长薄鳅(Leptobotia elongata)野生资源分布及其种群遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长薄鳅(Leptobotia elongate Bleeker)是中国特有鱼种,著名的观赏淡水鱼,主要分布在长江上游的干流及其支流。采用渔民调访、拖网调查和产卵江段的规模估算等方法,调查了长薄鳅在长江干流上游及其支流的分布和数量,结果表明我国长薄鳅资源在长江干流及其支流正在快速衰竭,走向濒危。
     为了分析长薄鳅野生种群结构并评估其遗传多样性,本研究测定了5个长薄鳅种群共110个样本的线粒体控制区(D-loop)序列(835bp),并进行比较分析,这些序列中,总共有49个变异位点,45个单倍型,单倍型多样性(h)和核苷酸多样性(π)分别是0.952和0.00454;样本间的平均遗传距离是0.0046±0.0010,群内的遗传距离和群间的遗传距离的变化分别是0.0033±0.0011至0.0050±0.0012和0.0037±0.0.0011至0.0050±0.001。Tajima's D中性检验(-1.86383,P<0.01)和Fu'sFs检验(-25.92536,P<0.01)以及错配分布分析都表明,长薄鳅在最近历史上经历过种群扩张或瓶颈效应。分子变异分析(AMOVA)发现,绝大多数的变异来自群内个体间(98.3%),群间的变异很少(1.7%)。分化系数和基因流分析结果表明,种群间的分化系数较低(Fst=0.01702,P>0.05)而有高的基因流水平(Nm=28.88),提示长薄鳅种群分化水平较低,没有显著的地理种群结构。这些结果与长薄鳅属产漂流性卵的鱼类,以及其个体频繁地溯江上游相一致。同时,长薄鳅的种群遗传结构表明,分布在长江上游的这些种群应该被当作一个遗传单元进行管理和保护。
     本研究通过设计保守引物、使用高保真PCR反应和引物步移测序法测序了长薄鳅全线粒体基因组序列。长薄鳅线粒体基因组全序列有16591个碱基,其中包含13个蛋白编码基因、两个核糖体RNA (ribosomal RNA, rRNA)基因、22个转运RNA (transfer RNA, tRNA)基因和一个控制区,其基因组成与大部分脊椎动物线粒体完全一样。轻链复制起点(origin of L-strand replication, OL)有30个碱基,位于一个由5个tRNA基因串联组成区(WANCY区)。控制区有925个碱基,位于tRNA-Pro和tRNA-Phe基因之间。基于长薄鳅线粒体重链上12个蛋白编码基因的序列,连同12个其它鳅科鱼类线粒体重链上12个蛋白编码基因的序列,使用贝叶斯(Bayesian)和最大简约法(maximum parsimony, MP)分析了长薄鳅的进化关系,结果表明,整个进化树分成两枝,即Acantopsis、Pangio、Cobitis、Niwaella、Koreocobitis、Misgurnus属聚为一枝,共同构成鳅亚科(Cobitinae); Chromobotia和(?)Leptobotia属聚为另一枝,共同构成沙鳅亚科(Botiinae)。
     长薄鳅绝对怀卵量为6160-47239粒,平均绝对怀卵量为27511粒;相对生殖力为每克体重26.6-48.8粒,平均为37.7粒。采用LRH-A2和脑垂体混合使用能有效促使长薄鳅的排卵,催产率可达75%-81.8%,受精率和孵化率分别高达82%-83%和87%-89%。
Elongate loach (Leptobotia elongate Bleeker), an endemic fish species to China, is a famous ornamental freshwater fish, which disturbuted in the upper reaches of the Yangtze River of China. The resource of Elongate loach in Yangtze River was investigated by visiting fishermen, trawling, and so on. The results showed that the Elongate loach resources in Yangtze River has rapidly decreased and at the brink of extinction.
     To analyze wild population structure and evaluate genetic diversity of the famous ornamental fresh water fish, elongate loach (Leptobotia elongata (Bleeker)), a comparative analysis using partial mtDNA control region (D-loop)(835bp) sequences was performed for110individuals from five localities in upper reaches of the Yangtze River, China. A total of49polymorphic sites and45haplotypes were detected, and the haplotype diversity (h) and nucleotide diversity (π) were0.952and0.00454, respectively. The overall mean genetic distance among individuals was0.0046±0.0010. The genetic distance of intra-group ranged from0.0033±.0011to0.0050±0.0012, and that between pairwise groups ranged from0.0037±0.0.0011to0.0050±0.0012. The neutral test of Tajima's D (-1.86383, P<0.01) and Fu's Fs (-25.92536, P<0.01), together with uni-modal mismatch distribution, indicated a recent genetic bottleneck or population expansion of the species in history. Analysis of molecular variance (AMOVA) revealed that small variances occurred among groups (1.7%), while most variances occurred within groups (98.3%). Also, there were no significant population structure (Fst=0.01702, P>0.05), and extremely high gene flows among groups (Nm=28.88), suggesting low genetic divergence in the species. It should be attribute to that the fish spawn drift eggs and the individuals migrate downstream or upstream in its distribution ranges frequently. Thus, the gene flows could frequently occur among these groups. These groups of Elongate loach distributed in upper reaches of the Yangtze River should be considered as a whole unit for management.
