木材多元醇液化物的结构表征及缩聚反应路径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了弄清楚木材多元醇液化过程中分解与缩聚反应阶段液化物的结构特征,以及缩聚残余物的反应路径,本研究以多元醇(PEG400:丙三醇=4:1)为液化剂、72%硫酸为催化剂,对40~80目桦木(Betula dahurica Pall.)木粉在多元醇:木粉:硫酸=3:2:0.03(质量比)、温度150℃、时间0-180 min条件下进行液化。用FTIR、XRD、SEM、TGA、GPC、HPLC、GC-MS及NMR等方法,对液化残余物、液化产物的官能团、微细构造、热失重行为、分子量大小及其分布、糖类化合物含量、分子结构等方面进行测定与分析。
     本研究得到主要结果如下:
     1.在液化时间0-180 min,纤维素含量先减少后增大,木质素含量逐渐增大。与未液化木粉相比,纤维素和木质素含量分别从44.54%和19.04%降低到液化后的12.16~24.92%和3.93~15.23%。
     2.液化残余物的羰基、木质素芳香环以及甲氧基随液化时间逐渐减少。液化残余物的结晶度增大5.10~7.38%,这主要基于液化过程中纤维素准结晶区发生降解以及缩聚残余物的分子取向引起的。在分解反应阶段,残余物中纤维尺度与平均表观面积随液化时间逐渐变小;在缩聚反应阶段,残余物中出现块状堆积物,平均表观面积增大。液化残余物的热稳定性随液化时间提高。
     3.液化木质素的重均分子量主要分布在1160-1356,醛基数目随液化时间逐渐增加。在液化10 min时,愈疮木基、紫丁香基以及β-O-4位的C-O键几乎消失。纤维素的官能团变化不大。
     4.随液化时间的延长,液化产物的羰基、酚羟基以及甲氧基数目逐渐增加,醇羟基数目减少。液化产物的热稳定性降低以及己糖、糠醛含量减少。液化产物的平均分子量显著降低,且重均分子量分布在1103~1337。产物中的糖类化合物降解生成糖苷与乙酰丙酸,木质素降解主要生成三类化合物。第一类化合物含有苯酚基本结构,由构成木质素的基本单元通过氧化和脱甲基作用得到;第二类化合物含有苯甲氧基单元,由第一类化合物通过氧化和乙酰化作用脱酚羟基得到;第三类化合物则是前两类化合物的缩聚产物。在150℃、酸性条件下,液化剂自身未氧化生成醛类化合物。
     因此,在缩聚反应阶段,缩聚残余物的生成路径主要有三种:(1)纤维素降解产物与液化剂之间反应,生成EG-葡萄糖苷与2-羟乙基乙酰丙酸大分子化合物;(2)木质素及其降解产物与糖类化合物反应,生成大分子酚醛树脂和酯化产物;(3)木质素降解产物与液化剂在Cα、Cβ、Cγ位置以及苯环上的酯化或取代反应,生成含苯酚结构的大分子酯化产物或烷基醚。
To clarify the reaction pathways of condensed residues and the structural characterizations of liquefaction products at the stages of decomposition and condensation reaction during wood liquefaction, wood powder(Betula dahurica Pall.) of 40-80 mesh was liquefied at 150℃and 0-180 minites. The ratio of polyhydric alcohols to wood to acid was 3:2:0.03. Liquefying reagents was polyhydric alcohols (PEG400:glycerin=4:1). The catalyst was sulfuric acid (concentration of 72 percent). The methods such as FTIR, XRD, SEM, TGA, GPC, HPLC, GC-MS, NMR and etc, were used to analyze the functional groups, microstructure, theromal weight loss behavior, molecular weight and polydispersity, the content of carbohydrate and molecular structure of liquefied wood residues and products.
     The main results of this study were as follows,
     1. When liquefaction time was within 0-180 minites, the content of cellulose decreased firstly and then increased, and the content of lignin increased gradually. Compared with unliquefied wood powder, the contents of cellulose and lignin decreased from 44.54 percent and 19.04 percent before liquefaction to 12.16-24.92 percent and 3.93-15.23 percent after liquefaction, respectively.
     2. The number of carbonyl, aromatic nucleus from lignin and methoxy group reduced as a function of liquefaction time, respectively. The crystallinity of liquefied wood residues increased by 5.10 percent to 7.38 percent, as was mainly because quasi crystalline region of cellulose was degraded and the molecular structure of condensed residues oriented crystallization. During decomposition reaction, the fiber dimension and the average apparent area of the residues became gradually smaller; during condensation reaction, blocky deposit was found in condensed residues, which resulted in bigger average apparent area. With the prolongation of the liquefaction time, the thermostability of liquefied wood residues was improved.
