自主式水下航行器同步定位与地图构建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主式水下航行器(AUV)在军事、科考和工程领域具有巨大的潜在价值和商业化前景,已成为机器人领域的一个热点问题。导航技术是决定AUV发展水平的关键技术之一,随着AUV向远程化和深海化发展,传统的导航方式已无法适应AUV快速发展的要求。同步定位与地图构建(SLAM)因其无需先验环境地图以及外部传感器结构简单等优势,对于提高AUV导航自主性具有重大的现实意义。本文针对AUV的SLAM问题,对其中的关键算法和技术问题展开研究。
     论文的研究工作和成果主要包括:
     首先对AUV的运动控制模型、环境地图模型、传感器观测模型等进行了讨论,并对这些模型进行了合理简化,接着给出AUV定位问题、地图构建问题的描述,在此基础上建立SLAM问题的概率模型及算法性能评价标准。
     对于小范围环境下的AUV同步定位与地图构建问题,EKF-SLAM具有算法结构简单、数学理论严谨等优点,使用UKF代替EKF能克服EKF-SLAM算法处理非线性问题时引入线性化误差的问题,但在实际应用中UKF的估计精度依赖于准确的先验噪声模型,缺乏自适应调节能力。针对这个问题,提出了一种鲁棒UKF-SLAM算法,通过使用一个多维观测噪声尺度因子对实际噪声统计特性进行跟踪,使算法在先验噪声模型未知或其统计特性时变情况下仍然保持较高的估计精度和稳定性。与EKF-SLAM和UKF-SLAM的对比仿真验证了算法的有效性。
     对于大范围或特征密集环境下的AUV同步定位与地图构建问题,基于粒子滤波(PF)的FastSLAM算法是一种常用的解决方案。针对传统PF算法不具备处理非高斯非稳态噪声的能力,提出了一种基于极大似然估计的PF算法,利用一系列独立的加权高斯噪声序列对真实噪声进行逼近,并将PF算法的粒子重要性权值转化为每个高斯噪声序列对应的概率密度函数,然后通过极大似然估计计算出这些独立噪声序列的分布参数及其权值,最终确定粒子重要性权值。将这种改进的PF算法用于FastSLAM框架,实现了非稳态非高斯噪声下AUV的同步定位与地图构建,仿真实验验证了算法的有效性。
     数据关联是SLAM的核心问题之一,直接影响到AUV状态和环境地图估计的精度。在对常见数据关联方法原理及特点进行分析比较的基础上,提出了一种基于模糊逻辑的数据关联方法。该方法以特征状态估计和特征观测的误差椭圆为对象,从中挖掘反映特征观测和特征估计的相关性信息并投影到论域上的模糊集合,通过建立一定的模糊规则,对多种特征信息进行融合推理,将模糊输出变量作为关联结果。仿真实验表明模糊数据关联算法具有比传统算法更高的关联正确率和更强的抗干扰能力。
     传统SLAM模型利用向量序列形式表达空间信息,对于杂波环境中的AUV导航问题,这种SLAM模型无法有效表达杂波对观测带来的漏检、传感器虚警以及观测不确定性等多种信息,算法的性能受到较大影响。针对这个问题,提出了一种基于随机有限集(RFS)的SLAM模型,将SLAM问题中的状态信息、观测信息以及环境地图都表示成RFS形式,在Bayes估计框架下利用概率假设密度(PHD)滤波进行联合目标状态估计,并通过粒子滤波对PHD滤波进行实现。此外,在由粒子集获取目标状态时,为克服传统峰值提取算法缺陷,提出了一种粒子集时滞输出的目标状态提取方法。仿真实验表明,在杂波环境中基于RFS的SLAM算法相比传统SLAM算法具有更高的估计精度和稳定性。
Autonomous underwater vehicle (AUV) has tremendous potential value and commercialprospects in the military, scientific and engineering fields, and it has become a hot issue in thefield of robotic research. Navigation is one of the key technologies which determine thedevelopment of AUV, and with the current of AUV toward the long-range and deep-sea thetraditional navigation methods are unable to satisfy the requirements of fast developing.Simultaneous localization and mapping (SLAM) is of great practical significance forimproving the autonomy of AUV Navigation because of its simple structure of externalsensor and no need for a priori environment map. In this paper, some key algorithms andtechnologies of SLAM for AUV are studied.
     The main research contents and achievements of this paper are as follows:
     Firstly, the motion control model, environment model and sensor observe model of AUVare discussed and simplified reasonably. And then, the description of AUV’s localizationproblem and mapping problem are proposed. On this basis, the probabilistic model of SLAMproblem and criteria of algorithm performance are established.
     EKF-SLAM algorithm has simple structure and rigorous mathematical theory for AUV’sSLAM problem in small-scale environment. Using UKF instead of EKF can eliminate thelinearization error introduced by EKF-SLAM in processing non-linear problem. But UKF islack of adaptive ability in practical application, because its estimate accuracy depends onprecise prior noise model. To solve this problem, a robust UKF-SLAM algorithm is proposed,which tracks actual noise statistical characteristics by using a multi-dimensional observenoise scale factor. As a result, it keeps high estimate accuracy and stability when the priornoise is unknown or the noise statistical characteristics are time-varying. The comparativesimulations between EKF-SLAM, UKF-SLAM and robust UKF-SLAM prove theeffectiveness of the new algorithm.