     The complete mitochondrial genome of Elongate loach was determined using pairs of conservation primers, high-fidelity PCR reaction and primers walking sequencing, which was16591bp in length. It contained13protein-coding genes, two ribosomal RNA (rRNA) genes,22transfer RNA (tRNA) genes and one control region, with an identical sequence order to that of most vertebrates.The origin of L-strand replication (OL) in Elongate loach mitochondrion was located in a cluster of five tRNA genes (WANCY region) with30nucleotides in length. The control region was925nucleotides in length,and was located between tRNA-Pro and tRNA-Phe genes. Based on the12protein-coding genes on the heavy strand of Elongate loach and other cobitidae species, the phylogenetic relationship analysis among13cobitidae species was performed by Bayesian and maximum parsimony methods. The result suggested that phylogenetic tree was divided into two branchs. Acantopsis, Pangio, Cobitis, Niwaella, Koreocobitis and Misgurnus clustered into a sub-family (cobitinae), Chromobotia and Leptobotia clustered into another sub-family (botiinae).
     The absolute fecundity for Elongate loach was between6160and47239, with the average of27511. The relative fecundity was between26.6and48.8particles per gram of body weight, with the average of37.7. The mixture of LRH-A2and pituitary were used to promote Elongate loach spawning, and spawing rate was75%-81.8%. The fertilization rate and hatching rate were up to82%-83%and87%-98%, respectively.
引文
[1]Franklram R. Stress and adaptation in conservation genetics[J]. J. EVOL. BIOL.2005, 18:750-755.
    [2]Frankham R. Conservation genetics[J]. Annual Review of Genetics.1995,29:305-327.
    [3]Avise J C, and Hamrick J L. Conservation Genetics, Case Histories form Nature[M]. Chapman & Hall, New York.1996.
    [4]陈灵芝.中国的生物多样性——现状及其保护对策[J].北京:科学出版社,1993:31-113.
    [5]蒋志刚,马克平,韩兴国.保护生物学[M].杭州:浙江科学出版社,1997.
    [6]葛颂,洪德元.遗传多样性及其检测方法.见:钱迎倩,马克平(主编),生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994,123-140.
    [7]Avise J C. Molecular markers, natural history and evolution[M]. New York:Champman and Hall,1994.
    [8]Ryder O A. Species conservation and systematics:the dilemma of subspecies[J]. Trends in Ecology and Evolution,1986,1:9-10.
    [9]Waples R S. Pacifi Salmon Oncorhynchus spp. and the definition of "species" under the endangered species act[J]. Marine Fisheries Reviews,1991,53:11-22.
    [10]Pennock D S, Dimmick W W. Critique of the evolutionarily significant unit as a definition for'distinct population segments'under the U.S.Endangered Species Act[J]. Conservation Biology,1997,11:611-619.
    [11]Fraser D J, Bernatchez L. Adaptive evolutionary conservation:towards a unified concept for defining conservation units[J]. Molecular Ecolology,2001,10: 2741-2752.
    [12]Crandall K A, Bininda-Emonds O R P, Mace G M, et al. Considering evolutionary processes in conservation biology[J]. Trends in Ecology and Evolution,2000,17: 390-395.
    [13]Abbott C L, Double M C. Genetic structure,conservation genetics and evidence of speciation by range expansion in shy and white-capped albatrosses[J]. Molecular Ecology,2003,12:2953-2962.
    [14]David P. Heterozygosity-fitness correlations:new perspectives on old problems[J]. Heredity,1998,80:531-537.
    [15]Soule M E, Hillis L S. No need to isolate genetics[J]. Science,1998,282:1658-1659.
    [16]Frankham R, Ballou J D, and Briscoe D A. Introduction to conservation genetics[M]. Cambridge University Press,2002.
    [17]O'Brien S J. A role for molecular genetics in biological conservation[J]. Proc. Natl. A cad. Sci. USA,1994,91:5748-5755.
    [18]Mffe G K, Carroll C R. Princeples of Conservation Biology[M]. Sunderland, Massachusetts:Sinauer Associates,Inc.,1994.
    [19]赵寿元,乔守怡.现代遗传学[M].北京:高等教育出版社,2003,53-155.
    [20]Welsh J, McClell M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res,1990,18:7213-7218.
    [21]Williams J G, Kubelik A R, Livak K J, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res,1990,18: 6531-6535.
    [22]杜皓月,杨凯,王凤敏.DNA分子标记技术在水产养殖中的研究应用[J].河北渔业,2009,(5):38-43.
    [23]陈兆波.分子标记的种类及其在作物遗传育种中的应用[J].现代生物医学进展,2009,9(11):2179-2148.
    [24]Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting [P]. European Patent Application 94202629.7 (Publication No.0534858A1). Paris:European Patent Office,1992.
    [25]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,23:4407-4414.