     3. Weight average molecular weights of lignin from liquefaction wood residues were mainly distributed in the range from 1160 to 1356, the number of aldehydes group from the lignin increased as a function of liquefaction time. Guaiacyl, syringyl and C-O bond in (3-0-4 position almost desepeard when liquefaction time was 10 minutes. And functional groups of cellulose were changed less.
     4. For the liquefied wood products, with the prolongation of liquefaction time, the number of carbonyl, phenolic hydroxyl group and methoxy group increased and hydroxyl group reduced. The thermal stability and the contents of hexose and furfural reduced. Average molecular weight decreased significantly, and weight-average molecular weight was distributed in the range from 1103 to 1337. Carbohydrates in the products were mainly degraded into glucoside and leculinic acid, and lignin was degraded and obtained three-group compounds. The compounds having phenol structure were in the first group, they were composed of the basic units of lignin by oxidation and demethylation; the second-group compounds having phenylmethoxy structure were obtained after the first-group compounds removed the hydroxyl in benzene-ring by oxidation and acetylation; the third-group compounds stemed from condensation reaction between the first-and second-group compounds. And liquefying reagents could not be oxidated to carbonyl compounds in the acidic condition at 150℃.
     In conclusion, at the stage of condensation reaction, there are mainly three formation pathways for condensed residues:(1) Degraded cellulose reacts with polyhydric alcohols, and generats EG-Glucoside and 2-hydroxyethyl levulinate; (2) Lignin or the products from degraded lignin reacts with saccharide compounds, and gives macromolecular phenolic resin and esterification products; (3) Esterification or substitution reaction in Cα, Cβ, Cγand benzene ring positions between the products from degraded lignin and liquefying reagents, generates macromolecular esterification products and alkyl ether compounds.
引文
1.蔡邦宏.从化学位移看苯环亲电取代反应的定位规律[J].嘉应大学学报,1996,(1):49-52.
    2.杜瑞平,夏祖璋.由木本生物质直接液化生产液体燃料[J].新能源,1993,15(6):26-31.
    3.戈进杰,吴睿,邓葆力,等.基于甘蔗渣的生物降解材料研究(Ⅰ)甘蔗渣的液化反应和聚醚酯多元醇的制备[J].高分子材料科学与工程,2003a,19(2):194-198.
    4.戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料的研究(Ⅰ)玉米棒的液化反应及植物多元醇的制备[J].高分子材料科学与工程,2003b,19(3):194-197.
    5.戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料的研究(Ⅱ)以玉米棒为原料的聚氨酯的合成及生物降解性[J].高分子材料科学与工程,2003c,19(4):177-180.
    6.耿志忠.异氰酸酯与木材各组分反应产物的研究[D].东北林业大学,2007.
    7.郭建欣,王高升,陈夫山.植物纤维原料的液化及其应用[J].世界林业研究,2007(01).
    8.贺福,王茂章.碳纤维及其复合材料[M].科学出版社,1995.
    9.贺福.碳纤维及其应用技术[M].化学工业出版社,2004.
    10.贺福,王润娥,赵建国.我国碳纤维工业的现状及其展望[J].高科技纤维与应用,1998,23(6):1-7.
    11.黄娜,高岱巍,李建伟,陈标华.生物质三组分热解反应及动力学的比较[J].北京化工大学学报,2007,34(5):462-466.
    12.李晓平,黄润州,杨骁丽.木质生物材料液化的研究现状及应用[J].纤维素科学与技术,2010,18(1):54-61.
    13.刘贵生,段新方,刘君良,等1H,13C-NMR光谱在木质素化学研究中的应用[J].吉林林学院学报,1996,12(4):239-243.
    14.马天旗,郑志锋,张宏健,等.木材酸性液化条件下苯酚的作用机理[J].西南林学院学报,2006,26(02):93-96.
    15.马晓军,赵广杰.木材人造丝碳纤维的研究现状[J].木材工业,2006,20(6):1-4.
    16.马晓军.木材苯酚液化物碳素纤维化材料的制备及结构性能表征[D].北京林业大学,2007.
    17.牛敏,赵广杰,Mehmet Hakki Alma木粉多元醇液化残余物的结构表征[J].北京林业大学学报,2011,33(3):106-110.
    18.谌凡更,欧义芳.木质纤维原料的热化学液化[J].纤维素科学与技术,2000,8(1):44-57.
    19.孙丰文,黄慧,李小科,王玉.竹材苯酚液化物及其甲醛树脂的FT-IR分析[J].林产化学与工业,2008,28(06):11-14.
    20.陶忠诚.深颜色聚醚或聚酯多元醇羟基的测定[J].聚氨酯工业,1989,(2):12.
