紫石房蛤贝壳力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然生物材料在经历大自然的选择后,其结构和功能不断优化,使之适应自然的能力趋于完美,而实际工程结构材料往往难以达到生物材料所具备的优异性能。因此,揭示天然生物材料的结构和性能显然对实际工程材料结构和性能的改进具有重要的指导意义。本论文工作选取大连海域的双壳纲贝壳紫石房蛤为研究材料,对其结构和力学性能,包括硬度、压缩、弯曲以及疲劳性能等进行系统的表征和分析,重点考察了各种力学性能在贝壳上的分布以及产生该分布的原因,分析讨论了贝壳的疲劳强度与断裂强度之间的关系。
     紫石房蛤贝壳的结构为分层结构,在厚度上分内、中、外三层,X射线数据显示这三层均为文石晶型的碳酸钙。根据贝壳各层结构形貌,构建了其整体结构示意图。贝壳外层是不含有机质的多孔块状结构,中层和内层是含有少量有机质的交错层状结构,相同取向的薄片(厚度约为200—-500 nm)构成了交错层状结构单元—“域”,其宽度约为20-80μm,相邻“域”中的薄片之间互成一定的角度。
     与紫石房蛤贝壳各层的结构特点密切相关,其外层的硬度较低,而中层和内层的硬度相差不大,均明显高于外层硬度。利用新设计的方法对压痕的横截面进行表征发现,硬度测试造成贝壳内部结构的损伤程度不仅与载荷的大小有关,还与载荷和结构中薄片之间的取向有关,当载荷垂直压入交错薄片表面时,贝壳内部结构损伤较严重。另外,通过硬度测试估算贝壳的断裂韧性约为2.21 MPa.m1/2。
     对干、湿两种状态的样品以不同加载方式进行压缩实验。结果发现,与干样品相比,湿样品的模量较高,抗压强度较低;当外加载荷以垂直于贝壳外表面方向加载时,湿样品的抗压强度略高于平行于贝壳外表面加载所得的湿样品强度。对干样品的压缩应力—应变曲线及断裂路径分析发现,曲线上台阶的出现对应了样品中裂纹的产生。台阶的连续出现意味着裂纹扩展阻力的增加、断裂强度提高。压缩实验结果的Weibull统计分析表明,湿样品抗压强度(72 MPa)与干样品(73 MPa)相比相差不大;垂直于贝壳样品外表面加载时的抗压强度(87 MPa)大于平行于贝壳外表面加载时的抗压强度(61 MPa)。
     分别对干、湿两种状态样品的三点弯曲力学行为进行研究,其结果表明,贝壳的生长方式特点导致贝壳边缘的弯曲强度高于贝壳内部的弯曲强度,外套膜位置附近干样品的弯曲曲强度较低,湿样品的弯曲强度较高,其它位置于样品的弯曲强度高于湿样品。相同状态样品的断裂能密度与弯曲强度在贝壳上分布的趋势一致,而弹性模量在贝壳上分布的规律性不明显,但干样品的弹性模量比湿样品的略大。贝壳样品的弯曲断裂路径主要受贝壳结构中的薄弱片层以及片层之间的薄弱界面的影响,另外,贝壳中闭壳肌等肉体组织对该位置样品的断裂路径也有一定的影响。Weibull统计分析结果表明:当断裂几率为50%[P(V)=0.5]时,同种贝壳干样品的弯曲强度(98 MPa)比湿样品的值(91MPa)略高。
     提出了疲劳强度的预估计方法,使贝壳样品高周弯曲疲劳测试的成功率大大提高。般来说,绝大部分样品的疲劳强度低于平均弯曲强度,疲劳寿命低于106周次。疲劳样品断裂路径明显的"zig-zag"模式和疲劳样品断口表面连续出现的小台阶形貌均表明,样品是逐渐发生疲劳断裂的。疲劳强度的Weibull统计分析结果表明:当断裂几率为50%[P(V)=0.5]时,干样品的疲劳强度为85 MPa,比静态弯曲强度(98 MPa)略低。
Through a long process of natural selection, the structures and properties of natural biological materials could be greatly optimized, and their abilities to adapt the nature have tended to be perfect. In contrast, the artificial engineering materials normally cannot possess those superior properties owned by biological materials. Therefore, the investigations on the structure and mechanical properties of biological materials are significantly important and introductive for the improvement of the structures and properties of engineering materials. In the present work, the structure and mechanical properties (e.g., hardness, compression, bending and fatigue properties) of a bivalve clam, Saxidomus purpuratus shells, which were obtained from Dalian sea area, have been investigated systematically, focusing on the distribution of various mechanical properties at different positions in the shell. The relationship between the fatigue strength and the fracture strength of the shell is also discussed.
     The Saxidomus purpuratus shell has a hierarchical structure comprising three layers in thickness, i.e., inner, middle and outer layers, and X-ray diffraction data show that all the layers consist of aragonite. According to the structure of each layer, an overall structure profile of the shell was established. The shell shows a porous blocky structure without organic matters in the outer layer and a cross-lamellar structure in the inner and middle layers with little organic matters. The cross-lamellar structure of this shell is composed of numerous domains, each of which comprises parallel tiles with approximate thickness of 200-500 nm. The width of these domains ranges from 20μm to 80μm, and the tiles in any two neighboring domains make a certain angle mutually.
     Depending strongly upon the structural characteristics of each layer of the shell, the hardness of outer layer is obviously lower than those of middle and inner layers, for which the hardness is almost comparable. The characterization of the indentation using a newly-designed method shows that the damages induced by indentation relate not only to the magnitude of the indentation load, but also to the orientation between the load direction and the lamellae in the structure of the shell. When the indentation load is perpendicular to the surface of the crossed lamellae, the induced damage is more serious. Besides, the fracture toughness was roughly evaluated by hardness tests to be around 2.21 MPa·m1/2.
     Compression tests were performed with dry/wet shell specimens in different orientations. The results show that, as compared to the dry specimens, the wet have higher moduli and lower strengths. When the load is applied perpendicular to the surface of the shell, the compression strength is higher than that obtained with the load parallel to the surface of the wet shell. Analyses of compression stress-strain curves and the cracking paths demonstrate that the occurrence of steps in the curve should correspond to the formation of cracks. The continuous steps in the stress-strain curve imply that the crack propagation resistance becomes increased during the process of compressive deformation, causing an increase in the compression strength. Weibull statistics show that the compression strength (72 MPa) of wet specimens is quite close to that (73 MPa) of dry specimens, and that the compression strength (87 MPa) with the load perpendicular to the surface of the shell is higher than that (61 MPa) with the load parallel to the surface of the shell.
     The three-point bending mechanical behaviors of wet and dry specimens were investigated. It is found that the bending strength on the edge of the shell is higher; this is closely associated with the growth mechanism of the shell. The dry specimens near the mantle position have lower bending strengths than the wet, and the dry specimens in the other positions of the shell have higher strengths than the wet. Concerning the shell specimens of the same condition, the distributions of the fracture energy per area and the strength in the shell are identical. As compared to the case of fracture energy and strength, the distribution of the moduli is not of regularity, but the moduli of the wet specimens are a little higher than those of the dry specimens. The cracking paths are mainly affected by the weak lamellae and weak interfaces between lamellae and organic matters. Additionally, the tissues like adductor muscle etc. can also affect the cracking paths of the specimens. Weibull analysis indicates that the bending strength is 98 MPa for dry and 91 MPa for wet at a fracture probability of 50% [P(V)=0.5].