    [26]姚红伟,袁霞,付鑫AFLP分子标记技术及其在水产动物中的应用[J].现代渔业信息.2009,24(7):22-24.
    [27]Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res,1989,17:6463-6471.
    [28]Weber J L, and Wong C. Mutation of human short tandem repeats[J]. Hum Mol Genet, 1993,2:23-1128.
    [29]Crawford A M, and Cuthbertson R P. Mutations in sheep microsatellites[J]. Genome Res,1996,6:876-879.
    [30]Ellegren H. Microsatellite mutations in the germline:implications for evolutionary inference[J]. Trends Genet,2000,16:551-558.
    [31]Li W H. Molecular Evolution[M]. Sunderland, MA:Sinauer Associates,1997, 177-213.
    [32]Levinson G, and Gutman G A. High frequency of short frameshifts in poly-CA/GT tandem repeats borne by bacteriophage M13 in Escherichia coli K-12[J]. Nucl Acids Res,1987,15:5323-5338.
    [33]Schlotterer C, Amos B, and Tautz D. Conservation of polymorphic simple sequence loci in cetacean species[J]. Nature,1991,354:63-65.
    [34]Sia E A, Kokoska R J, Dominska M, et al. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes[J]. Mol Cell Biol, 1997,17:2851-2858.
    [35]Kolodner R D, Marsischky G T. Eukaryotic DNA mismatch repair [J]. Curr Opin Genet Dev,1999,9:89-96.
    [36]Smith G P. Evolution of repeated DNA sequences by unequal crossover[J]. Science, 1976,191:528-535.
    [37]Jeffreys A J, Tamaki K, MacLeod A, et al. Complex gene conversion events in germline mutation at human mini satellites [J]. Nat Genet,1994,6:136-145.
    [38]Chasman D, Adams R M. Predicting the functional consequences of non-synonym single nucleotide polymorphism:structurebased assessment of amino acid variation[J]. J Mol Biol,2001,307:683-706.
    [39]张代臻,唐伯平,孙红英,等.DNA分子标记在虾蟹类系统地理学研究中的应用[J].水产科学,2008,27(5):262-265.
    [40]Smith T B and Wayne R K. Molecular genetic approaches in conservation[M]. Oxford University Press,1996.
    [41]Kuehn R, Schroeder W, Pirchner F, et al. Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus) [J]. Conservation Genetics,2003,4: 157-166.
    [42]Peng H, Liu S, Zou F, et al. Genetic diversity of captive forest musk deer (Moschus berezovskii) inferred from the mitochondrial DNAcontrol region[J]. Animal Genetics, 2008,40:65-72.
    [43]陶峰勇,王小明,郑合勋.中国大鲵五地理种群Cytb基因全序列及其遗传关系分析[J].水生生物学报,2006,30(5):625-628.
    [44]刘焕章.鱼类线粒体DNA控制区的结构与进化:以鳑鮍鱼类为例[J].自然科学进展,2002,12(3):266-270.
    [45]张四明,吴清江,张亚平.中华鲟(Acipenser sinensis)及相关种类的mtDNA控制区串联重复序列及其进化意义[J].中国生物化学与分子生物学报,2000,16(4):458-461.
    [46]李志刚,魏辅文,周江.海南长臂猿线粒体D-loop区序列分析及种群复壮[J].生物多样性,2010,18(5):523-527.
    [47]李娜.闽浙地区香鱼线粒体Cytb基因和D-loop区序列多态性[J].遗传,2008,30(7):919-925.
    [48]Saillant E, Patton J C, Ross E, et al. Conservation geneties and demographic history of the endangered Cape Fear shiner (Notro Pismekisrocholas)[J]. Mol Ecol,2004,13: 2947-2958.
    [49]Rosel P E, France S C, Wang J Y, et al. Genetic structure of harbour porpoise, Phoconena phocoena, populations in the northwest Atlantic based on mitochondrial and nuclear markers[J]. Mol Ecol,1999,8(12):41-54.
    [50]Pichler F B, Baker C S. Loss of genetic diversity in the endemic hector's dolphin due to fisheries-related mortality[J]. Proc R Soc Lond B Biol Sci,2000,267(1438): 97-102.
    [51]方耀林,张燕,肖汉兵,等.野生大鲵及其人工繁殖后代的遗传多样性分析[J].水生生物保护,2008,32(5):783-786.
    [52]方耀林,张燕,杨焱清,等.大鲵遗传多样性分析[J].淡水渔业,2006,36(6):8-11.
    [53]吴孝兵.扬子鳄保护遗传学及线粒体基因组全序列研究[D].南京师范大学博士论文,2001.
    [54]朱海涛,郑涛,吴孝兵.扬子鳄的保护遗传学研究进展[J].四川动物,2011,30(2):301-303.
    [55]Hamrick J L, Godt M J W, Murawski D A, et al. Correlations between species traits and allozyme diversity:implications for conservation biology, pp.75-86. In:D. A. Falk & K. E. Holsinger (ed.) Genetics and conservation of rare plants[M]. Oxford Univ. Press, Oxford,1991.