    21.阎昊鹏,曹忠荣,郭文莉.干法无胶纤维板粘合机理的研究Ⅰ.制板过程中化学成分的变化及作用[J].木材工业,1996,10(4):3-6,11.
    22.杨正璟,陈育如,欧阳平凯.植物纤维素水解渣综合利用生产乙酰丙酸及木质素活性炭[J].化工进展,1996,(1):40-42.
    23.余先纯,孙德林.超临界甲醇液化杉木工艺的探讨[J].林业科技,2009,34(5):36-40.
    24.张世润,王岩,刘曙辉.木材液化[J].东北林业大学学报,2000,28(6):95-98.
    25.张艳稳,吕惠生,张敏华.亚临界H20-CO2体系中纤维素制备乙酰丙酸的动力学[J].化学反应工程与工艺,2008,24(2):153-157.
    26.张玉苍,迟青山,孙岩峰,等.木材液化及其在聚氨酯胶黏剂上的应用研究[J].林产化学与工 业,2007,27(05):73-77.
    27.张琴,华成明,唐进伟,等.MDI在聚氨酯预聚体中的应用[J].中国涂料,2010,25(1):41-43.
    28.张求慧,赵广杰,陈金鹏.酸性催化剂对木材苯酚液化能力的影响[J].北京林业大学学报,2004,26(05):66-70.
    29.张求慧.木材的苯酚液化及其生成物的树脂化[D].北京:北京林业大学,2005.
    30.王春明,高华,崔立东,等.在酸催化下不同形态木材液化的研究[J].林业科技,2007,32(05):51-52.
    31.王璋保.我国能源可持续发展的又一个重大决策-煤的液化[J].工业加热,2006,35(03):4-7.
    32.魏玉萍,王东华,程发.木材溶液制备聚氨酯胶黏剂的研究[J].化学与粘合,2002,38(1):8-10.
    33.吴长路.木质基碳纤维[J].玻璃钢/复合材料,2002,(6):43-44.
    34.朱本城,赵广杰.酸性催化剂对刨花板苯酚液化残余物率的影响[J].中国人造板,2008,(05):19-23.
    35.#12
    36.山田毫彦.木材の液化技术の开发と反应机械の解明[J].木材工业,1999,54(1):2-7.
    37.森田光博.酸化处理にょる化学修饰木材の热可塑性-溶解性の改善[J].木材工业.1994,49(12):593-598.
    38. Ahmadzadeh A,Zakaria S,Rashid R.Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin[J].Industrial Crops and Products,2009a,30(1):54-58.
    39. Ahmadzadeh A,Zakaria S.Preparation of novolak resin by liquefaction of oil palm empty fruit bunches (EFB) and characterization of EFB residue[J].Polymer-Plastics Technology and Engineering,2009b,48(1):10-16.
    40. Alma M H,Yoshioka M,Yao Y G,et al.Preparation and characterization of the phenolated wood using hydrochloric acid as catalyst[J].Wood Science and Technology,1995a,30(1):39-47.
    41. Alma M H,Yoshioka M,Yao Y G,et al.Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials[J].Mokuai Gakkaishi,1995b,41(8):741-748.
    42. Alma M H,Yoshioka M,Yao Y G,et al.Preparation of oxalic acid-catalyzed resinified phenolated wood and its characterization[J].Mokuai Gakkaishi,1995c,41(8):1122-1131.
    43. Alma M H,Yoshioka M,Yao Y G,et al.The preparation and the flow properties of HC1 catalyzed phenolated wood and its blends with commercial Novolak resin[J].Holzforschung,1996,50(1):85-90.
    44. Alma M H,Maldas D,Shiraishi N.Resinification of NaOH-catalyzed phenolated wood-phenol mixture with formalin formaking molding materials[J].Adhesion Science and Technology,2002, 16(8):1141-1151.
    45. Ahmadzadeh A, Zakaria S.Preparation of novolak resin by liquefaction of oil palm empty fruit bunches (EFB) and characterization of EFB residue[J].Polymer Plastics Technology and Engineering,2009,48(1):10-16.
    46. Appell H R,Fu Y C,Friedman S.Conversion of cellulosic waste to oil[J].Bureau of mines report of investigation,1971,7:560.
    47. Basaran Y,Denizli A,Sakintuna B,et al.Bio-liquefaction/solubilisation of low-rank Turkish lignite and characterization of the products[J].Energy & Fuels,2003,17:1068-1074.
    48. Bouafif H,Koubaa A,Perre P,et al.Analysis of among-species variability in wood fiber surface using drifts and XPS:Effects on Esterification Efficiency [J]. Journal of Wood Chemistry and Technology,2008,28(4):296-315.
    49. Chen F G, Xie T,Lu, Z M. Preparation and performances of modified epoxy resin from liquefied bagasse[J].Chemistry and Industry of Forest Products,2007,27(03):111-115.