     A prediction method was suggested to evaluate the fatigue strength in advance, so that the successful cases of high-cycle bending fatigue tests are obviously improved. Generally, the fatigue strengths of the shell specimens are lower than the relevant bending strengths, and the fatigue life is normally less than 106 cycles. The apparent "zig-zag" cracking path mode and the micro-step morphology on the fracture surface demonstrate that the shell has indeed undergone a process of fatigue failure. Weibull statistics show that at a fracture probability of 50%[P(V)=0.5], the fatigue strength of dry specimens is 85 MPa, a little lower than the bending strength (98 MPa).
引文
1. Meyers M A, Chen P Y, Lin A Y M and Seki Y. Biological materials:Structure and mechanical properties[J]. Prog. Mater. Sci.,2008,53:1-206.
    2. Bouligand Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases[J]. Tissue Cell.1971.4:189-217.
    3. Wegst U G K and Ashby M F. The mechanical efficiency of natural materials[J]. Philos. Mag.,2004,84(21):2167-2181.
    4. Currey J D. Mechanical properties of mother of pearl in tension[J], Proc. R. Soc. Lond., 1977,196B:443-463.
    5. Okumura K and Gennes P G. Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with satisfied structures[J], Eur. Phys. J E.,2001,4:121-127.
    6. Kramptz G and Graser G. Molecularmechanisms of biomaterialization in the formation of calcified shells[J], Science,1992,255:1098-1105.
    7.贾贤等,天然生物材料及其仿生工程材料[M],化学工业出版社,2007.
    8. Fu G. Calcium carbonate biomineralization:Characterizing the molecular mechanisms protein-mineral interaction[D]. University of California Santa Barbara,2005.
    9. Crenshaw M A. The soluble matrix from Mercenaria mercenaria shell[J]. Biomineralization,1972,6:6-11.
    10. Shen X, Belcher A M, Hansma P K, Stucky G D and Morse D E. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens[J]. J Biol. Chem.,1997,272:32472-32481.
    11. Bowen C E and Tang H. Conchiolin-protein in aragonite shells of mollusks[J]. Comp. Biochem. Physiol.,1996,115A(4):269-275.
    12. Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, Nishikawa E and Matsushiro A. Complementary DNA cloning and characterization of Pearlin, a new class of matrix protein in the nacreous layer of oyster pearls[J]. Mar. Biotechnol.,2000,2(5): 409-418.
    13. Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K and Takahashi T. Structures of mollusc shell framework proteins[J]. Nature,1997.387, 563-564.
    14. Bedouet L, Schuller M J, Marin F, Milet C, Lopez E and Giraud M. Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins[J]. Comp. Biochem. Physiol. B Biochem. Mol. Biol.,2001,128,389-400.
    15. Zhang Y, Xie L, Meng Q, Jiang T, Pu L, Chen L and Zhang R Q. A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata[J]. Comp. Biochem. Physiol. B:Biochem. Mol. Biol.2003,135:565-573.
    16. Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, Kogure T, Nagasawa H, Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata) [J]. Biochem. J,2004,382:205-213.
    17. Michenfelder M, Fu G, Lawrence C, Weaver J C, Wustman B A, Taranto L, Evans J S and Morse D E. Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains[J]. Biopolymers,2003, 70(4):522-533.
    18. Fu G, Valiyaveettil S, Wopenka B and Morse D E. CaCO3 biomineralization:acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology [J]. Biomacromolecules,2005,6(3):1289-1298.
    19. Mann K, Weiss I M, Andre S, Gabius H J and Fritz M. The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin:Detection of a functional C-type lectin domain with galactose/mannose specificity [J]. Eur. J Biochem.,2000,267:5257-5264.
    20. Weiss I M, Gohring W, Fritz M and Mann K. Perlustrin, a Haliotis laevigata (Abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates[J]. Biochem. Biophys. Res. Commun.,2001,285(2):244-249.
    21. Halloran B A and Donachy J E. Characterization of organic matrix macromolecules from the shells of the Antarctic scallop, adamussium colbecki of outstanding interest[J]. Comp. Biochem. Physiol.,1995,111B:221-231.
    22. Marin F, Corstjens P, Gaulejac B de, Vrind-De Jong E de and Westbroek P. Mucins and molluscan calcification:molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell-layer of the fan mussel Pinna nobilis (Bivalvia. Pteriomorphia)[J]. J Biol. Chem.,2000.275:20667-20675.
    23. Miyamoto H. Miyashita T, Okushima M, Nakano S. Morita T and Matsushiro A. A carbonic anhydrase from the nacreous layer in oyster pearls[J]. Proc. Natl. Acad. Sci. U.S.A.,1996,93(18):9657-9660.
    24. Sarashina I and Endo K. Primary structure of a soluble matrix protein of scallop shell: implications for calcium carbonate biomineralization[J]. Am. Mineral.,1998,83: 1510-1515.
    25. Kono M, Hayashi N and Samata T. Molecular mechanism of the nacreous layer formation in Pinctada maxima[J]. Biochem. Biophys. Res. Commun.,2000,269:213-218.
    26. Tsukamoto D, Sarshina I and Endo K. Structure and expression of an unusually acidic matrix protein of pearl oyster shells[J]. Biochem. Biophys. Res. Commum.,2004,320(4): 1175-1180.
    27. Gotliv B.-A, Kessler N, Sumerel J L, Morse D E, Tuross N, Addadi L and Weiner S. Asprich:A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida[J]. ChemBioChem.,2005,6(2):304-314
    28. Mann S. Biomineralization:principles and concepts in bioinorganic materials chemistry[M]. Oxfold University Press, Oxford.2001.
    29. Zaremba C M, Belcher A M, Fritz M, Y Li, Mann S, Hansma P K, Morse D E, Speck J S and Stucky D E. Critical transition in the biofabrication of abalone shell and flat pearls[J]. Chem. Mater.,1996,8:679-690.
    30. Lin A Y M, Chen P Y and Meyers M A. The growth of nacre in the abalone shell[J]. Acta Biomater.,2008,4:131-138.
    31. Checa A G, Ramirez-Rico J, Gonzalez-Segura J and Sanchez-Navas A. Nacre and false nacre (foliated aragonite) in extant monoplacophorans (=Tryblidiida:Mollusca) [J]. Naturiwissenchaften,2009,96:111-122.
    32. Bevelander G and Nakahara H. An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs[J]. Calc. Tissue Res.,1969.3: 84-92.
    33. Weiner S and Traub W. X-ray diffraction study of the insoluble organic matrix of mollusk shell[J]. FEBS,1980,111:311-316.