    [56]Frankel OH, The place of management in conservation, pp.1-14. In:Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas (ed.) WL. Genetics and Conservation:a reference for managing wild animal and plant Populations [M]. The Benjamin/Cumming Pub. Company, Menlo Park, CA,1983.
    [57]Frankham R, Genentics and conservation biology[J]. Comptes Rendus Biology,2003, 326:522-529.
    [58]Hedrick P. Recent developments in conservation genetics[J]. Forest Ecology and Management,2004,197:3-19.
    [59]Hedrick P W, Dowling T E, Minckley W L, et al. Establishing a captive broodstock for the endangered bonytail chub (Gila elegans) [J]. J Hered,2000,91:35-39.
    [60]Froese R, Pauly D. FishBase World Wide Web electronic publication. http://www.fishbase.org,2005.
    [61]蒋晓华,谷更生,昝瑞光.云南滇池高背鲫鱼胚胎发育过程中酯酶(E S T)同工酶分析[J].西南农业学报,1997,10(2):100-104.
    [62]李思发,吕国庆,L.贝纳切兹,长江中下游鲢鳙草青四大家鱼线粒体DNA多态性分析[J].动物学报,1998,44(1):82-93.
    [63]罗静,张亚平,朱春玲,等.鲫鱼遗传多样性的初步研究[J].遗传学报,1999,26(1):28-36.
    [64]田焱,王立新,陈宏,等.六个鲫鱼品系线粒体Cytb基因PCR-RFLP分析[J].水产科学,2004,23(8):18-21.
    [65]郑冰蓉、张亚平.建鲤线粒体DNA的遗传多样性初步分析[J].水利渔业,2000,20(5):11-12.
    [66]Liao M, Zhang L, Yang G, et al. Development of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) genetic maps using microsatellite and AFLP markers and a pseudo-testcross strategy[J]. Anim Genet,2007,38(4):364-70.
    [67]Ezaz M T, Harvey S C, Boonphakdee C, et al. Isolation and physical mapping of sex-linked AFLP markers in nile tilapia (Oreochromis niloticus L.) [J]. Mar Biotechnol (NY),2004,6(5):435-45.
    [68]Gwo J C, Hsu T H, Lin K H, et al. Genetic relationship among four subspecies of cherry salmon (Oncorhynchus masou) inferred using AFLP[J]. Molecular Phylogenetics and Evolution,2008,48(2):776-81.
    [69]王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP(?)旨纹多态性的研究[J].中国水产科学,2002,9(3):198-202.
    [70]张全启,徐晓斐,齐洁,等.牙解野生种群与养殖群体的遗传多样性分析[J].中国海洋大学学报,2004,34(5):816-820.
    [71]张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析[J].热带海洋学报,2004,23(5):50-55.
    [72]王志勇,王艺磊,林利民,等.利用AFLP(?)旨纹技术研究中国沿海真鲷群体的遗传变异和趋异[J].水产学报,2001,25(4):289-294.
    [73]Lee W J, Conroy J, Howell W H, et al. Structure and evolution of teleost mitochondrial control regions[J]. J Mol Evol,1995,41 (1):54-66.
    [74]Lockhart PJ, Penny D, Meyer A. Testing the phylogeny of swordtail fishes using decomposition and spectral analysis[J]. J Mol Evol,1995,41 (5):666-674.
    [75]孙玉华,王伟,刘思阳,等.中国胭脂鱼线粒体控制区遗传多样性分析[J].遗传学报,2002,29(9):787-790.
    [76]Gleeson D M, Howitt R L, Ling N. Genetic variation, population structure and cryptic species within the black mudfish, Neochanna diversus, an endemic galaxiid from New Zealand[J]. Mol Ecol,1999,8(1):47-57.
    [77]Refseth U H, Nesb C L, Stacy J E, et al. Genetic evidence for different migration routes of freshwater fish into Norway revealed by analysis of current perch (Perca fluviatilis) populations in Scandinavia[J]. Mol Ecol,1998,7(8):1015-1017.
    [78]Cresswell P. Assembly, transport, and function of MHC class Ⅱ molftules[J]. Annu Rev Imnitinol,1994,12:259-293.
    [79]Banchcreau R, Steinman R M. Dendritic celk and the control of immunity[J]. Nature, 1998,392:245-252.
    [80]Janeway C A, Travers P, Walport M, et al. Immunobiology:the immune system in health and disease 4th edition[M]. London:Current Biology Publication,1999.
    [81]O'Brien S J, Roelke M E, Marker L, et al. Genetic basis for species vulnerability in the Cheetah[J]. Science,1985,227:1428-1434.
    [82]Watkins D, Garber T L, Chen Z W, et al. Unusually limited nucleotide equence variation of the expressed major histocompatibility complex class I genes of a New World primate species (Saguinus oedipus) [J]. Immunogenetics,1991,33:79-89.
    [83]Bodmer W,1972. Evolutionary significance of the HL-A system[J]. Nature,237:139-145.