    50. Chen F G,Lu Z M.Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products[J].Journal of Applied Polymer Science,2009,111(1):508-516.
    51. Cheng S N,Dcruz L,Wang M C,et al.Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J].Energy & Fuels,2010,24(9):4659-4667.
    52. Costa L,Montelera L R,Camino G,et al.Structure-charring relationship in phenol-formaldehyde type resins[J].Polymer Degradation and Stability,1997,56(1):23-35.
    53. Court R W,Sephton M A.Quantitative flash pyrolysis Fourier transform infrared spectroscopy of organic materials[J].Analytica Chimica Acta,2009,639(1-2):62-66.
    54. Crane L W,Dynes P J,Kaelble D H.Analysis of curing kinetics in polymer composites[J].Journal of Polymer Science,1973,11 (8):533-540.
    55. Das K,Ray D,Bandyopadhyay N R,et al.Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM[J].Journal of Polymers and the Environment,2010,18(3):355-363.
    56. Demirbas A.Mechanisms of liquefaction and pyrolysis reactions of biomass[J].Energy Conversion & Management,2000,41 (6):633-646.
    57. Demirbas A.The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis[J].Fuel Processing Technology,2007,88(6):591-597.
    58. Deng H B,Lin L,Sun Y,et al.Lignin from formic acid hydrolysis of wheat straw[J] Journal of Biobased Materials and Bioenergy,2008,2(2):148-155.
    59. Doh G H,Lee S Y, Kang I A,et al.Thermal behavior of liquefied wood polymer composites (LWPC) [J].Composite Structures,2005,68(1):103-108.
    60. Effendi A,Gerhauser H,Bridgwater A V.Production of renewable phenolic resins by thermochemical conversion of biomass:A review[J],Renewable & Sustainable Energy Reviews,2008,12(8):2092-2116.
    61.Faix O.Classification of lignin from different botanical origins by FT-IR spectroscopy[J].Holzforschung,1991,45(Suppl.):21-27.
    62. Fang M X,Shen D K,Li Y X,et al.Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis[J].Journal of Analytical and Applied Pyrolysis,2006,77(1),22-27.
    63. Fierz H E.Chemistry of Wood Utilization[J].Chemistry and Industry Review,1925,44:942.
    64. Gao G,Huang J.Separation of liquefied product of salix psammophila by column chromatography and structure analysis of its components[J].Forestry Studies in China,2008,10(4):274-279.
    65. Giuntoli J,Arvelakis S,Spliethoff H,et al.Quantitative and kinetic thermogravimetric Fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues:Influence of different pretreatments[J].Energy & Fuels,2009,23,5695-5706.
    66. Hassan E,Shukry N.Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues[J].Industrial Crops and Products,2008,27(l):33-38.
    67.Heckmann R A,Amin O M,Standing M D.Chemical analysis of metals in acanthocephalans using energy dispersive x-ray analysis (EDXA) in conjunction with a scanning electron microscope (SEM)[J].Comparative Parasitology,2007,74(2):388-391.
    68. Hoareau W,Trindade W G,Siegmund B,et al.Sugar cane biogasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol:characterization and stability[J].Polymer Degradation and Stability,2004,86(3):567-576.
    69. Hoess A,Arthur A K,Wanner G,et al.Recovery of soluble, biologically active recombinant proteins from total bacterial lysates using ion exchange resin[J].Nature Biotechnology,1988,6:1214-1217.
    70. Holopainen T,Alivila L,Rainio J,et al.IR spectroscopy as a quantitative and predictive analysis method of phenol-formaldehyde resol resins[J].Journal of Applied Polymer Science,1998, 69:2175-2185.
    71.Houtman C J,AtalIa R H.Cellulose-lignin interactions:a computational study[J].Journal of Plant Physiology,1995,107:977-984.
    72. Inari G N,Petrissans M,Lambert J,et al.XPS characterization of wood chemical composition after heat-treatment[J].Surface and Interface Analysis,2006,38(10):1336-1342.
    73. Inoue S,Noguchi M,Hanaoka T,Minowa T.Organic compounds formed by thermochemical degradation of glucose-glycine melanoidins using hot compressed water[J].Journal of Chemical Engineering of Japan,2004,37(7),915-919.
    74. Ishimaru K,Hata T,Bronsveld P,et al.Spectroscopic analysis of carbonization behavior of wood,cellulose and lignin[J].Journal of Material Science,2007,42:122-129.
    75. Jahan M S,Chowdhury D,Islam M K,et al.Characterization of lignin isolated from some nonwood available in Bangladesh[J].Bioresource Technology,2007,98(2):465-469.
    76. Jasiukaityte E,Kunaver M,Strlic M.Cellulose liquefaction in acidified ethylene glycol[J].Cellulose,2009,16(3):393-405.