    34. Schaffer T E. Ionesca-Zanetti C,Proksch R. Fritz M, Walter D A, Almqvist B, Zaremba C M, Belcher A M, Smith B L, Stucky G D, Morse D E and Hansma P K. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges?[J] Chem. Mater.,1997,9:1731-1740.
    35. Jocob D E, Soldati A L, Wirth R, Huth J, Wehrmeister U and Hofmeister W. Nanostructure, composition and mechanisms of bivalve shell growth [J]. Geochim. Cosmochim. Acta. 2008,72:5401-5415.
    36. Gries K, Kroger R, Kubel C, Schowalter M, Fritz M and Rosenauer A. Correlation of the orientation of stacked aragonite platelets in nacre and their connection via mineral bridges[J]. Ultramicroscopy,2008,109:230-236.
    37.张刚生,童银洪.软体动物贝壳中的有机质研究进展[J].湛江海洋大学学报,2001,10(001):74-78.
    38.张刚生,谢先德CaCO3生物矿化的研究进展—有机质的控制作用[J].地球科学进展,2000,15(2):204-209.
    39.薛中会,武超,戴树玺,杜祖亮.生物矿化研究进展[J].河南大学学报(自然科学版).2003,33(3):21-25.
    40.张文兵,姚春凤,麦康森.贝壳生物矿化的研究进展[J].海洋科学,2008,32(2):74-79.
    41.梁艳,赵杰,王来,姜静.贝壳的有机质及生物矿化机制分析[J].生物学杂志,2006,23(6):19-23.
    42.姜国良,陈丽,刘云.贝壳有机基质与生物矿化[J].海洋科学,2002,26(2):16-18.
    43.万欣娣,任凤章,刘平,田保红,王文焱.贝壳珍珠层的研究现状[J].材料导报,2006,20(10):21-24.
    44.张刚生,谢先德.贝壳珍珠层微结构及成因理论[J].矿物岩石,2000,20(1):11-16.
    45. Wada K. Studies on the mineralization of calcified tissues in molluscs-Ⅷ. Behavior of eosinophil granules and of organic crystals in the process of mineralization of secreted organic matrices in glass coverslip preparations[J]. Kokuritsu Shinju Kenkyusho Hokoku (Bull. Natl. Pearl Res. Lab.[Jpn.]),1964,9:1087-1098.
    46. Wada K. Studies on the mineralization of the calcified tissue in molluscs.Ⅻ. Specific patterns of non-mineralized layer conchiolin in amino acid composition[J]. Bull. Jap. Soc. Sci. Fish 1966,32:304-311.
    47. Fritz M, Belcher A M, Radmacher M, Walters D A, Hansma P K, Strucky G D, Morse D E and Mann S. Flat pearls from biofabrication of organized composite on inorganic substrates[J]. Nature,1994,371:49-51.
    48.董瑞娜,麦康森,张文兵,艾庆辉,刘付志国,赵建民.皱纹盘鲍贝壳沉积过程的研究[J].中国海洋大学学报,2006,36:63-70.
    49. Dance P. Shells[M]. Dorling Kindersley Limited, London,1992.
    50. B(?)ggild O B. The shell structure of the mollusks[J]. K. Danske Vidensk. Selsk. Skr. Roekke,1930,9:233-326.
    51. Kobayashi I. Introduction to the shell structure of bivalved mollusks[J]. Earth Sci.1964. 73:1-12.
    52. Kobayashi I. Internal microstructure of the shell of bivalve molluscs[J]. Am. Zool.,1969, 9(3):663-672.
    53. Taylor J D and Layman M. The mechanical properties of bivalve (mollusca) shell structures[J]. Palaeontology.1972,15:73-87.
    54. Currey J D and Taylor J D. The mechanical behavior of some molluscan hard tissues[J]. J. Zool. Lond.,1974,173:395-406.
    55. Chateigner D, Hedegaard C and Wenk H-R. Mollusc shell microstructures and crystallographic textures[J]. J. Struct. Geol.,2000,22:1723-1735.
    56. Kobayashi I and Samata T. Bivalve shell structure and organic matrix[J]. Mater. Sci. Eng. C,2006,26:692-698.
    57. Vincent J F V. Survival of the cheapest[J]. Mater. Today,2002,5(12):28-41.
    58. Menig R, Meyers M H, Meyers M A and Vecchio K S. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells[J]. Acta Mater.,2000,48(9): 2383-2398.
    59. Lin A and Meyers M A. Growth and structure in abalone shell[J]. Mater. Sci. Eng. A,2005, 390:27-41.
    60. Meyers A M, Lin A Y M, Seki Y, Chen P Y, Kad B K and Bodde S. Structural biological composites:An overview[J]. JOM,2006,58(7):35-41.
    61. Meyers M A. Lin A Y M. Chen P Y and Muyco J. Mechanical strength of abalone nacre: Role of the soft organic layer[J]. J. Mech. Behav. Biomed. Mater.,2008,1(1):76-85.
    62. Chen P Y, Lin A Y M, Lin Y-S, Seki Y, Stokes A G, Peyras J, Olevsky E A, Meyers M A and McKittrick J. Structure and mechanical properties of selected biological materials[J]. J. Mech. Behav. Biomed. Mater.,2008,1(3):208-226.
    63. Mayer G and Sarikaya M. Rigid biological composite materials:Structural examples for biomimetic design[J]. Exp. Mech.,2002,42(4):395-403.
    64. Boggild O B. The shell structure of the mollusks[J], K. Danske Vidensk. Selsk. Skr.,1931, 2:232-325.
    65. Currey J D and Kohn A J. Fracture in the crossed-lamellar structure of Conus shells[J]. J. Mater. Sci.,1976,11(9):1615-1623.
    66. Kuhn-Spearing L T, Kessller H, Chateau E and Ballarini R. Fracture mechanisms of the Strombus gigas conch shell:implications for the design of brittle laminates[J]. J. Mater. Sci.,1996,31(24):6583-6594.
    67. Menig R, Meyers M H, Meyers M A and Vecchio K S. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Mater Sci. Eng. A,2001, 297(1-2):203-211.
    68. Su X and Heuer A H. Hard tissue regeneration in Strombus gigas, the giant queen conch[J], Mat. Res. Soc. Symp. Proc,2000,599:225-230.
    69. Kamat S, Su X, Ballarini R and Heuer A H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405(6790):1036-1040.
    70. Kamat S, Kessler H, Ballarini R, Nassirou M and Heuer A H. Fracture mechanisms of the Strombus gigas conch shell:Ⅱ-micromechanics analyses of multiple cracking and large-scale crack bridging[J]. Acta Mater.,2004,52(8):2395-2406.
    71. Hou D F, Zhou G S and Zhang M. Conch shell structure and its effect on mechanical behaviors[J]. Biomaterials,2004,25(4):751-756.
    72. Su X W, Zhang D M and Heuer A H. Tissue regeneration in the shell of the giant queen conch, Strombus gigas[J]. Chem. Mater,2004 16(4):581-593.
