery,C.,Nicolson,L.,Onions,D.E.,Cloning,sequencing,and characterization of dog interleukin-18[J].Immunogenetics,1999,49:541-543.
    Atkins G.J, Haynes D.R., Geary S.M,et al. Cloning and expression of human interleukin-18 gene in E.coli expression systems[J].J Immunol, 2000,26(2):653-661.
    Balashov K. E., Rottman J. B., Weiner H. L., et al.CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions[J]. Proc. Natl. Acad. Sci., USA 1999,96:6873~6878.
    Bazan J.F., Timans J.C., Kastelein R.A.. A newly defined interleukin-1 [J]. Nature, 1996, 379:591~593.
    Bendixsen T., Bosward K.L., Emery D.L. Production and characterisation of monoclonal antibodies to ovine interleukin-5[J].Parasitology International, 2003,52:281~290.
    Billaut-Mulot O., Idziorek T., Ban E.,et al. Interleukin-18 modulates immune responses induced by HIV-1 Nef DNA prime/protein boost vaccine[J]. Vaccine, 2000, 19: 95~102.
    Blease K., Kunkel S. L., Hogaboam C. M. IL-18 modulates chronic fungal asthma in a murine model; putative involvement of Toll-like receptor-2[J]. Inflamm. Res., 2001, 50:552~560.
    Bohn E., Sing A., Zumbihl R., et al. IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice [J]. J. Immunol., 1998, 160(1):299~307.
    Born T. L., Thomassen E., Bird T. A., et al. Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling [J]. J.Biol. Chem., 1998, 273: 29445~29450.
    Brummer E. Human defenses against Cryptococcus neoformans: an update [J]. Mycopathologia, 1998, 143:121~125.
    Cai G., Kastelein R., Hunter C. A.Interleukin-18 (IL-18) enhances innate IL-12-mediated resistance to Toxoplasma gondii [J]. Infect. Immun., 2000, 68(12): 6932~6938.
    Camoglio L., Juffermans N. P., Peppelenbosch M., et al. Contrasting roles of IL-12p40 and IL-12p35 in the development of hapten-induced colitis[J]. Eur. J. Immunol. 2002,32:261~269.
    Campbell E., Kunkel S. L., Strieter R. M., et al.Differential roles of IL-18 in allergic airway disease: induction of eotaxin by resident cell populations exacerbates eosinophil accumulation [J].J. Immunol., 2000,164: 1096~1102.
    Cao Z., Xiong J., Takeuchi M., et al. TRAF6 is a signal transducer for interleukin-1 [J]. Nature, 1996, 383: 443~446.
    Chikano S., Sawada K., Shimoyama T., et al. IL-18 and IL-12 induce intestinal inflammation and fatty liver in mice in an IFN-gamma dependent manner [J]. Gut, 2000, 47: 779~786.
    Cho Y. S., Kang J. W., ChoM., et al. Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18[J]. FEBS Lett., 2001,501: 139~145.
    Choi H. J., Dinarello C. A., Shapiro L. Interleukin-18 inhibits human immunodeficiency virus type 1 production in peripheral blood mononuclear cells[J]. J. Infect. Dis., 2001, 184(5):560~568.
    Conti,B.,Jahng,J.W.,Tinti,C.,et al. Induction of interferon-gamma inducing factor in the adrenal cortex[J].J Biol Chem.,1997,272:2035~2037.
    Conti,B.,Park,L.C.,Calingasan,N.Y.,et al.Cultures of astrocytes and microglia express interleukin 18[J].Brain Res Mol Brain Res.,1999,67:46~52.
    Delaleu N., Bickel M. Interleukin-1 beta and interleukin-18: regulation and activity in local inflammation.Periodontol, 2004, 35:42~52.
    De las Heras, A.I., Pérez Prieto, S.I., Rodriguez Saint-Jean, S.. In vitro and in vivo immune responses induced by a DNA vaccine encoding the VP2 gene of the infectious pancreatic necrosis virus [J]. Fish Shellfish Immunol, 2009, 27: 120~129.