     For large-scale or dense-feature environment, the FastSLAM algorithm based on particlefilter (PF) is suitable for AUV SLAM problem. An improved particle filter based onmaximum likelihood estimation is proposed to solve the problem that traditional PFalgorithm can not obtain the estimation of a nonlinear system with the assumption ofnon-Gaussian non-stationary noise. In the improved PF algorithm, the real noise distributionis approximated by a series of independent weighted Gauusian noise sequences, and theimportance weights of PF are transformed to probability density function of each Gauusian noise sequence. Then the distribution parameters and weights of these noise sequences can becaculated by maximum likelihood estimation, and thus the weights of PF algorithm can bedetermined. By using maximum likelihood based PF algorithm in FastSLAM framework, theSLAM of AUV with non-Gaussian non-stationary noise is implemented. At last, theeffectiveness of proposed algorithm is verified by simulations.
     Data association is one of the core problems of SLAM, which directly affects theaccuracy of AUV's localization and environmental map estimation. A data associationalgorithm based on fuzzy logic is proposed on the basis of analyzing and comparing principleand characteristic of common data association methods. In this algorithm, the relatedinformation between feature measurement and feature estimation is mined from their ellipses,and projected into the fuzzy set on the domain. A variety of information is fusioned andreasoned by establishing certain fuzzy rules, and the data association result is just the fuzzyoutput variable. The simulations indicate that the fuzzy data association has higherassociation accuracy and stronger anti-disturbance ability compared with traditionalalgorithms.
     In traditional feature based SLAM model, the space information is described by vectorsequence. As a result, this kind of model can not effectively express multiple observeinformation such as loss detecting, false alarm and observe uncertainty etc. for AUVnavigation problem in the cluttered environment, and the algorithm performance is severelyaffected. To solve this problem, a SLAM model based on random finite set (RFS) theory isproposed. In the novel model, the system state, observation and environment map in SLAMare all represented in the form of RFS. The estimation of joint target state variable is carriedout through probability hypothesis density (PHD) filter in the Bayes estimate framework, andthe PHD filter is realized by particle filter. Additionally, a target state extracting method basedon particle set time-delay outputting is putted forward to overcome the defaults of traditionalextracting algorithm. Simulations show that in the cluttered environment the RFS-SLAM canobtain higher estimate accuracy and stability compared with traditional SLAM model.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人,沈阳:辽宁科学技术出版社.2000,11
    [2] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics.Autonomous robot vehicles. New York: Springer-verlag,1990:167-193P
    [3] Durrant H F,Bailey T.Simultaneous localization and mapping: Part I.IEEE Roboticsand Automation Magazine,2006,13(2):99-110P
    [4] Durrant H F,Bailey T.Simultaneous localization and mapping: Part II.IEEE Roboticsand Automation Magazine,2006,13(3):108-117P
    [5]王耀南,余洪山.未知环境下移动机器人同步地图创建与定位研究进展.控制理论与应用,2008,25(1):57-65页
    [6] Roberts G N, Sutton R著.任志良,张刚译.无人水下航行器进展.任志良,张刚.北京:电子工业出版社.2009,1
    [7] Hunter C B, Ayoung K, Ryan M E. An Overview of Autonomous Underwater VehicleResearch and Testbed at PeRL. Marine Technology Society Journal,2009,43(2):33-47P
    [8] Philipp W, Christian F. Deep-Sea AUV Navigation Using Side-Scan Sonar Images andSLAM. Proceedings of OCEAN’s IEEE Sydney Conference and Exhibition, Sydney,Australia, IEEE,2010:1-8P
    [9]燕奎臣,李一平,袁学庆.远程自治水下机器人研究.机器人,2002,24(4):299-303页
    [10]刘承香.水下潜器的地形匹配辅助定位技术研究.哈尔滨:哈尔滨工程大学博士论文.2003,6