    73. Wilmot N V, Barber J D, Taylor J D and Graham A L. Electron microscopy of molluscan crossed lamellar microstructure[J]. Philos. Trans. R. Soc. Lond. B,1992,337:21-35.
    74. Weiner S. Organization of organic matrix components in mineralized tissues[J]. Am. Zool., 1984.24(4):945-951.
    75. Jackson A P, Vincent J F V and Turner R M. Comparison of nacre with other ceramic composites[J]. J. Mater. Sci.,1990,25(7):3173-3178.
    76. Sarikaya M and Aksay I A. Nacre of abalone shell:a natural multifunctional nanolaminated ceramic-polymer composite material [J]. Results Probl. Cell Differ.,1992, 19:1-26.
    77. Lin A Y M, Meyers M A and Vecchio K S. Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells:A comparative study[J]. Mater. Sci. Eng. C,2006,26:1380-1389.
    78. Li X D, Xu Z H and Wang R Z. In situ observation of nanograin rotation and deformation in nacre[J]. Nano Lett.,2006,6(10):2301-2304.
    79. Laraia J V and Heuer A H. Novel composite microstructure and mechanical behavior of mollusk shell[J]. J Am. Ceram. Soc.1989,72(11):2177-2179.
    80. Currey J D. Mechanical properties of mollusc shell[J]. Symp. Soc. Exp. Biol.,1980,34: 75-97.
    81. Currey J D and Brear K. Fatigue fracture of mother-of-pearl and its significance for predatory techniques[J]. J. Zool.,1984,203(4):541-548.
    82. Currey J D, Zioupos P, Davies P and Casinos A. Mechanical properties of nacre and highly mineralized bone[J]. Proc. R. Soc. Lond. B,2001,268:107-111.
    83. Jackson A P, Vincent J F V and Turner R M. The mechanical design of nacre[J]. Proc. R Soc. Lond. B,1988,234:415-440.
    84. Laraia V J and Heuer A H. The microindentation behavior of several mollusk shells[C]. In: P.C. Riecke and P.D. Calvert, Editors, Proceedings MRS Symposium:Materials Synthesis Utilizing Biological Processes 174, Materials Research Society, Pittsburgh, PA 1990. 125-131.
    85. Weibull W. A statistical distribution function of wide applicability[J]. J. App. Mech.,1951. 18:293-297.
    86. Meyers M A, Lim C T, Li A, Hairul Nizam B R, Tan EPS, Seki Y and McKittrick J. The role of organic intertile layer in abalone nacre[J]. Mater. Sci. Eng. C,2009,29(8): 2398-2410.
    87. Chen P Y, Lin A Y M, Stokes A G, Seki Y, Bodde S G. McKittrick J and Meyers M A. Structural biological materials:Overview of current research[J]. JOM,2008,60(6):23-32.
    88. Sarikaya M, Gunnison K E, Yasrebi M and Aksay I A. Mechanical property-microstructural relationship in abalone shell [J]. Mater. Res. Soc.,1990,174: 109-116.
    89. Sarikaya M, Liu J, Aksay I A. Nacre:properties, crystallography, morphology, and formation[M]. In:Sarikaya M, Aksay I A, Editors, Biomimetics:Design and Processing of Materials, AIP Press, USA,1995:35-90.
    90. Giles, R., S. Marine, Mann S, Morse D E, Stucky G D and Hansma P K. Inorganic overgrowth of aragonite on molluscan nacre examined by atomic force microscopy [J]. Marine Biological Laboratory.,1995,188(1):8-15.
    91. Manne S, Zaremba C M, Giles R, Huggins L, Walters D A, Belcher A, Morse D E, Stucky G D, Didymus J M, Mann S and Hansma P K. Atomic force microscopy of the nacreous layer in mollusc shells[C]. Proceedings:Biological Science,1994,256:17-23.
    92. Barthelat, F and Espinosa H D. Elastic properties of nacre aragonite tablets[C]. In Proceedings of the 4th International Symposium on MEMS and Nanotechnology, the 2003 SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Charlotte, North Carolina,2003, Session 68:187-
    93. Barthelat F, Li C M, Comi C and Espinosa H D. Mechanical properties of nacre constituents and their impact on mechanical performance [J]. J. Mater. Res.,2006,21(8): 1977-1986.
    94. Barthelat F and Espinosa H D. An experimental investigation of deformation and fracture of nacre-mother of pearl [J]. Exp. Mech.,2007,47(3):311-324.
    95. Barthelat F, Tang H, Zavattieri P D, Li C M and Espinosa H D. On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure[J]. J. Mech. Phys. Solids,2007,55(2):306-337.
    96. Tang H, Barthelat F and Espinosa H D. An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre [J]. J. Mech. Phys. Solids.2007,55(7): 1410-1438.
    97. Bruet B J F. Qi H J, Boyce M C. Panas R. Tai K. Frick L and Ortiz C. Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus[J]. J Mater. Res.,2005,20(9):2400-2419.
    98. Kearney C, Zhao Z, Bruet B J F. Radovitzky R, Boyce M C and Ortiz C. Nanoscale anisotropic plastic deformation in single crystal aragonite[J]. Phys. Rev. Lett.,2006,96: 255505.
    99. Li X D, Chang W C, Chao Y J. Wang R and Chang M. Nanoscale structural and mechanical characterization of a natural nanocomposite material:The shell of red abalone[J]. Nano Lett.,2004,4(4),613-618.
    100. Li X D and Nardi P. Micro/nanomechanical characterization of a natural nanocomposite material—the shell of Pectinidae[J]. Nanotechnology,2004,15(1):211-217.
    101. Li X D and Huang Z. Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre[J]. Phys. Rev. Lett.,2009,102(7):75502.
    102. Huang Z and Li X. Nanoscale structural and mechanical characterization of heat treated nacre[J]. Mater. Sci. Eng. C,2009,29(6):1803-1807.
    103. Feng Q L, Cui F Z, Pu G, Wang R Z and Li H D. Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell[J]. J Mater Sci. Lett.,1999,18(18): 1547-1549.
    104. Feng Q L, Cui F Z, Pu G, Wang R Z and Li H D. Crystal orientation, toughening mechanisms and a mimic of nacre[J]. Mater. Sci. Eng. C,2000,11(1):19-25.
    105.冯庆玲,崔福斋,李恒德.贝壳珍珠层中文石晶体的取向畴[C].中国材料研究学会编.生物及环境材料.北京:科学出版社,1997.
    106.侯东芳,周根树,任凤章,郑茂盛.贝壳珍珠层不同弹性模量的研究[J].生物物理学报,2003,19(2):203-206.
    107.侯东芳,周根树,郑茂盛.不同取向贝壳材料力学性能的压痕发研究[J].三峡大学学报,2006,28(3):246-249
    108.侯东芳,周根树,郑茂盛.贝壳中文石晶体择优取向的XRD分析[J].三峡大学学报,2006,28(5):431-434.
    109.侯东芳,周根树,郑茂盛.贝壳珍珠层断裂过程的原位观察及其增韧机制分析[J]材料科学与工程学报.2007,25(3):388-391.