    Domeika K., Berg M., Eloranta M.L.,et al. Porcine interleukin-12 fusion protein and interleukin-18 in combination induce interferon-g production in porcine natural killer and T cells[J].Veterinary Immunology and Immunopathology, 2002,86:11~21.
    Dinarello C.A. Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting Enzyme [J]. Ann N Y Acad Sci., 1998, 856:1~11.
    Dinarello C.A.Novel targets for interleukin 18 binding protein [J].Ann Rheum Dis., 60 Suppl3, 2001, iii: 18~24.
    Ekelund C.K, Vogel I., Skogstrand K.,et al. Interleukin-18 and interleukin-12 in maternal serum and spontaneous preterm delivery[J].Journal of Reproductive Immunology, 2008,77: 179~185.
    Fantuzzi, G., Puren, A. J., Harding, M. W., et al.Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice[J]. Blood ,1998, 91:2118~2125.
    Fournout S., Dozois C.M., Yerle M.,et al. Cloning, chromosomal location, and tissue expression of the gene for pig interleukin-18[J]. Immunogenetics, 2000, 51:358~365.
    Friguet B., Djavadi-Ohaniance L., Pages J., Bussard A., Goldberg M. A convenient enzyme-linked immunosorbent assay for testing whether monoclonal antibodies recognize the same antigenic site. Application to hybridomas specific for theβ-subunit of Escherichia coli tryptophan synthase [J]. J. Immunol. Methods. 1983, 60:351~358.
    Fujioka N., Akazawa R., Ohashi K.,et al. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection[J]. J. Virol., 1999, 73: 2401~2409.
    Furlan R., Filippi M., Bergami A.,et al. Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study[J]. J. Neurol. Neurosurg.Psychiatry, 1999, 67: 785~788.
    Furlan R., Martino G., Galbiati F., et al.Caspase-1 regulates the inflammatory process leading to autoimmune demyelination [J]. J. Immunol., 1999, 163: 2403~2409.
    Furuya D., Yagihashi A., Komatsu M.,et al. Serum interleukin-18 concentrations in patients with inflammatory bowel disease[J]. J. Immunother., 2002, 25, Suppl 1:S65~S67.
    Gerdes N., Sukhova G. K., Libby P., et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis[J]. J. Exp. Med., 2002, 195:245~257.
    Ghayur, T., Banerjee, S., Hugunin, M., et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPSinduced IFN-gamma production [J]. Nature, 1997, 386:619–623.
    Gracie J.A., Robertson S.E., McInnes L. B. Interleukin-18[J]. J. Leukocyte Biology, 2003, 73: 213-224.
    Gu, Y., Kuida, K., Tsutsui, H., et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme [J]. Science, 1997, 275:206–209.
    Hanlon L., Argyle D., Bain D., et al.Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors [J]. J.Virol., 2001,75: 8424~8433.
    Ho L. P., Davis M., Denison A., et al. Reduced interleukin-18 levels in BAL specimens from patients with asthma compared to patients with sarcoidosis and healthy control subjects [J]. Chest, 2002, 121:1421~1426.
    Hosamani M., Mondal B., Muneta Y.,Rasool T.J.Molecular characterization and expression of caprine (Capra hircus) interleukin-18 cDNA[J]. International Journal of Immunogenetics, 2005, 32(5), 293~297.
    Hoshino K., Tsutsui H., Kawai T., et al. Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor [J]. J. Immunol., 1999,162:5041~5044.
    Huang H.L., Zhou R., Fan H.Y., et al..Generation of monoclonal antibodies and epitope mapping of ApxIVA of Actinobacillus pleuropneumoniae[J]. Molecular Immunology, 2006, 43:2130–2134.
    Hughes H.P.A. Cytokine adjuvants: lessons from the past—guidelines for the future? [J]. Veterinary Immunology and Immunopathology, 1998, 63:131~138.
    Hung L.-H., Li H.-P., Lien Y.-Y., et al. Adjuvant effects of chicken interleukin-18 in avian Newcastle disease vaccine[J]. Vaccine, 2010, 28: 1148~1155.
    Hyodo Y., Matsui K., Hayashi N., et al.IL-18 up-regulates perforin-mediated NK activity without increasingn perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor[J]. J. Immunol., 1999, 162:1662~1668.