    77. de Jong W,Pirone A,Wojtowicz M A.Pyrolysis of miscanthus giganteus and wood pellets:TG-FTIR analysis and reaction kinetics[J].Fuel,2003,82(9),1139-1147.
    78. Kadla J F,Kubo S,Venditti R A,et al.Lignin-based carbon fibers for composite fiber applications[J].Carbon,2002,40(15):2913-2920.
    79. Karaca F.Molecular mass distribution and structural characterization of liquefaction products of a biomass waste material[J].Energy & Fuels,2006,20(1):383-387.
    80. Kissinger H E.Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702-1706.
    81.Kleinert M,Barth T.Phenols from lignin[J].Chemical Engineering Technology,2008,31(5):736-745.
    82. Kobayashi M,Asano T,Kajiyama M,et al.Analysis on residue formation during wood liquefaction with polyhydric alcohol[J].Journal of Wood Science,2004,50(5):407-414.
    83. Kong Y T,Doh G H,Kang I A.Manufacture of polyurethane foam with liquefied wood: Korea,239218[P],1999.
    84. Kristkova M,Filip P, Weiss Z,et al.Influence of metals on the phenol-formaldehyde resin degradation in friction composites[J].Polymer Degradation and Stability,2004,84(1):49-60.
    85.Krzan A,Kunaver M,Tisler V.Wood liquefaction using dibasic organic acids and glycols[J].ACTA Chimica Slovenica,2005,52(3):253-258.
    86. Kunaver M,Jasiukaityte E,Cuk N,et al.Liquefaction of wood, synthesis and characterization of liquefied wood polyester derivatives[J].Journal of Applied Polymer Science,2010,115(3):1265-1271.
    87. Kurimoto Y,Shirakawa K,Yoshioka M,et al.Liquefaction of untreated wood with polyhydric alcohols and its application to polyurethane forms[J].FRI (New Zealand) Bull,1992,176:163-172.
    88. Kurimoto Y,Doi S,Tamura Y.Species effects on wood-liquefaction in polyhydric alcohols[J].Holzforschung,1999,53(6):617-622.
    89. Lapierre C,Lallemand J Y,Monties B.Evidence of Poplar Lignin Heterogeneity by Combination of 13C and 1H-NMR Spectroscopy[J].Holzforschung,1982,36(6):275-282.
    90. Lee S H,Yoshioka M,Shiraishi N.Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam[J].Journal of Applied Polymer Science,2002,84(3):468-472.
    91. Lee S H,Ohkita T.Ring-opening polymerization of cyclic esters onto liquefied biomass[J].Journal of Polymers and the Environment,2004,12(4):203-210.
    92. Lee S H,Wang S Q.Effect of water on wood liquefaction and the properties of phenolated wood[J].Holzforschung,2005,59(6):628-634.
    93. Lee W J,Lin M S.Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir[J].Journal of Applied Polymer Science,2008,109(1):23-31.
    94. Lin L Z,Yoshioka M,Yao Y G,et al.Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood[J].Journal of Applied Polymer Science,1994,52(11):1629-1636.
    95. Lin L Z,Yoshioka M,Yao Y G,et al.Physical Properties of moldings from liquefied wood resins[J].Journal of Applied Polymer Science,1995a,55(11):1563-1571.
    96. Lin L Z,Yoshioka M,Yao Y G,et al.Preparation and properties of phenolated wood/phenol/formaldehyde cocondensed resin[J].Journal of Applied Polymer science,1995b,58(8):1297-1304.
    97. Lin L Z, Yao Y G, Yoshioka M, et al. Liquefaction mechanism of lignin in the presence of phenol at the levated temperature without catalysts: studies on β-O-4 lignin model compound.2.Reaction pathway[J].Holzforschung,1997a,51(4):325-332.
    98. Lin L Z,Yao Y G, Yoshioka M,et al.Liquefaction mechanism of lignin in the presence of phenol at the levated temperature without catalysts:studies on β-O-4 lignin model compound.1.Structural Characterization of the reaction products[J].Holzforschung,1997b,51(4):316-324.
    99. Lin L Z,Yao Y G,Yoshioka M, et al.Liquefaction mechanism of lignin in the presence of phenol at the levated temperature without catalysts:studies on β-O-4 lignin model compound. 3.Multi-condensation[J].Holzforschung,1997c,51(4):333-337.
    100. Lin L Z, Yao Y G,Shiraishi N.Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Part1. Identification of the reaction products[J].Holzforschung,2001a,55(6):617-624.
    101. Lin L Z,Yao Y G,Shiraishi N.Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis.Part2.Reaction behavior and pathways[J].Holzforschung,2001b,55(6):625-630.