    110. Liang Y, Zhao J. Wang L and Li F M. The relationship between mechanical properties and crossed-lamellar structure of mollusk shells[J]. Mater. Sci. Eng. A,2008,483:309-312.
    111.赵杰,丁晓非,高山,张峰,王来.香螺壳体的结构特征分析[J].材料科学与工程学报.2004,22(5):644-646.
    112.梁艳,赵杰.王来.李凤敏.贝壳的力学性能和增韧机制[J].机械强度,2007,29(3):507-511.
    113.梁艳,赵杰,王来.贝壳的结构和微观力学性能[J].材料研究学报,2007,21(5):556-560.
    114. Elner R W. The mechanics of predation by the shore crab, Carcinus maenas(L.), on the edible mussel, Mytilus edulis L[J]. Oecologia,1978,36:333-344.
    115.Boulding E G and Labarbera M. Fatigue damage:repeated loading enables crabs to open larger bivalves[J]. Biol. Bull.1986,171:538-547.
    116. Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E and Hansma P K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature,1999,399:761-763.
    117.Kotha S P, Li Y and Guzelsu N. Micromechanical model of nacre tested in tension[J]. J Mater. Sci.,2001,36(8):2001-2007.
    118. Clegg W J, Kendall K and Alford N M. A simple way to make tough ceramics[J], Nature, 1990,347(10):445-447.
    119. Flom Y and Arsenault R J. Effect of particle size on fracture toughness of SiC/Al composite material[J]. Acta Metall.,1989,37(9):2413-2423.
    120. Park K-T and Mohamed F A. Creep strengthening in a discontinuous SiC-Al composite[J]. Metall. Mater. Tran. A,1995,26(12):3119-3129.
    121. Wang X, Qiao G and Jin Z. Preparation of SiC/BN nanocomposite powders by chemical processing[J]. Mater. Lett.,2004,58(9):1419-1423.
    122.Wilhelm M, Kornfeld M and Wruss W. Development of SiC-Si composites with fine-grained SiC microstructures[J]. J. Eur. Ceram. Soc.,1999,19:2155-2163.
    123.Parkhutik V P. Self-organization of pores in SiC/Si composite structures [J]. J. Appl. Phys., 1998,83:4647-4651.
    124. Tani T and Wada S. Pressureless-sintered SiC-TiB2 composite through internal synthesis method[J]. J Mater. Sci. Lett.,1990,9(1):22-23.
    125. Cho K S, Choi H J, Lee JG and Kim YW. In situ enhancement of toughness of SiC-TiB2 composites[J]. J Mater. Sci., 1998,33(1):211-214.
    126. Honda K and Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38.
    127.杨辉.中乾宏,高基伟TiO2-PEDT/PSS双层复合膜的制备及其光催化性能[J].催化学报,2005,26(10):839-841.
    128.梁波.陈煌.氧化锆涂层(薄膜)的应用与研究[J].硅酸盐通报,2003,22(6):63-67.
    129.胥伟华,孟祥康Ni3Al薄膜涂层的制备与性能研究[J].材料科学与工程,2000,18(1):11-14.
    130.张学骜,王建方,吴文健,刘长利.贝壳珍珠层生物矿化及其对仿生材料的启示[J].无机材料学报,2006,21(2):257-266.
    131.张晟卯,张经纬,张治军,党鸿辛.刘维民,薛群基.仿贝壳结构的自组装有机-无机纳米复合薄膜的制备及结构表征[J].高等学校化学学报,2004,25(3):497-500.
    132.Katti D R and Katti K S. Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques, Part I:Elastic properties [J]. J Mater. Sci.,2001,36(6): 1411-1417.
    133. Katti D R, Katti K S and Pradhan S M. Multiscale modeling of biological nanocomposite nacre[J]. Society of Plastics Engineers,2004,2:1764-1768.
    134. Katti D R, Katti K S, Sopp J M and Sarikaya M.3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites[J]. Comput. Theor. Polym. Sci.,2001,11(5):397-404.
    135. Katti K S and Katti D R. Why is nacre so tough and strong?[J] Mater. Sci. Eng. C,2006, 26(8):1317-1324.
    136. Katti K S, Katti D R, Pradhan S M and Bhosle A P. Platelet interlocks are the key to toughness and strength in nacre[J]. J Mater. Res., 2005,20(5):1097-1100.
    1. Currey J D. Mechanical properties of mother of pearl in tension[J]. Proc. R. Soc. Lond., 1977,196:443-463.
    2. Okumura K, Gennes P G. Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures[J]. Eur. Phys. J E.,2001,4:121-127.
    3. Heuer A H, Fink D J, Laraia V J, Arias J L. Calvert P D, Kendall K, Messing G L, Blackwell J, Rieke P C. Thompson D H, Wheeler A P, Veis A, Caplan A I. Innovative materials processing strategies:A biomimetic approach[J]. Science,1992,255: 1098-1105.
    4. Lutt A, Grandjean J, Gregorie Ch. X-Ray diffraction patterns from the prisms of mollusc shells[J]. Arch. Int. Physiol. Biochim.,1960,68:829-831.
    5. Wilbur K M, Watabe N. Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi[J]. Ann. N. Y. Acad. Sci.,1963,109:82-112.
    6. Medakovie D, Popovie S, Grzeta B, Plazonie M, Hrs-Brenko M. X-ray diffraction study of calcification processes in embryos and larvae of the brooding oyster Ostrea edulis[J]. Mar. Biol.,1997,129:615-623.
    7. Su X W, Belcher A M, Zaremba C M, Morse D E, Stucky G D, Heuer A H. Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone "flat pearls"[J]. Chem. Mater.,2002,14: 3106-3117.
    8. Su X W, Zhang D M, Heuer A H. Tissue regeneration in the shell of the giant queen conch, Strombus gigas[J]. Chem. Mater.,2004,16:581-593.
    9. Zhang X, Vecchio K S. Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells[J]. Mater. Sci. Eng. C,2006,26:1445-1450.
    10. Zhu Z H, Tong H, Ren Y Y, Hu J M. Meretrix lusoria—a natural biocomposite material:In situ analysis of hierarchical fabrication and micro-hardness[J]. Micron,2006,37:35-40.
    11. Vecchio K S, Zhang X, Massie J B, Wang M, Kim C W. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants[J]. Acta Biomater.,2007,3:910-918.
    12. Udomkan N, Limsuwan P. Temperature effects on freshwater snail shells:Pomacea canaliculata Lamarck as investigated by XRD, EDX, SEM and FTIR techniques[J]. Mater. Sci. Eng. C,2008,28:316-319.
    13. Fleischli F D. Dietiker M, C Borgia, Spolenak R. The influence of internal length scales on mechanical properties in natural nanocomposites:A comparative study on inner layers of seashells[J]. Acta Biomater.,2008,4:1694-1706.
    14. Huang Z W, Li X D. Nanoscale structural and mechanical characterization of heat treated nacre[J]. Mater. Sci. Eng. C,2009,29:1803-1807.
    15. Ren F Z, Wan X D, Ma Z H, Su J H. Study on microstructure and thermodynamics of nacre in mussel shell[J]. Mater. Chem. Phys.,2009,114:367-370.