    Ibrahim S., Saunders K., Kydd J.H.et al. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes[J].Veterinary Immunology and Immunopathology, 2007,119:63~80.
    Ito T., Komiya-Ito A., Okuda K. et al. Murine monoclonal antibody which can distinguish cystatins SA1 and SA2 [J]. Mol. Immunol, 2005, 42:1259–1263.
    Jander S., Stoll G. Differential induction of interleukin-12, interleukin-18, and interleukin-1beta converting enzyme mRNA in experimental autoimmune encephalomyelitis of the Lewis rat [J]. J. Neuroimmunol., 1998, 91: 93~99.
    Jordan J. A., Guo R. F., Yun E. C., et al. Role of IL-18 in acute lung inflammation[J]. J. Immunol., 2001, 167: 7060~7068.
    Kalina U,Ballas K,Koyama N,et al. Genomic organization and regulation of the human interleukin-18 gene[J].Scand J Immunol., 2000,52(6):525~530.
    Kalina U., Kauschat D., Koyama N., et al.IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38and by the extracellular regulated kinases p44erk-1 and p42erk-21[J]. J. Immunol., 2000, 165: 1307~1313.
    Kanai T., Watanabe M., Okazawa A.,et al.,Interleukin-18 and Crohn's disease[J]. Digestion, 2001, 63, Suppl 1: 37~42.
    Kanakaraj P., Ngo K., Wu Y., et al. Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice[J]. J.Exp. Med., 1999, 189(7):1129~1138.
    Kano F.S., Tamekuni K., Coelho A.L.,et al.. Induced immune response of DNA vaccine encoding an association MSP1a, MSP1b, and MSP5 antigens of Anaplasma marginale[J]. Vaccine, 2008, 26:3522~3527.
    Kawaguchi Y., Terajima H., Harigai M., et al.Interleukin-18 as a novel diagnostic marker and indicator of disease severity in adult-onset Still's disease [J]. Arthritis Rheum. 2001, 44: 1716~1717.
    Kawakami K., Qureshi M. H., Zhang T., et al.IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-gamma production[J]. J. Immunol., 1997, 159:5528~5534.
    Kawashima M., Yamamura M., Taniai M.,et al.Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still's disease[J]. Arthritis Rheum, 2001, 44: 550~560.
    Kim K.H., Shim J.H., Seo E.H.,et al.Interleukin-32 monoclonal antibodies for Immunohistochemistry, Western blotting, and ELISA [J]. J. Immunol. Methods, 2008, 333:38~50.
    Kim Y-M, Im J-Y,Han S-H, et al. IFN-gamma up-regulates IL-18 gene expression via IFN consensus sequence-binding protein and activator protein-1 elements in macrophages[J].J Immunol., 2000,165(6):3198~3205.
    Kim Y-M, Kang H-S, Paik S-G,et al. Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression[J].J Immunol.,1999,163:2000~2007.
    Kinjo Y., Kawakami K., Uezu K., et al.Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: a comparative study with IL- 12p40[J]. J. Immunol., 2002, 169: 323~329.
    Kobayashi K., Nakata N., Kai M., et al.Decreased expression of cytokines that induce type 1 helper T cell/interferon-gamma responses in genetically susceptible mice infected with Mycobacterium avium[J]. Clin. Immunol. Immunopathol., 1997,85:112~116.
    Kodama T., Matsuyama T., Kuribayashi K., et al.IL-18 deficiency selectively enhances allergen-induced eosinophilia in mice [J]. J. Allergy Clin. Immunol., 2000,105: 45~53.
    K?hler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature, 1975, 256:495~497.
    Kojima H., Aizawa Y., Yanai Y., et al. An essential role for NF-κB in IL-18-induced IFN-gamma expression in KG-1 cells [J].J. Immunol., 1999,162:5063~5069.
    Kojima H., Takeuchi M., Ohta T., et al. Interleukin-18 activates the IRAKTRAF6 IRAKTRAF6 pathway in mouse EL-4 cells [J]. Biochem. Biophys. Res. Commun., 1998, 244: 183~186.