    102. Lin L Z,Yao Y G, Yoshioka M,Shiraishi N.Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis[J].Carbohydrate Polymers,2004,57(2):123-129.
    103. Ling N,Hori N,Takemura A.Effect of postcure conditions on the dynamic mechanical behavior of water-based polymer-isocyanate adhesive for wood.Journal of Wood Science,2008,54(5):377-382.
    104. Liu Q,Wang S R,Zheng Y.Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):170-177.
    105. Lu F, Ralph J.The DFRC method for lignin analysis. Part 1. A new method for β-aryl ether cleavage:lignin model studies [J].Journal of Agricultural and Food Chemistry, 1997,45(12):4655-4660.
    106. Ma X J,Zhao G J.Structure and performance of fibers prepared from liquefied wood in phenol[J].Fibers and Polymers,2008,9(4):405-409.
    107. Marchessault R H,Coulombe S,Morikawa H,et al.Characterization of aspen exploded wood lignin[J].Canadian Journal of Chemistry,1982,60(18):2372-2382.
    108.Markova I,Klement I.Thermal analysis (TG, DTG and DSC) of hornbeam wood after drying[J].Wood Research,2003,48(1-2):53-61.
    109. Mascal M,Edward B N.Comment on Processes for the Direct Conversion of Cellulose or Cellulosic Biomass into Levulinate Esters[J].ChemSusChem,2010,3(12):1349-1351.
    110. Mocanu A M,Odochian L,Moldoveanu,et al.TG-FTIR study on thermal degradation in air of some new diazoamino derivatives[J].Thermochimica Acta,2010,509(1-2):33-39.
    111. Morinelly J,Morinelly E,Jensen J R,et al. Kinetic Characterization of xylose monomer and oligomer concentrations during dilute acid pretreatment of lignocellulosic biomass from forests and switchgrass[J].Industrial & Engineering Chemical Research,2009,48(22):9877-9884.
    112. Morohoshi N,Glasser W G.The structure of lignins in pulps. Part 4:Comparative evaluation of five lignin depolymefization techniques[J].Wood Science and Technology,1979,13(3):165-178.
    113.Mocanu A M,Odochian L,Moldoveanu C,et al.TG-FTIR study on thermal degradation in air of some new diazoaminoderivatives Ⅱ [J].Thermochimica Acta,2010,509(1-2):33-39.
    114. Mun S P,Hassan E B,Hassan M.Liquefaction of lignocellulosic biomass with dioxane/polar solvent mixtures in the presence of an acid catalyst[J].Journal of Industrial and Engineering Chemistry,2004a,10(3):473-477.
    115. Mun S P,Hassan E.Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst[J].Journal of Industrial and Engineering Chemistry,2004b,10(5):722-727.
    116. Mun S P,Gilmour I A,Jordan P J.Effect of organic sulfonic acids as catalysts during phenol liquefaction of Pinus radiata bark[J]. Journal of Industrial and Engineering Chemistry,2006,12(5):720-726.
    117. Nasar M,Emam A,Sultan M.et al.Optimization and characterization of sugar-cane bagasse liquefaction process[J].Indian Journal of Science and Technology,2010,3(2):207-212.
    118.Naumann D,Labischubski H.Giesbrecht P.The characterization of microorganisms by Fourier transform infrared spectroscopy (FTIR).In:Nelson WH(ed)Modern Techniques for rapid microbiological analysis. VCH,New York:1991,43-96.
    119. Niu M,Zhao G J,Alma M H.Thermogravimetric studies on condensed wood residues in polyhydric alcohols liquefaction[J].BioResources,2011,6(1):615-630.
    120. Onay O,Bayram E,Kockar O M.Copyrolysis of seyitomer-lignite and safflower seed:Influence of the blending ratio and pyrolysis temperature on product yields and oil characterization[J].Energy & Fuels,2007,21(5):3049-3056.
    121. Ono H,Yamada T,Hatano Y.Adhesives from waste paper by means of phenolation[J]. Adhesion, 1996,59:135-145.
    122. Ono H,Yamada T.Cellulosic materials-potential source for adhesives[J].Chemistry and Adhesive, 2000,74:44-49.
    123.Okabe K,Yao T,Shiraishi N,et al.Preparation of thin carbon fibers from waste wood-derived phenolic resin[J].Journal of materials science,2005,40:3847-3848.
    124. Pan H,Shupe T F,Hse C Y.Characterization of liquefied wood residues from different liquefaction conditions[J]. Journal of Applied Polymer Science,2007,105(6):3739-3746.
    125. Pan H,Shupe T F,Hse C Y.Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins[J]. Journal of Applied Polymer Science,2008,108(3),1837-1844.
    126. Pastusiak R.Charakterisierung von Zellstoffkomponenten-Analytik,Spektroskopie,Reaktions kinetik und Modellierung[D].Fakultat fur Chemie der Technischen Universitat Munchen,2003.