    16. Paula S M de, Silveira M. Studies on molluscan shells:Contributions from microscopic and analytical methods[J]. Micron,2009,40:669-690.
    17. Taylor J D, Layman M. The mechanical properties of bivalve (Mollusca) shell structure[J]. Palaeontology,1972,15:73-87.
    18. Currey J D, Taylor J D. The mechanical behavior of some molluscan hard tissues[J]. J. Zool. Lond.,1974,173:395-406.
    19. McClintock C. Shell structure of patelloid and bellerophontoid gastropods (Mollusca)[J]. Peabody Mus. Nat. Hist. Bull.,1967,22:1-140.
    20. Taylor J D, Kennedy W J and Hall A. The shell structure and mineralogy of the Bivalvia, introduction:Nuculacae Trigonacae[J]. Bull. Br. Mus. (Nat. Hist.) Zool. Suppl.,1969,3: 1-125.
    21. Taylor J D, Kennedy W J and Hall A. The shell structure and mineralogy of the Bivalvia. Ⅱ—Lucinacea, Clavagellacea, conclusion [J]. Bull. Br. Mus. (Nat. Hist.) Zool.,1973, 22(9):255-294.
    22. Runnegar B, Pojeta Jr J, Morris N J, Taylor J D, Taylor M E and Mcclung G. Biology of the Hyolitha[J]. Lethaia,1975,8:181-191.
    23. Lindberg D R. The patellogastropoda[C]. The patellogastropoda. Supplement 4,1988,4: 35-63.
    24. Carter J G. Skeletal Biomineralisation:Patterns, Processes and Evolutionary Trends[M]. Van Nostrand Reinhold, New York,1990.
    25. Hedegaard C. Shell structures of the recent archaeogastropoda[D]. University of Aarhus, Denmark,1990,1-2.
    26. Hedegaard C. Shell structures of the recent vetigastropoda[J]. J. Mollus. Stud.,1997,63: 369-377.
    27. Dauphin Y and Denis A. Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda[J]. Comp. Biochem. Physiol.,2000, 126(A):367-377.
    28. B(?)ggild O B. The shell structure of the mollusks[J]. K. Danske Vidensk. Selsk. Skr. Roekkc.1930.9:233-326.
    29. Kobayashi I. Microscopical observations on the shell structure of Bivalvia—part Ⅰ Barbatia ostusoides (Nyst.)[J]. Sci. Rep. Tokyo Kyoiku Daigaku C,1964,82:295-301.
    30. Kobayashi I. Submicroscopic observations on the shell structure of Bivalvia—part Ⅱ Dosinia (Phacosoma) japonica Reeve[J]. Sci. Rep. Sec. C,1966,88:189-210.
    31. Kobayashi I. Internal microstructure of the shell of bivalve mollusks[J]. Am. Zool.,1969, 9:663-672.
    32. Wise S W. Shell ultrastructure of the taxodont pelecypod Anadara notabilis (Roding)[J]. Eclogae Geol. Helv.,1971,64(1):1-12.
    33. Cuif J P, Denis A and Triclot M P. Ultrastructure de la couche externe du test d'unVeneracea:Dosinia ponderosa (Gray,1838)(Mollusque, Lamellibranche)[J]. Mus. Natn. Hist. Nat. Sec. Bull.,1985,7(4):741-759.
    34. Kobayashi I. Twinned aragonite crystals found in the bivalvian crossed lamellar shell structure[J]. J. Geol. Soc. Japan,1994,100(2):177-180.
    35. Wilmot N V, Barber D J, Taylor J D and Graham A L. Electron microscopy of molluscan crossed-lamellar microstructure [J]. Phil. Trans. R. Soc. Lond. B,1992,337:21-35.
    36. Kennedy W J, Taylor J D and Hall A. Environmental and biological controls on bivalve shell mineralogy [J]. Biol. Rev.,1969,44:499-530.
    37. Taylor J D. The structural evolution of the bivalve shell[J]. Palaeontology,1973,16: 519-534.
    38. Currey J D and Kohn A J. Fracture in the crossed-lamellar structure of Conus shells[J]. J. Mater. Sci.,1976,11:1615-1623.
    39. Laraia V J, Andow M and Heuer A H. An electron microscopy study of the microstructure and microarchitecture of the Strombus gigas shell[J]. Mat. Res. Soc. Symp. Proc.,1990, 174:117-124.
    40. Kuhn-Spearing L T, Kessler H, Chateau E, Ballarini R and Heuer A H. Fracture mechanisms of the Strombus gigas conch shell:Implications for the design of brittle laminates[J]. J. Mater. Sci.,1996,31:6583-6594.
    41. Kamat S, Su X, Ballarini R and Heuer A H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405:1036-1040.
    42. Chateigner D Hedegaard C and Wenk H-R. Mollusc shell microstructures and crystallographic textures[J]. J. Struc. Geol.,2000,22:1723-1735.
    43. Menig R, Meyers M H, Meyers M A and Vecchio K S. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Mater. Sci. Eng. A,2001,297: 203-211.
    44. Hou D F, Zhou G S and Zheng M. Conch shell structure and its effect on mechanical behaviors[J]. Biomaterials,2004,25:751-756.
    45. Li X D and Nardi P. Micro/nanomechanical characterization of a natural nanocomposite material —the shell of Pectinidae[J]. Nanotechnology,2004,15:211-217.
    46. Chen B, Peng X, Wang J G and Wu X. Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite[J]. Ceram. Int.,2004,30:2011-2014.
    47. Li X D. Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells[J]. JOM,2007,59:71-74.
    48. Bandel K. Ubergange von einfacheren Strukturtypen zur kreuzlamellenstruktur bei Gastropodenschalen[J]. Biomin. Forsch Ber.1979,10:9-38.
    49. Uozumi S, Iwata K and Togo Y. The ultrastructure of the mineral and the construction of the crossed-lamellar layer in molluscan shell[J]. J. Fac. Sci. Hokkaido Univ. ser. IV,1972, 15:447-478.
    50. Nakahara H, Kakei M and Bevelander G. Studies on the formation of the crossed lamellar structure in the shell of Strombus gigas[J]. Veliger,1981,23:207-211.
    51. Carter J G and Clark G R. Classification and phylogenetic significance of molluscan shell microstructure[M]. In Notes for a short course on mollusks (ed. T. W. Broadhead) (Dept. Geol. Sci. Stud. Geol.13), University of Tennessee, p.50-71.
    52.杨文.层状生物贝壳材料的结构表征与断裂行为研究[D].东北大学硕士学位论文,中国沈阳,2008.
    53. Meyers M A, Lin A Y M, Chen P Y, Muyco J. Mechanical strength of abalone nacre:Role of the soft organic layer[J]. J. Mech. Behav. Biomed. Mater.,2008,1(1):76-85.
    54. Lin A., Meyers M A. Growth and structure in abalone shell [J]. Mater. Sci. Eng. A,2005, 390:27-41.
    55. Su X and Heuer A H. Hard Tissue regeneration in Strombus gigas, the giant queen conch[J]. Mat. Res. Soc. Symp. Proc.,2000,599:225-230.