    [84]Doherty P C, Zinkernagel R M. Enhanced immunological.surveillance in mice heterozygous at the H-2 gene complex[J]. Nature,1975,256:50-52.
    [85]Garrigan D, Hedrick P W. Class I MHC polymorphism and evolution in endangered California Chinook and other Pacific salmon[J]. Immunogenetics,2001,53(6):483-489.
    [86]Miller K M, Kaukinen K H, Beacham T D, et al. Geographic heterogeneity in natural selection on an MHC locus in sockeye salmon[J]. Genetica,2001,11:237-257.
    [87]Ruoney A P, Honeycutt E L, Davis S K, et al. Evaluating a putative bottleneck in a population of bowhead whales from patterns of microsatellite diversity and genetic disequilibria[J]. J Mol Evol,1999,49:682-690.
    [88]Zhang Y W, Lawrance S K, Ryder O A, et al. Identification of monozygotic twin chimpanzees by microsatellite analysis[J]. Am J Primatol,2000,52:101-106.
    [89]Hassanien H A, Gilbey J. Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites[J]. Aquaculture Research, 2005,36:1450-1457.
    [90]李建中,刘少军,张轩杰,等.异源四倍体鲫鲤及其原始亲本遗传变异的微卫星标记分析[J].遗传学报,2005,32(4):378-383.
    [91]常玉梅,孙效文,梁利群.中国鲤几个代表种群基因组DNA遗传多样性分析[J].水生生物学报,2004,28(5):481-485.
    [92]梁利群,常玉梅,董崇智,等.微卫星DNA标记对乌苏里江哲罗鱼遗传多样性的 分析[J].水产学报,2004,28(5):481-486.
    [93]Costello A B, Down T E, Pollard S M, et al. The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces:Salmonidae) [J]. Evolution Int J Org Evolution,2003,57(2):328-44.
    [94]Zhu X D, Geng B, Li J, et al. Analysis of genetic diversity among silver carp populations in the middle and lower Yangtse River using thirty microsatellite markers[J]. Yi Chuan,2007,29(6):705-13.
    [95]赵莹莹,朱晓琛,孙效文.虹鳟6个养殖群体遗传多样性的微卫星分析[J].遗传,20062,8(8):956-962.
    [96]Hansen M M, Ruzzante D E, Nielsen E E, et al. Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations [J]. Mol Ecol,2002,11:2523 2535.
    [97]Guinand B, Scribner KT, Page KS, et al. Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes[J]. Proc. R. Soc. Lond., B Biol Sci,2003,270:425-433.
    [98]Vasemagi A, Nilsson J, Primmer C R. Expressed Sequence Tag (EST) linked microsatellites as a source of gene associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.) [J]. Mol Biol Evol,2005, 22:1067-1076.
    [99]Reusch T B, Wegner K M, Kalbe M. Rapid genetic divergence in postglacial populations of threespine stickleback (Gasterosteus aculeatus):the role of habitat type, drainage and geographical proximity [J]. Mol Ecol,2001,10:2435-2445.
    [100]McCartney M A, Acevedo J, Heredia C, et al. Genetic mosaic in a marine species flock[J]. Mol Ecol,2003,12:2963-2973.
    [101]Nielsen E E, Nielsen P H, Meldrup D, et al. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol Ecol,2004, 13:585-595.
    [102]Dannewitz J, Maes G E, Johansson L, et al. Panmixia in the European eel:a matter of time[J]. Proc. Royal Soc. Lond.,2005,272:1129-1137.
    [103]Zardoya R, Vollmer D M, Craddock C, et al. Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces:Perciformes) [J]. Proc. R. Soc. Lond., B Biol Sci,1996,263:1589-1598.
    [104]Saleem Q, Anand A, Jain S, et al. The polyglutamine motif is highly conserved at the Clock locus in various organisms and is not polymorphic in humans[J]. Hum Genet, 2001,109:136-142.
    [105]Poompuang S, Hallerman E M. Toward selection of quantitative trait loci and marker-assisted selection in fish[J]. Rev Fish Biol Fish,1997,5:253-277.
    [106]Koop B F, Davidson W S. ESTs, microarrays and genomic research in salmon (GRASP). Plant and Animal Genome ⅩⅢ Abstracts. Available on http://www.intl-pag.org/13/abstracts/PAG13_W022.html,2005.
    [107]Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus[J]. Genetics,2001,158:727 734.
    [108]Karsi A, Cao D, Li P, et al. Transcription analysis of channel catfish(Ictalurus punctatus):initial analysis of gene expression and microsatellite containing cDNAs in the skin[J]. Gene,2002,285:157-168.
    [109]Dimitry A. Chistiakov, Hellemans B, et al. A Microsatellite Linkage Map of the European Sea Bass Dicentrarchus labrax L[J]. Genetics,2005,170:1821-1826.
    [110]Moen T, Hoyheim B, Munck H, et al. A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes[J]. Anim Genet,2004,35:81-92.
    [111]Walter R B, Rains J D, Russell J E, et al. A microsatellite genetic linkage map for Xiphophorus[J]. Genetics,2004,168:363-372.