    127. Pecsok R L,Shields L D.Modern methods of chemical analysis[J].Journal of Chemistry Education,1969,46(5):p332.
    128. Peng Y Y,Wu S B.The structural and thermal characteristics of wheat straw hemicellulose[J].Journal of Analytical and Applied Pyrolysis,2010,88(2):134-139.
    129. Petrie E M.Reactive Polyurethane Adhesives for Bonding Wood[J].Chemistry and Adhension,2004, 40(2):95-99.
    130. Poljansek I,Krajnc M.Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy[J].Acta Chimistry.Slovenia,2005,52(3):238-244.
    131. Pu S,Shiraishi N.Liquefaction of wood without a catalyst I-Time course of wood liquefaction with phenols and effects of wood/phenol ratios [J].Mokuai Cakkaishi,1993,39(4):446-452.
    132. Schwanninger M,Rodrigues J C,Pereira H.et al.Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[J].Vibrational Spectroscopy,2004,36:23-40.
    133. Segal L,Creely J J,Martin A E,et al.An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J].Textile Research Journal,1959,29(10):786-794.
    134. Shiraishi N,Onodera S,Ohtsni M.Dissolution of etherified or estherified wood into polyhydric alcohols of bisphenol A and their application in preparing wooden polymeric materials[J].Mokuzai Gakkaishi,1985,31(5):418-420.
    135. Shiraishi N, Kishi H.Wood-phenol adhensives prepared from carboxymethylated wood[J].Journal of Applied Polymer Science,1986,32(1):3189-3209.
    136. Soria A J,McDonald A G,Shook S R.Wood solubilization and depolymerization using supercritical methanol.Part1:Process optimization and analysis of methanol insoluble components (bio-char)[J].Holzforschung,2008,62(4):402-408.
    137. Sudo K,Shimizu K.New carbon fiber from lignin[J].Journal of Applied Polymer Science,1992,42(1):127-134.
    138. Sun X F,Sun R C,Fowler P,et al.Extraction and characterization of original lignin and hemicelluloses from wheat straw[J] Journal of Agricultural and Food Chemistry,2005,53(4):860-870.
    139. Sun Y C,Wen J L,Xu F,et al.Fractional and structural characterization of organosolv and alkaline lignins from Tamarix austromogoliac[J].Scientific Research and Essays,2010,5(24):3850-3864.
    140. Taki K, Mizumachi H, Yamagishi Y.Bond quality of PVA isocyanate reactive resin adhesives. Part 1. Relation between the cross-linking density and the adhesive strength[J].Mokuzai Gakkaishi,1978,24:237-242.
    141. Taki K,Yagi S,Yamagishi Y.Bond quality of PVA isocyanate reactive resin adhesives.Part III. Properties of cured resin films[J].Mokuzai Gakkaishi,1980,26:81-86.
    142. Taki K,Tomita B,Mizumachi H.Studies on aqueous vinyl polymer solution-isocyanate adhesives.Part I.Mechanical properties of base polymers and bond strength over a wide temperature range[J].Mokuzai Gakkaishi,1982a,28:143-149.
    143. Taki K,Tomita B,Mizumachi H.Studies on aqueous vinyl polymer solution-isocyanate adhesives. Part II.Dependence of mechanical properties and bond strength on the concentration of crosslinks in cured adhesives over a wide temperature range[J].Mokuzai Gakkaishi,1982b,28:150-155.
    144. Taki K,Tomita B,Mizumachi H.Studies on aqueous vinyl polymer solution-isocyanate adhesives. Part III.Reaction mechanism of the isocyanate group[J].Mokuzai Gakkaishi,1983,29:145-152.
    145. Taki K.Studies on aqueous vinyl polymer solutionisocyanate adhesives. Part Ⅳ. Adhesion of woods with isocyanate compounds[J].Mokuzai Gakkaishi,1985,31:573-578.
    146. Tejado A,Pena C,Labidi J,et al.Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis[J].Bioresource Technology,2007,98(8):1655-1663.
    147.Tsujimoto N.In preprints for 14th symposium on chemical proeessingof wood.Kyoto:1984,17.
    148.Umemura K, Takahashi A, Kawai S.Durability of isocyanate resin adhesives for wood. Part I. Thermal properties of isocyanate resin cured with water[J].Journal of Wood Science,1998,44:204-210.
    149. Vazquez G,Antorrena G,Gonzalez J,et al.FTIR,1H and 13C NMR characterization of acetosolv-solubilized pine and eucalyptus lignins[J].Holzforschung,1997,51(2):158-166.
    150. Wan J Q,Wang Y,Xiao Q.Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp[J].Bioresource Technology,2010,101(12):4577-4583.