    1. Taylor J D and Layman M. The mechanical properties of bivalve (Mollusca) shell structures[J]. Palaeontology,1972,15(1):73-87.
    2. Currey J D. Further studies on the mechanical properties of mollusc shell material[J]. J. Zool.,1976,180:445-453.
    3. Mayer G and Sarikaya M. Rigid biological composite materials:Structural examples for biomimetic design[J]. Exp. Mech.,2002,42(4):395-403.
    4. Hou D F, Zhou G S and Zheng M. Conch shell structure and its effect on mechanical behaviours[J]. Biomaterials,2004,25:751-756.
    5. Li X D and Nardi P. Micro/nanomechanical characterization of a natural nanocomposite material-the shell of Pectinidae[J]. Nanotechnology,2004,15:211-217
    6. Sun J Y and Jin T. Fracture toughness properties of three different biomaterials measured by nanoindentation[J]. J. Bionic. Eng.,2007,4(1):11-17.
    7. Fleischli F D, Dietiker M, Borgia C and Spolenak R. The influence of internal length scales on mechanical properties in natural nanocomposites:A comparative study on inner layers of seashells[J]. Acta Biomater.,2008,4(6):1694-1706.
    8. Michelle L O and Robert F C. A practical guide for analysis of nanoindentation data[J]. J. Mech. Behav. Biomed. Mater.,2009,2(4):396-407.
    9. Bruet B J F, Qi H J, Boyce M C, et al. Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus[J]. J. Mater. Res., 2005,20:2004-2019.
    10. Katti K S, Mohanty B and Katti D R. Nanomechanical properties of nacre [J]. J. Mater. Res.,2006,21:1237-1242.
    11. Leunga H M and Sinha S K. Scratch and indentation tests on seashells[J]. Tribology Inter., 2009,42(1):40-49
    12. Laraia V J and Heuer A H. The microindentation behavior of several mollusk shells[C]. In: P.C. Riecke and P.D. Calvert, Editors, Proceedings MRS Symposium:Materials Synthesis Utilizing Biological Processes 174, Materials Research Society, Pittsburgh, PA.1990. 125-131.
    13. Laraia V J and Heuer A H. Novel composite microstructure and mechanical behavior of mollusk shell[J]. J. Am. Ceram. Soc.,1989,72(11):2177-2179.
    14. Palmqvist S. Method of determining the toughness of brittle materials, particularly hardmetals[J].Jenkontorets Ann,1957,14:300-307
    15. Lawn B R and Wilshaw T R. Indentation fracture:principles and applications[J]. J. Mater. Sci., 1975,10:1049-1081.
    16. Lawn B R and Fuller E R. Equilibrium penny-like cracks in indentation fracture [J]. J. Mater. Sci., 1975.10:2016-2024.
    17. Lawn B R and Evans A G. A model for crack initation in elastic/plastic indentation fields[J]. J. Mater. Sci., 1977,12:2195-2199.
    18. Lawn B R, Evans A G and Marshall D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. J. Am. Ceram. Soc.,1980,63:574-581.
    19. Lawn B R and Howes V R. Ellastic recovery at hardness indentation[J]. J. Mater. Sci., 1981,64:2745-2752.
    20. Anstis G R, Chantikul P, Lawn B R and Marshall D B. A critical evaluation of indentation techniques for measuring fracture toughness:Ⅰ-Direct crack measurements [J]. J. Am. Ceram. Soc.,1981,64:533-538.
    21. Meyers M A and Chawla K K. Mechanical Behavior of materials[M]. Second edition, Cambridge Univeristy Press,2009,549-551.
    22. Jackson A P, Vincent J F V and Turner R M. The mechanical design of nacre[J]. Proc. R Soc. Lond. B,1988,234:415-440.
    23. Kamat S, Su X, Ballarini R and Heuer A H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405:1036-1040.
    1. Taylor J D and Layman M. The mechanical properties of bivalve (Mollusea) shell structures[J]. Palaeontology,1972,15(1):73-87.
    2. Currey J D and Taylor J D. The mechanical behavior of some molluscan hard tissues[J]. J. Zool.,1974,173:395-406.
    3. Currey J D. Further studies on the mechanical properties of mollusc shell material[J]. J. Zool.,1976,180:445-453.
    4. Currey J D. Mecahnical properties of mother of pearl in tension[J]. Proc. R. Soc. Lond., 1977,196:443-463.
    5. Currey J D. Three analogies to explain the mechanical properties of bone[J]. Biorheology, 1964,2:1-10.
    6. Menig R, Meyers M H, Meyers M A and Vecchio K S. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells[J]. Acta Mater.,2000,48(9): 2383-2398.
    7. Menig R, Meyers M H, Meyers M A and Vecchio K S. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Mater Sci. Eng. A,2001. 297(1-2):203-211.
    8. Lin A Y M, Meyers M A and Vecchio K S. Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells:A comparative study[J]. Mater. Sci. Eng. C,2006,26:1380-1389.
    9. Wang R Z, Suo Z, Evans A G, Yao N and Aksay I A. Deformation mechanisms in nacre[J]. J. Mater. Res.,2001,16(9):2485-2493.
    10. Barthelat F, Tang H, Zavattieri P D, Li C M and Espinosa H D. On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure[J]. J. Mech. Phys. Solids,2007,55(2):306-337.
    11.Ashby MF, Hallam SD. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metal].,1986,34:497-510.
    12. Ballarini R, Kayacan R, Ulm F J, Belytschko T and Heuer A H. Biological structures mitigate catastrophic fracture through various strategies[J]. Int. J. Fract.,2005,135: 187-197.
    13. Song F, Soh A K and Bai Y L. Structural and mechanical properties of the organic matrix layers of nacre[J]. Biomaterials,2003,24(20):3623-3631.
    14. Ji B H. A study of the interface strength between protein and mineral in biological materials[J]. J. Biomechan.,2008,41(2):259-266.
    15. Chen P Y, Lin A Y M, Lin Y S. Seki Y, Stokes A G, Peyras J, Olevsky E A, Meyers M A and McKittrick J. Structure and mechanical properties of selected biological materials[J]. J. Mech. Behav. Mater.,2008,1(3):208-226.
    16. Liang Y, Zhao J, Wang L and Li F M. The relationship between mechanical properties and crossed-lamellar structure of mollusk shells[J]. Mater. Sci. Eng. A,2008,483:309-312.
    17.崔福斋,冯庆玲,生物材料学[M],北京:科学出版社,1996.
    18. Weibull W. A statistical distribution function of wide applicability [J]. J. App. Mech.,1951, 18:293-297.
    19. Meyers M A and Chawla K K. Mechanical behavior of materials[M]. Second edition, Cambridge Univeristy Press,2009,368-370.