    Kozak M.Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs[J]. Nucleic Acids Research, 1984, 12: 857~872.
    Kozak M.Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin[J]. Nucleic Acids Research, 1984, 12: 3873~3893.
    Kuribayashi K., Kodama T., Okamura H., et al.Effects of post-inhalation treatment with interleukin-12 on airway hyper-reactivity, eosinophilia interleukin-18 receptor expression in a mouse model of asthma [J]. Clin. Exp. Allergy, 2002, 32: 641~649.
    Leung B. P., Culshaw S., Gracie J. A., et al. A role for IL-18 in neutrophil activation [J]. J. Immunol., 2001, 167:2879~2886.
    Leung B. P., McInnes I. B., Esfandiari E., et al.Combined effects of IL-12 and IL-18 on the induction of collagen-induced arthritis [J]. J. Immunol., 2000, 164:6495~6502.
    Liu W.Q., Zhao H.K., Gao Y.D., et al.Cloning and expressiong of goat interleukin-18 gene[J]. J.Vet.Med.Sci., 2005,67(2):219~221.
    Liu Z.-J., Gao X., Cai Y., et al.Construction of a full-length iASPP expression plasmid pcDNA3.1(+)/iASPP and its biological activity[J].Plasmid, 2009,62:10~15.
    Lorey S.L., Huang Y.C., SHARMA V., et al.Constitutive expression of Interleukin-18 and Interleukin-18 receptor mRNA in tumour derived human B-cell lines [J]. Clin Exp Immunol., 2004, 136(3):456~462.
    Lu H., Yang X., Takeda K., et al. Chlamydia trachomatis mouse pneumonitis lung infection in IL-18 and IL-12 knockout mice: IL-12 is dominant over IL-18 for protective immunity [J]. Mol. Med., 2000, 6:604~612.
    Lubberts E., Joosten L. A., Oppers B., et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis[J]. J. Immunol. 2001, 167: 1004~1013.
    Luo Q.-p., Huang H.-l., Zou W., et al. An indirect sandwich ELISA for the detection of avian influenza H5 subtype viruses using anti-hemagglutinin protein monoclonal antibody [J]. Veterinary Microbiology, 2009, 137:24~30.
    Mahalingam S., Meanger J., Foster P. S., et al. The viral manipulation of the host cellular and immune environments to enhance propagation and survival: a focus on RNA viruses[J]. Journal of Leukocyte Biology, 2002, 72(9):429~439.
    Maiti P.K., Im S.-H., Souroujon M.C., Fuchs S. A monoclonal antibody specific for rat IL-18BP and its application in determining serum IL-18BP [J]. Immunol. Letters, 2003, 85:65~70.
    Mastroeni P., Clare S., Khan S., et al. Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium[J]. Infect. Immun., 1999,67, 478~483.
    Matsumoto S., Tsuji-Takayama K., Aizawa Y., et al. Interleukin-18 activates NF-κB in murine T helper type 1 cells [J]. Biochem. Biophys. Res. Commun., 1997, 234: 454~457.
    McInnes Iain B., Gracie J.A., Leung B.P., et al. Interleukin 18: a pleiotropic participant in chronicinflammation [J]. Immunology Today, 2000, 21(7):312~315.
    Melnikov V. Y., Ecder T., Fantuzzi G., et al.Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure [J]. J. Clin. Invest, 2001, 107:1145~1152.
    Meyer Zum Buschenfelde C., Cramer S., Trumpfheller C.,et al. Trypanosoma cruzi induces strong IL-12 and IL-18 gene expression in vivo: correlation with interferon-gamma (IFN gamma)production[J]. Clin. Exp. Immunol., 1997, 110:378~385.
    Micallef M. J.,Tanimoto T.,Kohno K.,et al, Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma[J].Cancer Res.,1997,57:4557~4563.
    Micallef M.J.,Ohtsuki K.,Kohno F.,et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells:Synergism with interleukin-12 for interferon-gamma production[J].Eur.J.Immunol., 1996, 26(7):1647~1651.