    [112]Woram R A, McGowan C, Stout J A, et al. A genetic linkage map for Arctic charr (Salvelinus alpinus):evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents[J]. Genome,2004,47:304- 315.
    [113]Agresti J J, Seki S, Cnaani A, et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci[J]. Aquaculture,2000,185:43-56.
    [114]Nichols K M, Young W P, Danzmann R Q et al. A consolidated linkage map for rainbow trout(Oncorhynchus mykiss) [J]. Anim Genet,2003,34:102-115.
    [115]Woods I G, Kelly P D, Chu F, et al. A comparative map of the zebrafish genome. Genome Res[J],2000,10:1903-1914.
    [116]Coimbra M R M, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture,2003,220:203-218.
    [117]Agresti J J, Seki S, Cnaani A, et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci[J]. Aquaculture,2000,185:43-56.
    [118]Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates [J]. Genetics,2000,155:1331-1345.
    [119]Singer A, Perlman H, Yan Y, et al. Sex-specific recombination rates in zebrafish (Danio rerio) [J]. Genetics,2002,160:649-657.
    [120]Chistiakov D A, Hellemans B, Haley C S, et al. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L[J]. Genetics,2005,170:1821-1826.
    [121]Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of medaka, Oryzias latipes:comparative genomics and genome evolution[J]. Genetics,2000,157:1773-1784.
    [122]Peichel C L, Ross J A, Matson C K et al. The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome[J]. Curr Biol,2004,14:1416-1424.
    [123]Herbinger C M, Doyle R W, Pitman E R, et al. DNA fingerprintbased analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout[J]. Aquaculture,1995,137:245-256.
    [124]Neff B D. Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus) [J]. J Heredity,,2001,92:111-119.
    [125]Doyle R W, Perez-Enriquez R, Takagi M, et al. Selective recovery of founder genetic diversity in aquacultural broodstocks and captive, endangered fish populations[J]. Genetics,2001,111:291-304.
    [126]Castro J, Bouza C, Presa P, et al. Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci[J]. Aquaculture,2004,242: 119-135.
    [127]Bentzen P, Olsen J B, McLean J E, et al. Kinship analysis of Pacific salmon:insights into mating, homing, and timing of reproduction[J]. J Heredity,2001,92:127-136.
    [128]King T L, Kalinowski S T, Schill W B, et al. Population structure of Atlantic salmon (Salmo salar L.):a range-wide perspective from microsatellite DNA variation[J]. Mol Ecol,2001,10:807-821.
    [129]Larsen P F, Hansen M M, Nielsen E E, et al. Stocking impact and temporal stability of genetic composition in a brackish northern pike population (Esox lucius L.), assessed using microsatellite DNA analysis of historical and contemporary samples[J]. Heredity,2005,95:136-143.
    [130]Hutchinson W F, van Oosterhout C, Rogers S I, et al. Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua) [J]. Proc. R. Soc. Lond., B Biol Sci,2003,270:2125-2132.
    [131]Mackay T F. The genetic architecture of quantitative traits [J]. Annu. Rev Genet, 2001,35:303-339.
    [132]Nichols K M, Bartholomew J, Thorgaard G H. Mapping multiple genetic loci associated with Ceratomyxa shasta resistance in Oncorhynchus mykiss[J]. Dis Aquat Org,2003,56:145-154.
    [133]Lee B Y, Lee W J, Streelman J T, et al. A second-generation genetic linkage map of tilapia (Oreochromis spp.) [J]. Genetics,2005,170:237-244.
    [134]Volckaert F, Chistiakov D, Hellemans B, et al. First generation linkage map of European sea bass. Plant & Animal Genomes, ⅩⅢConference,2005.
    [135]Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus) [J]. Aquaculture,2005,254:203-210.
    [136]Jackson T R, Martin-Robichaud D J, Reith M E. Application of DNA markers to the management of Atlantic halibut (Hippoglossus hippoglossus) broodstock[J]. Aquaculture,2003,220:245-259.
    [137]Waldbieser G C, Wolters W R. Application of polymorphic microsatellite loci in a channel catfish, Ictalurus punctatus, breeding program[J]. J World Aquacult. Soc, 1999,30:256-262.
    [138]Garcia de Leon F J, Dallas D J, Chatain B, et al. Development and use of microsatellite markers in seabass, Dicentrarchus labrax (Linnaeus,1758) (Perciformes:Serranidae) [J]. Mol Mar Biol Biotech,1995,4:62-68.
    [139]Sekino M, Saitoh K, Yamada T, et al. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain:implications for hatchery management related to stock enhancement program[J]. Aquaculture,2003,221:255-263.
    [140]Wilson A J, McDonald G, Moghadam H K, et al. Marker-assisted estimation of quantitative genetic parameters in rainbow trout Oncorhynchus mykiss[J]. Genet Res, 2003,81:145-156.