    151. Wang G,Li W,Li B Q,et al.TG study on pyrolysis of biomass and its three components under syngas[J].Fuel,2008,87(4-5):552-558.
    152. Wang S R,Wang K G,Liu Q,et al.Comparison of the pyrolysis behavior of lignins from different tree species[J].Biotechnology Advances,2009,27(5),562-567.
    153. Wang H,Chen H Z.A novel method of utilizing the biomass resource:Rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (puf)[J].Journal of the Chinese Institute of Chemical Engineers,2007,38(2):95-102.
    154. Wang J R,Chen D J.Studies on the Glycolysis Behavior of Polyurethane Fiber Waste with Diethylene Glycol[J].Journal of Polymers and the Environment,2006,14(2):191-194.
    155. Wei Y P,Cheng F,Li H P,et al.Synthesis and properties of polyurethane resins based on liquefied wood[J]. Journal of Applied Polymer Science,2004,92(1):351-356.
    156. Wei Y P,Cheng F,Li H P,et al.Thermal properties and micromorphology of polyurethane resins based on liquefied benzylated wood[J].Journal of Scientific & Industrial Research,2005,64(6):435-439.
    157. Wu Y M,Zhao Z L,Li H B,et al.Low temperature pyrolysis characteristics of major components of biomass[J].Journal of Fuel Chemistry and Technology,2009,37(4):427-432.
    158. Xu F,Jiang J X,Sun R C,et al.Fractional isolation and structural characterization of mild ball-milled lignin in high yield and purity from Eucommia ulmoides Oliv[J].Wood Science and Technology,2008,42(3):211-226.
    159. Yan Y B,Pang H,Yang X X,et al.Preparation and characterization of water-blown polyurethane foams from liquefied cornstalk polyol[J].Journal of Applied Polymer Science,2008,110(2):1099-1111.
    160. Yanik J,Kommayer C,Saglam M,et al.Fast pyrolysis of agricultural wastes:characterization of pyrolysis products[J].Fuel Processing Technology,2007,88(10):942-947.
    161. Yang Q,Wu S B,Lou R,et al. Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas chromatography/mass spectrometry[J].Journal of Analytical and Applied Pyrolysis,2010,87(1):65-69.
    162. Yao Y G,Yoshioka M,Shiraishi N.Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent[J].Mokuai Gakkaishi,1993,39(8):930-938.
    163. Yao Y G,Yoshioka M,Shiraishi N.Rigid polyurethane foams from combined liquefaction mixtures of wood and starch[J].Mokuai Gakkaishi,1995,41(7):659-668.
    164. Yamada T,Ono H.Rapid liquefaction of lignocellulose waste in the presence of cyclic carbonates for preparing levulinic acid and polyurethane resins:The 2th annual partnerships for environmental improvement and economic development conference[Z].New York:2000.
    165. Yamada T,Hu Y,Ono H.Condensation reaction of degraded lignocellulose during wood liquefaction in the presence of polyhydric alcohols[J]. Journal of the Adhesion Society of Japan,2001a,37(12):471-478.
    166. Yamada T,Ono H.Characterization of the products resulting from ethylene glycol liquefaction of cellulose[J]. Journal of Wood Science,2001b,47(6):458-464.
    167. Yamada T,Aratani M,Kubo S,et al.Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate[J].Journal of Wood Science,2007,53(6):487-493.
    168. Yang Q,Wu S B,Lou R,et al.Structural characterization of lignin from wheat straw[J].Wood Science and Technology,2010,44(2).
    169. Yokoyama S,Ogi T,Kouguchi K.Oillification of wood[J].Liquid Feuls Technology,1994,2:115.
    170. Yoshida C,Okabe K,Yao T,et al.Preparation of carbon fibers from biomass-based phenol formaldehyde resin[J].Journal of Materials Seience,2005,40:335-339.
    171. Yuan T Q,He J,Xu F,et al.Fractionation and physico-chemical analysis of degraded lignins from the black liquor of Eucalyptus pellita KP-AQ pulping[J].Polymer Degradation and Stability,2009,94:1142-1150.
    172. Zhang T.Zhou Y J,Liuand D H,et al.Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol[J].Bioresource Technology,2007,98(7):1454-1459.
    173. Zhang Y C,Ikeda A,Horin,et al.Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid[J].Bioresource Technology,2006,97(2):313-321.
    174. Zhou C G,Li G Z,Gong A J.Study on the thermal stability of organosilicon-phenolic resin[J].Polymer Material Science & Engineering,2000,6(1):164-165,168.
    175. Zou X W,Yang Z,Qin T F.FTIR analysis of products derived from wood liquefaction with 1-octanol[J].Spectroscopy and Spectral Analysis,2009,29(6):1545-1548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700