    Miyoshi M., Horiuchia H., Fukushima Y., et al.Cloning of the chicken interleukin-13 receptor a2 gene and production of a specific monoclonal antibody [J]. Developmental and Comparative Immunology, 2007, 31:394~406.
    Moller B., Kessler U., Rehart S., et al. Expression of interleukin-18 receptor in fibroblast-like synoviocytes[J]. Arthritis Res., 2002, 4:139~144.
    Moller B., Kukoc-Zivojnov N., Kessler U., et al. Expression of interleukin-18 and its monokine-directed function in rheumatoid arthritis [J].Rheumatology, 2001, 40:302~309.
    M?ller B., Kukoc-Zivojnov N., Koyama N.,et al. Prednisolone induces interleukin-18 expression in mononuclear blood and myeloid progenitor cells[J]. Inflamm. res., 2002, 51:457~463.
    Monteforte G. M., Takeda K., Rodriguez-Sosa M., et al. Genetically resistant mice lacking IL-18 gene develop Th1 response and control cutaneous Leishmania major infection [J]. J. Immunol., 2000, 164:5890~5893.
    Monteleone G., Trapasso F., Parrello T., et al. Bioactive IL-18 expression is up-regulated in Crohn's disease [J]. J. Immunol., 1999,163:143~147.
    Mordue D. G., Monroy F., La Regina M., et al. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines [J]. J. Immunol., 2001, 167:4574~4584.
    Morel J. C., Park C. C., Kumar P., et al. Interleukin-18 induces rheumatoid arthritis synovial fibroblast CXC chemokine production through NF-kappaB activation [J]. Lab. Invest., 2001, 81: 1371~1383.
    Morris G.E. Epitope mapping [M]. 619~630.
    Muneta Y., Kikuma R., Yoshihara K., et al. Cloning, expression, and tissue distribution of bovine interleukin-21[J].Veterinary Immunology and Immunopathology, 2003,95:73~80.
    Muneta Y., Mori Y., Shimoji Y.,et al., Porcine interleukin 18:cloning,characterization of the cDNA and expression with the baculovirus system[J]. Cytokine, 2000, 12(6):566~572.
    Muneta Y., Zhao H. K. Inumaru S., et al. Large-scale production of porcine mature interleukin-18(IL-18) in silkworms using a hybrid baculovirus expression system[J]. J.Vet.Med.Sci., 2003,65(2):219~223.
    Muneta Y.,Yoshihara K., Minagawa Y.,et al. Bovine IL-18 ELISA: detection of IL-18 in sera of pregnant cow and newborn calf, and in colostrums[J].J.Immunoassay Immunochem., 2005,26:203~213.
    Nagata T.,Ishikawa S.,Shimokawa E.,et al.High level expression and purification of bioactive bovine interleukin-18 using a baculovirus system[J].Veterinary Immunology and Immunopathology,2002,87:65~72.
    Nagaya H.,Muneta Y.,Enomoto C.,et al. Method for purifying porcine mature interleukin-18 from silkworm haemolymph[J]. Biotechnology Letters, 2004, 26: 869~873.
    Nakamura, K., Okamura, H., Wada, M., et al. Endotoxin-induced serum factor that stimulates gamma interferon production.Infect[J]. Immun, 1989, 57:590~595.
    Nakanishi, K., Yoshimoto T., Tsutsui H., Okamura H.Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu [J]. Cytokine Growth Factor Rev., 2001, 12:53~72.
    Nelson P. N., Westwood O.M.R., Soltys A.,et al. Characterisation of epitopes of pan-IgG/anti-G3m (u) and anti-Fc monoclonal antibodies[J]. Immunology Letters, 2003, 88:77~83.
    Nicolson L., Penha-Goncalves M.N., Keanie J.L.,et al. Cloning and sequencing of horse interleukin-12 and interleukin-18 cDNAs[J].Immunogenetics,1999,50: 94~97.
    Noisakran S., Dechtawewat T., Rinkaewkan P., et al.Characterization of dengue virus NS1 stably expressed in 293T cell lines [J]. J. Virol. Methods. 2007, 142:67~80.