    [141]Liu Z, Li P, Kocabas A, et al. Microsatellite containing genes from the channel catfish brain:evidence of trinucleotide repeat expansion in the coding region of nucleotide excision repair gene RAD23B[J]. Biochem Biophys. Res Commun,2001, 289:317-324.
    [142]Zimmerman A M, Evenhuis J P, Thorgaard G H, et al. A single major chromosomal region controls natural killer cell-like activity in rainbow trout[J]. Immunogenetics, 2004,55:825-835.
    [143]库么梅,温小波,罗静波等.长薄鳅池塘移植养殖试验[J].湖北农学院学报,1999,19(2):146-148.
    [144]孙大东,杜军,周剑,等.长薄鳅研究现状及保护对策[J].四川环境,2010,29(6):98-99.
    [145]丁瑞华,四川鱼类志[M].四川科学技术出版社,1993.
    [146]库么梅,温小波,长薄鳅生物学特征的初步研究[J].湖北农学院学报,1997, 17(1):40-43.
    [147]梁银铨,梁友光,胡小建,等.长薄鳅的生物学研究概况[J].水利渔业,2000,20(5):4-6.
    [148]梁银铨,胡小建.长薄鳅人工繁殖技术的研究[J].水生生物学报,2001,25(4):422-424.
    [149]梁银铨,胡小健,黄道明,等.长薄鳅年龄与生长的研究[J].水利渔业,2007,27(3):29-31.
    [150]余必先,谢碧文,陈晓骞,等.长薄鳅脑垂体的组织学和组织化学研究[J].安徽农学通报,2008,14(3):24-26.
    [151]黄颖颖,陈春娜,龙治海,等.野生长薄鳅驯化注意事项[J].科学养鱼,2011,11:34.
    [152]殷江霞.长薄鳅的性腺发育和生殖细胞的发生[D].西南大学硕士学位论文,2006.
    [153]王志坚,殷江霞,张耀光.长薄鳅的卵巢发育和卵子发生[J].淡水渔业,2011,41(4):32-39.
    [154]王志坚,殷江霞,张耀光.长薄鳅的精巢发育和精子发生[J].淡水渔业,2009.
    [155]伦峰,李峥.长薄鳅疾病防治技术措施[J].河南水产,2009,(4):31-33.
    [156]赵海涛,张其中,赵海鹏,等.长薄鳅感染多子小瓜虫一例[J].四川动物,2005,24(2):156-157.
    [157]汪松.中国濒危动物红皮书[M].北京:科学出版社,2003.
    [158]Kumar S, Tamura K, Nei M. MEGA:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform,2004,5:150-163.
    [159]Rozas J, Sanchez-DelBarrio JC, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics,2003,19:2496.
    [160]Rogers A R, and Harpending H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol Evol,2003,9:552-569.
    [161]Excoffier L, Laval G, Schneider S. Arlequin (version 3.0):an integrated software package for population genetics data analysis[J]. Evol Bioinformatics Online,2005, 1:47-50.
    [162]Weir B S, and Cockerham C C. Estimating F-statistics for the analysis of population structure[J]. Evolution,1984,38:1358-1370.
    [163]Beerli P. Migrate version 3.0 a maximum likelihood and Bayesian estimator of gene flow using the coalescent[J].2008, Distributed over the internet at http://popgen.scs. edu/migrate.html
    [164]Beerli P, Felsentein J. Maximum likelihood estimation of migration rates and effective populations by using a coalescent approach[J]. Proc Natl Acad Sci USA, 1999,98:4563-4568.
    [165]赵刚,周剑,杜军,等.长薄鳅(Leptobotia elongata)线粒体DNA控制区遗传多样性研究[J].西南农业学报,2010,23(3):930-937.
    [166]Song Z, Song J, Yue B. Population genetic diersity of Prenant's schizothoracin, Schizothorax prenanti, inferred from the mitochondrial DNA contral region[J]. Environ Biol Fish,2008,81(3):247-252.
    [167]Chen D, Zhang C, Lu C, et al. Polymorphism of D-loop sequence from mitochondrial genomes of different brood-stocks of Gymnocypris przewalskii (Kessler) [J]. J Fishery Sci China,2006,13:800-806.
    [168]Yang J, Hu X, Tang W, et al. mtDNA Control Region Sequence Variation and Genetic Diversity of Coilia nasus in Yangtze River Estuary and Its Adjacent Waters[J]. Chinese J Zool,2008,43(1):8-15.
    [169]Liu H, Chen D, Liu S, Duan X. Genetic diversity of Botia superciliaris in the upper Yangtze River[J]. Freshwater Fisheries,2009,39:8-13.
    [170]Li Y, Wang D, Fang Y, et al. Genetic diversity in the bronze gudgeon, Coreius heterodon, from the Yangtze River system based on mtDNA sequences of the control region[J]. Environ Biol Fish,2008,82:35-40.
    [171]Grant W A, Bo wen B W. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation[J]. J Hered,1998,89:415-426.
    [172]Frankham R. Genetics and conservation biology[J]. C. R. Biologies,2003,326: 22-29.
    [173]Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research,1999,27(8): 1767-1780.