    20. Jayatilaka A D S, Trustrum K. Statistical approach to brittle fracture[J]. J. Mater. Sci. 1977;12(7):1426-1430.
    21. Danzer R. A general strength distribution function for brittle materials[J]. J. Eur. Ceram. Soc.,1992,10(6):461-472.
    1. Currey J D. Mechanical properties of mother of pearl in tension[J]. Proc. R. Soc. Lond., 1977,196B:443-463.
    2. Okumura K and Gennes P G. Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with satisfied structures[J]. Eur. Phys. J. E.,2001,4:121-127.
    3. Kramptz G and Graser G. Molecularmechanisms of biomaterialization in the formation of calcified shells[J]. Science,1992,255:1098-1105.
    4. Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre[C]. Proc. R. Soc. Lond. B,1988,234:415-440.
    5. Sarikaya M, Gunnison K E, Yasrebi M, Aksay J A. Seashells as a natural model to study laminated composites [J]. Mater. Res. Soc.,1990,174:109-116
    6. Sarikaya M, Aksay J A. Results and problems in cell differentiation in biopolymers[M]. in: S. Case(Ed.), Springer-Verlag, Amsterdam,1992,1-25
    7. Sarikaya M. An introduction to biomimetics:A structural viewpoint [J] Microsc. Res. Tech.,1994,27:360-375.
    8. Laraia J V, Heuer A H. Novel Composite Microstructure and mechanical behavior of mollusc shells[J] J. Amer. Ceram. Soc.,1989,72(1):2177-2179.
    9. Currey J D and Kohn A J. Fracture in the crossed-lamellar structure of Conus shells [J]. J. Mater. Sci.,1976,11(9):1615-1623.
    10. Menig R, Meyers M H, Meyers M A et al. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells[J]. Acta Mater.,2000,48:2383-2398.
    11. Menig R, Meyers M H, Meyers M A et al. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Mater. Sci. Eng. A,2001,297:203-211.
    12. Neves N M and Mano J F. Structure/Mechanical behavior relationships in crossed-lamellar sea shells[J]. Mater. Sci. Eng. C,2005,25:113-118.
    13. Lin A Y M, Meyers M A, Vecchio K S. Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells:A comparative study [J]. Mater. Sci. Eng. C,2006,26:1380-1389.
    14.杨文.层状生物贝壳材料的结构表征与断裂行为研究[D],东北大学硕士学位论文,中国沈阳,2008.
    15. Taylor J D, Layman M. The mechanical properties of bivalve (Mollusca) Shell structures [J]. Palaeontology,1972,15:73-87.
    16. Wang R Z. Suo Z. Evans AG. Yao N. Aksay IA. Deformation mechanism in nacre[J]. J. Mater. Res.,2001.16:2485-2493.
    17. Currey J D. Taylor J D. The mechanical behavior of some molluscan hard tissues[J]. J. Zool. Lond..1974.173:395-406.
    18. Chen P Y. Lin A Y M, Lin Y S. Seki Y, Stokes A G, Peyras J, Olevsky E A, Meyers M A. McKittrick J. Structure and mechanical properties of selected biological materials[J]. J. Mech. Behav. Mater.,2008,1(3):208-226.
    19. Su X W. Belcher A M. Zaremba C M. Morse D E, Stucky G D. Heuer A H. Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone "flat pearls" [J]. Chem. Mater.,2002. 14(7):3106-3117.
    20. Velazquez-Castillo R R, Reyes-Gasga J, Garcia-Gutierrez D I, Jose-Yacaman M. Crystal structure characterization of nautilus shell at different length scales[J]. Biomaterials 2006, 27(25):4508-4517.
    21. Sarikaya M, Aksay I A. Nacre of abalone shell:a natural multifunctional nanolaminated ceramic-polymer composite material[J]. Results Probl. Cell Differ.,1992,19:1-26.
    22. Kamat S, Su X, Ballarini R, Heuer A H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405:1036-1040.
    23. Kuhn-Spearing L T, Kessler H, Chateau E, Ballarini R, Heuer A H, Spearing S M. Fracture mechanicisms of the Strombus gigas conch shell:Implications for the design of brittle laminates[J]. J. Mater. Sci.,1996,31(24):6583-6594.
    24. Zaremba C M, Belcher A M, Fritz M, Li Y L, Mann S, Hansma P K, Morse D E, Speck J S, Stucky G D, Critical transitions in the biofabrication of abalone shells and flat pearls[J]. Chem. Mater.,1996,8:679-690.
    25. He J B and Wen S L, Interface features of shells and closed-shell-muscle[J]. J. Inorg. Mater.,1998,13(1):127-128.
    1. Nunamaker D M, Butterweck D M. Provost M T. Fatigue fractures in thoroughbred racehorses:Relationships with age, peak bone strain, and training[J]. J. Orthop. Res.,2005, 8(4):604-611
    2. Schaffler M B, Radin E L, Burr D B. Mechanical and morphological effects of strain rate on fatigue of compact bone[J]. Bone,1989,10(3):207-214.
    3. Carter D R, Hayes W C. Compact bone fatigue damage:A microscopic examination[J]. Clin. Orthop.Relat. Res.,1977,127:265-274.
    4. Carter D R, Caler W E, Spengler D M, Frankel V H. Fatigue behavior of adult cortical bone:The influence of mean strain and strain range[J]. Acta Orthop.,1981,52(5): 481-490.
    5. Pattin C A, Caler W E, Carter D R. Cyclic mechanical property degradation during fatigue loading of cortical bone[J]. J. Biomech.,1996,29(1):69-79.
    6. Carter D R, Hayes W C. Fatigue life of compact bone—Ⅰ. Effects of stress amplitude, temperature and density[J]. J. Biomech.,1976,9(1):27-30.
    7. Carter D R, Hayes W C, Schurman D J. Fatigue life of compact bone—Ⅱ. Effects of microstructure and density[J]. J. Biomech.,1976,9(4):215-218.
    8. Caler W E, Carter D R. Bone creep-fatigue damage accumulation[J]. J. Biomech.,1989, 22:625-635.
    9. Schaffler M B, Radin E L, Burr D B. Long-term fatigue behavior of compact bone at low strain magnitude and rate[J]. Bone,1990,11(5):321-326.
    10. Elner R W. The mechanics of predation by the shore crab, Carcinus maenas(L.), on the edible mussel, Mytilus edulls L[J]. Oecologia,1978,36:333-344.
    11. Currey J D, Brear K. Fatigue fracture of mother-of-pearl and its significance for predatory techniques[J]. Zool. Lond.,1984,204:541-548.
    12. Boulding E G, Labarbera M. Fatigue damage:Repeated loading enables crabs to open larger Bivalves[J]. Biol. Bull.1986,171:538-547.
    13. Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre[J]. Proc. R Soc. Lond. B,1988,234:415-440.
    14. Currey J D. Zioupos P, Davies P, Casino A. Mechanical properties of nacre and highly mineralized bone[J]. Proc. R. Soc. Lond.,2001,268:107-111.
    15. Boresi A P, Siderbottom O M, Seely F B, Smith J O. Advanced Mechanics of Materials, 3rd Edition[M](Wiley,New York,1978),p.696.
    16.杨文.层状生物贝壳材料的结构表征与断裂行为研究[D].东北大学硕士学位论文,中国沈阳,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700