    Ohkusu K., Yoshimoto T., Takeda K.,et al.Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection[J]. Infect. Immun., 2000, 68: 2449~2456.
    Okada M., Asai T., Futo S.,et al. Serological diagnosis of enzootic pneumonia of swine by a double-sandwich enzyme-linked immunosorbent assay using a monoclonal antibody and recombinant antigen (P46)[J].Veterinary Microbiology, 2005,105:251~259.
    Okamura H., Tsutsui H., Komatsu T., et al. Cloning of a new cytokine that induces IFN-γproduction by T cells [J]. Nature, 1995, 378:88-91.
    Park C. C., Morel J. C., Amin M. A., et al. Evidence of IL-18 as a novel angiogenic mediator [J].J. Immunol., 2001,167:1644~1653.
    Parnet P., Garka K. E., Bonnert T. P.,et al. IL-1Rrp is a novel receptor-like molecule similar to the type I interleukin-1 receptor and its homologues T1/ST2 and IL-1R AcP[J]. J. Biol. Chem., 1996, 271:3967~3970.
    Pavlova B., Volf J., Alexa P.,et al.Cytokine mRNA expression in porcine cell lines stimulated by enterotoxigenic Escherichia coli[J].Veterinary Microbiology, 2008,132:105~110.
    Pirhonen, J., Sareneva, T., Kurimoto, M., et al.Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway [J]. J. Immunol., 1999, 162: 7322~7329.
    Plater-Zyberk C., Joosten L. A., Helsen M. M., et al.Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis[J]. J. Clin. Invest., 2001, 108:1825~1832.
    Puehlera F., Gobel T., Breyer U., et al. A sensitive bioassay for chicken interleukin-18 based on the inducible release of preformed interferon-γ[J].J Immunol. Methods, 2003, 1592:265~280.
    Qureshi M. H., Zhang T., Koguchi Y.,et al. Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans[J]. Eur. J. Immunol., 1999, 29:643~649.
    Robinson D., Shibuya K., Mui A., et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NF-κB[J]. Immunity., 1997,7:571~581.
    Rothe H., Hausmann A., Casteels K., et al. IL-18 inhibits diabetes development in nonobese diabetic mice by counterregulation of Th1-dependent destructive insulitis [J]. J. Immunol., 1999, 163:1230~1236.
    Rothe H., Jenkins N. A., Copeland N. G., et al. Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2[J]. J. Clin. Invest., 1997, 99:469~474.
    Sansonetti P. J., Phalipon A., Arondel J., et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation[J]. Immunity, 2000,12:581~590.
    Seki E., Tsutsui H., Nakano H., et al. Lipopolysaccharide- induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta[J]. J. Immunol. 2001,166: 2651~2657.
    Sher A., Gazzinelli R. T., Oswald I. P., et al.Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection[J]. Immunol. Rev., 1992, 127:183~204.
    Shi K.-C., Guo X., Ge X.-N.,et al. Cytokine mRNA expression profiles in peripheral blood mononuclear cells from piglets experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2[J].Veterinary Microbiology, 2010,140:155~160.
    Shigehara K., Shijubo N., Ohmichi M., et al.Increased levels of interleukin-18 in patients with pulmonary sarcoidosis [J]. Am. J. Respir. Crit. Care Med. 2000, 162:1979~1982.
    Siegmund B., Fantuzzi G., Rieder F.,et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production[J]. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281: R1264~R1273.
    Siegmund B., LehrH. A., Fantuzzi G., et al. IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation [J]. Proc.Natl. Acad. Sci. USA 2001, 98: 13249~13254.
    Singh R.P., Sreenivasa B.P., Dhar P.,et al. Development of a monoclonal antibody based competitive-ELISA for detection and titration of antibodies to peste des petits ruminants (PPR) virus[J].Veterinary Microbiology, 2004,98:3~15.
    Sivakumar P. V., Westrich G. M., Kanaly S.,et al. Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage[J]. Gut, 2002, 50:812~820.
    Smeltz R. B., Chen J., Hu-Li, J.,et al. Regulation of interleukin (IL)-18 receptor alpha chain expression on CD4(+) T cells during T helper (Th)1/Th2 differentiation[J]. Critical downregulatory role of IL-4 [J]. J. Exp. Med., 2001, 194:143~153.