    [174]Yu Z N, Wei Z P, Kong X Y, et al. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis a case of Tandem duplication-random loss for genome rearrangement in Crassostrea[J].BMC Genomics,2008,9:477-489.
    [175]Kin S R, Kin M II, Hong M Y, et al. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera:Saturniidae) [J].Mol Biol Rep,2009,36:1871-1880.
    [176]Shadel G S and Clayton D A. Mitochondrial DNA maintenance in vertebrates [J]. Annu Rev Biochem,1997,66:409-435.
    [177]廖顺尧,鲁成.动物线粒体基因组研究进展[J].生物化学与生物物理进展,2000,27(5):508-512.
    [178]Avise J C. Phylogeography:The history and formation of species[M]. Cambridge, Mass:Harvard University Press.2000.
    [179]Saccone S, Giorgi C D, Gissi C, et al. Evolutionary genomics in Metazoa:the mitochondrial DNA as a model system[J]. Gene,1999,238; 195-209.
    [180]Zhang D and Hewitt G M. Insect mitochondrial control region:A review of its structure, evolution and usefulness in evolutionary studies[J]. Biochem Syst Ecol, 1997,25:99-120.
    [181]Park S J, Lee Y S, and Hwang U W. The complete mitochondrial genome of the sea spider Achelia bituberculata (Pycnogonida, Ammotheidae):arthropod ground pattern of gene arrangement [J]. BMC Genomics,2007,8:343-358.
    [182]Mwinyi A, Meyer A, Bleidorn C, et al. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida[J]. BMC Genomics,2009,10:1-16.
    [183]Anderson S,Bankier A T,Barrell B G,et al. Sequence and organization of the human mitochondrial genome[J]. Nature,1981,290(5806):457-465.
    [184]Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual[M].3rd ed. Cold Spring Harbor Laboratory Press, New York,2001.
    [185]Lowe T M, Eddy S R. tRNAscan-SE:a programfor improved detection of 409 transfer RNA genes in genomic sequence[J]. Nucleic Acids Res.1997,25:955-964.
    [186]Saitoh K, Hayashizaki K, Yokoyama Y, et al. Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome:structural properties relationships[J]. J Hered,2000,91:271-278.
    [187]Tompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res,1997,25:4876-4882.
    [188]Guindon S, Gascuel O. PhyML-a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood[J]. Syst Biol,2003,52:696-704.
    [189]Ronquist F, Huelsenbeck J P. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics,2003,19:1572-1574.
    [190]Miya M, Nishida M. Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei:Stomiiformes):first example of transfer RNA gene rearrangements in bony fish[J]. Mar Biotechnol,1999,1:416-426.
    [191]Chang Y S, Huang F L, Lo T B. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome [J]. J Mol Evol,1994, 38:138-155.
    [192]Zardoya R, Meyer A. The complete DNA sequence of the mitochondrial genome of a 'living fossil', the coelacanth (Latitimeria chalumnae) [J]. Genetics,1997,146: 995-1010.
    [193]Kim I C, Lee J S. The complete mitochondrial genome of the rockfish Sebastes schlegeli (Scorpaeniformes, Scorpaenidae) [J]. Mol Cells,2004,17:322-328.
    [194]Kim I C, Kweon H S, Kim Y J, et al. The complete mitochondrial genome of the javeline goby Acanthogobius hasta (Perciformes, Gobiidae) and phylogenetic considerations[J]. Gene,2004,336:1.
    [195]Oh D J, Kim J Y, Lee J A, et al. Complete mitochondrialgenome of the rock bream Oplegnathus fasciatus (Perciformes, Oplegnathidae) with phylogenetic considerations[J]. Gene,2007,392:174-180.
    [196]Kumazawa Y, Nishida M. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics[J]. J Mol Evol,1993,37:380-398.
    [197]Hurst C D, Bartlett S E, Davidson W S, et al. The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar[J]. Gene,1999,239,237-242.47-153.
    [198]Broughton R E, Milam J E, Roe B A. The complete sequence of the zebrafish(Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J]. Genome Res.2001,11,1958-1967.
    [199]Clayton D A. Nuclear gadgets in mitochondrial DNA replication and transcription[J]. Trends Biochem Sci,1991,16:107-111.
    [200]Australia and New Zealand inferred by microsatellite DNA and mitochondrial DNA control region markers[J]. Fisheries Sci 67:843-850.
    [201]Cao W, Chang J, Qiao Y, Duan Z. Fish resources of early life history stages in Yangtze River[M]. Beijing:China WaterPower Press,2007,252.
    [202]Ding R(ed). The fishes of Sichuan, China. Sichuan Publishing House of Science and Technology[M], Chengdu, Sichuan, China,1994,104-106.
    [203]Grunwald C, Stabile J, Waldman J R,et al. Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. [J]. Mol Ecol,2002,11:1885-1898.
    [204]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics,1989,123:585-595.
    [205]辛玉文,李玉东.长薄鳅人工繁殖试验[J].中国水产,2007,5:42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700