    Soos J.M., Polsky R.M., Keegan S. P.,et al. Identification of natural antibodies to interleukin-18 in the sera of normal humans and three nonhuman primate species[J]. Clinical Immunology, 2003, 109:188~196.
    Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system [J]. Cell, 1996, 85: 299~302.
    Stoll S., Jonuleit H., Schmitt E.,et al. Production of functional IL-18 by different subtypes of murine and human dendritic cells(DC):DC-derived IL-18 enhances IL-12-dependent Th1 development[J].Eur J Immunol.,1998,28:3231-3239.
    Sugama S., Conti B.Interleukin-18 and stress [J]. Brain Res. Rev., 2008, 58:85-95.
    Sugawara I., Yamada H., Kaneko H., et al. Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice [J]. Infect. Immun., 1999, 67: 2585~2589.
    Sugawara S., Uehara A., Nochi T., et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells[J]. J. Immunol.,2001,167:6568~6575.
    Takeda K., Tsutsui H., Yoshimoto T., et al. Defective NK cell activity and Th1 response in IL-18-deficient mice [J]. Immunity, 1998, 8:383~390.
    Takeuchi M., Nishizaki Y., Sano O., et al.Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-inducing factor ("interleukin-18") in mouse intestinal epithelial cells [J].Cell Tissue Res., 1997, 289(3):499~503.
    Tanaka H., Narita M., Teramoto S., et al.Role of Interleukin-18 and T-helper Type 1 Cytokines in the Development of Mycoplasma pneumoniae Pneumonia in Adults [J]. Chest 2002, 121(5):1493~1497.
    Tanaka M., Harigai M., Kawaguchi Y., et al.Mature form of interleukin 18 is expressed in rheumatoid arthritis synovial tissue and contributes to interferon-gamma production by synovial T cells[J]. J. Rheumatol., 2001, 28: 1779~1787.
    Tanaka-Kataoka M., Kunikata T., Takayama S., et al.In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection[J]. Cytokine, 1999, 11:593~599.
    Taniguchi M., Nagaoka K., Kunikata T.,et al. Characterization of anti-human interleukin-18 (IL-18)/ interferon-γ-inducing factor(IGIF) monoclonal antibodies and their application in the measurement of human IL-18 by ELISA[J]. Journal of Immunological Methods, 1997, 206(5): 107~113.
    Tone M.,Thompson S A.,Tone Y,et al. Regulation of IL-18(IFN-gamma-inducing factor)gene expression[J].J Immunol.,1997,159(12):6156~6163.
    Tong T., Bai Y., Liu G., et al. Expression, purification and monoclonal antibodies preparation of recombinant equine mature interleukin-18[J]. Veterinary Immunology and Immunopathology, 2010, in press.
    Torigoe K., Ushio S., Okura T., et al. Purification and characterization of the human interleukin-18 receptor[J]. J.Biol.Chem., 1997,272:25737~25742.
    Tsutsui H., Matsui K., Kawada N.,et al. IL-18 accounts for both TNF-alpha-and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice[J].J Immunol.,1997,159:3961~3967.
    Tsutsui H., Matsui K.,Okamura H.,et al. Expression of bovine interleukin-18 gene in baculvirus system[J].Cytokins, 2002, 174(1):192~209.
    Tsutsui H., Nakanishi K., Matsui K., et al.IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones[J].J. Immunol., 1996,157:3967~3973.
    Urushihara N., Iwagaki H., Yagi T., et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia [J]. J. Pediatr. Surg., 2000, 35: 446~449.
    Ushio S., Namba M., Okura T., et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein[J].J. Immunol, 1996,156: 4274~4279.
    Vankayalapati R., Wizel B., Weis S. E., et al. Production of interleukin-18 in human tuberculosis [J].J. Infect. Dis., 2000, 182: 234~239.
    Vermot-Desroches C., Subiger O., Guenot F.,et al. Monoclonal antibodies specific for the IL-18 receptor [J].Cellular Immunology, 2005, 236:101~104.
    Walter D. M., Wong C. P., DeKruyff R. H., et al. Il-18 gene transfer by adenovirus prevents the development of and reverses established allergen-induced airway hyperreactivity [J].J. Immunol., 2001,166:6392~6398.
    Wang W., Tanaka T., Okamura H., et al.Interleukin-18 enhances the production of interleukin-8 by eosinophils [J]. Eur. J. Immunol., 2001, 31:1010~1016.
    Wei F., Liu Q., Gao S.,et al. Enhancement by IL-18 of the protective effect of a Schistosoma japonicum 26 kDa GST plasmid DNA vaccine in mice[J].Vaccine, 2008,26: 4145~4149.
    Wesche H., Henzel W. J., Shillinglaw, W., et al. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex[J]. Immunity. 1997, 7:837~847.
    Weynants V., Gilson D., Furger A., et al. Production and characterisation of monoclonal antibodies specific for bovine interleukin-4[J]. Vet. Immunol. Immunopathol, 1998, 66: 99~112.
    Wheeler R.D., Brough D.,Le Feuvre R.A.,et al. Interleukin-18 induces expression and release of cytokines from murine glial cells: interactions with interleukin-1 beta[J]. J Neurochem., 2003,85:1412~1420.
    Wildbaum G., Youssef S., Grabie N., et al.Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis [J]. J. Immunol., 1998, 161: 6368~6374.
    Wirtz S., Becker C., Blumberg R.,et al. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA[J]. J. Immunol., 2002, 168: 411~420.
    Wong C. K., LiE. K., Ho C.et al. Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus[J]. Rheumatology, 2000, 39: 1078~1081.
    Xiang Y., Moss B.IL-18 binding and inhibition of interferon-γinduction by human poxvirus encoded proteins [J]. Proc Natl Acad Sci., 1999, 96: 11537~11542.
    Xing Z., Zganiacz A., Wang J., et al. IL-12-independent Th1-type immune responses to respiratory viral infection: requirement of IL-18 for IFN-gamma release in the lung but not for the differentiation of viral-reactive Th1-type lymphocytes. J. Immunol., 2000, 164(5):2575~2584.
    Xu D., Chan L., Leung B. P., et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells[J]. J. Exp. Med., 1998, 188:1485~1492.
    Xu D., Chan W. L., Leung B. P., et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells[J]. J. Exp. Med., 1998, 188:1485~1492.
    Yamamura M., Kawashima M., Taniai M., et al. Interferongamma-inducing activity of interleukin-18 in the joint with rheumatoid arthritis [J]. Arthritis Rheum., 2001,44: 275~285.
    Yang J., Zhu H., Murphy T. L., et al. IL-18-stimulated GADD45 beta required in cytokine-induced, but not TCR-induced, IFN-gamma production[J]. Nat. Immunol., 2001, 2:157~164.
    Yap G. S., Ortmann R., Shevach E., et al. A heritable defect in IL-12 signaling in B10.Q/J mice. II. Effect on acute resistance to Toxoplasma gondii and rescue by IL-18 treatment [J]. J. Immunol., 2001, 166:5720~5725.
    Yoshimoto T., Takeda K., Tanaka T., et al.IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production [J]. J. Immunol., 1998, 161:3400~3407.
    Yoshimoto T., Tsutsui H., Tominaga K., et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils [J]. Proc. Natl. Acad. Sci. USA. 1999, 96:13962~13966.
    Yumoto E., Higashi T., Nouso K., et al. Serum gamma-interferon-inducing factor (IL-18) and IL-10 levels in patients with acute hepatitis and fulminant hepatic failure [J]. J.Gastroenterol. Hepatol., 2002, 17:285~294.
    Zhang B., Yang Y.-H., Lin Y.-M.,et al.Expression and production of bioactive human interleukin-18 in transgenic tobacco plants[J]. Biotechnology Letters, 2003, 25:1629~1635.
    Zhang H.M., Dai X., Shan X.N., et al. Characterization of antigenic epitopes of the ORF2 protein from hepatitis E virus genotype 4[J]. Virus Res., 2009, 142:140~143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700