    [11] Sandipa S, Matthew G, Brian B, et al. Underwater Acoustic Navigation with theWHOI Micro-Modem. Proceedings of IEEE/MTS OCEANS Conference andExhibition, Boston, Massachusetts USA, MTS/IEEE,2006:1-4P
    [12] Seokhoon Y, Chunming Q. Cooperative Search and Survey Using AutonomousUnderwater Vehicles (AUVs). IEEE Transactions on Parallel and Distributed Systems,2011,22(3):364-379P
    [13]毕凤阳.欠驱动自主水下航行器的非线性鲁棒控制策略研究.哈尔滨:哈尔滨工业大学博士论文.2010,7
    [14]严卫生,徐德民,李俊,等.自主式水下航行器导航技术.火力与控制指挥,2004,29(6):11-19页
    [15] Kinsey J C., Eustice R M, Whitcomb L L. Underwater vehicle navigation: recentadvances and new challenges. Proceedings of IFAC Conf. on Manoeuvring andControl of Marine Craft, Lisbon, Portugal, September2006
    [16] Elbert S. Maloney Editer Dutton’s Navigation and Piloting. Annapolis, M D NavalInstitute Press,1985
    [17]冯子龙,刘健,刘开州. AUV自主导航航位推算算法的研究.机器人,2005,27(2):168-172页
    [18]边信黔,周佳加,严浙平,赵大威.基于EKF的无人潜航器航位推算算法.华中科技大学学报,2011,39(3):100-104页
    [19] Kurisky M, Goldstein M. Inertial Navigation. Proceedings of Conf. on AutonomousRobot Vehicles, Springer-Verlag,1990
    [20]刘勇,武昌,林健.无线电导航系统作战效能评估研究.弹箭与制导学报,2007,27(5):268-270页
    [21]王康,刘莉,杜小菁,等.基于UKF的GPS定位算法.宇航学报,2011,32(4):795-801页
    [22]谭述森.北斗卫星导航系统的发展与思考.宇航学报,2008,29(2):391-396页
    [23] Vaganay J, Bellingham J G, Leonard J J. Outlier Rjection for Autonomous AcousticNavigation. In Proc. IEEE Int. Conf. Robotics and Automation,1996:2174-2181P
    [24] Bellingham J G, Gonsi T R, Tedrow U, et al. Hyperbolic Acoustic Navigation forUnderwater Vehicles. In Proc. AUV’ Implementation and Demonstration,1992:304-309P
    [25] Jalving B, Gade K, Hagen O K, Vestgard K. A toolbox of aiding technigques for theHUGIN AUV integrated inertial navigation system. Modeling, Identification andControl,2004,25(3):173-190P
    [26] Audric M. GAPS, a new concept for USBL. Proceedings of Ocean’04–MTS/IEEETechno-Ocean’04: Bridges across Oceans-Conference. Kobe, Japan,2004,4:4004-4009P
    [27]张立川,徐德民,刘明雍,等.基于移动长基线的多AUV协同导航.机器人,2009,31(6):581-592页
    [28]刘文勇,江林,钱立兵,等.超短基线水下定位校准方法的探讨与分析.测绘通报,2011,1:82-84页
    [29]李姗姗,吴晓平,赵东明.导航用海洋重力异常图的孔斯曲面重构方法.测绘学报,2011,39(5):508-515页
    [30]寇义民.地磁导航关键技术研究.哈尔滨:哈尔滨工业大学博士学位论文,2010,7
    [31]谭佳琳.粒子群优化算法研究及其在海底地形辅助导航中的应用.哈尔滨:哈尔滨工程大学博士学位论文,2010,3
    [32]韩松来. GPS和捷联惯导组合导航新方法及系统误差补偿方案研究.长沙:国防科学技术大学博士学位论文,2010,10
    [33] Yun X, Bachmann E R, McGhee R B. Testing and Evaluation of an IntegratedGPS/INS System for small AUV Navigation. IEEE Journal of Oceanic Engineering,1999,24(3):396-404P
    [34] Desset S, Damus R, Morash J, et al. Use of GIBs in AUVs for underwater archaeology.Sea Technology,2003,44(12):22-27P
    [35]刘明雍,胡俊伟,李闻白.一种基于改进无忌卡尔曼滤波的自主水下航行器组合导航方法研究.兵工学报,2011,32(2):252-256页
    [36] Miller P A, Farrell J A, Yuanyuan Zhao, et al. Autonomous Underwater VehicleNavigation. IEEE Journal of Oceanic Engineering,2010,35(3):663-678P
    [37] Smith R, Cheeseman P. On the Representation and Estimation of Spatial Uncertainty.International Journal of Robotics Research,1986,5(4):56-68P
    [38] Thrun S, Burgard W, Fox D. A Real-time Algorithm for Mobile Robot Mapping withApplication to Multi-robot and3D Mapping. Proceedings of IEEE InternationalConference on Robotics and Automation. San Francisco,2000:1147-1156P
    [39] Feder H J S, Lenonard J J, Smith C M. Adaptive Sensing for Terrain Aided Navigation.Proceedings of OCEANS '98Conference, Nice, France, Acropoils Convention Center,1998,1:336-341P
    [40]罗荣华,洪炳镕.移动机器人同时定位与地图创建研究进展.机器人,2004,26(2):183-186页
    [41] Thrun S. Learning Metric-topological Maps for Indoor Mobile Robot Navigation.Artificial Intelligence,1998,99(1):21-71P
    [42] Guivant J, Nebot E. Optimization of the Simultaneous Localization and Map-BuildingAlgorithm for Rea-Time Implementation. IEEE Transactions on Robotics andAutomation,2001,17(3):242-257P
    [43] Kurt K. Improved Occupancy Grids for Map Building. Autonomous Robots,1997,4:351-367P
    [44] Dissanayake G, Newman P, Clark S, et al. A solution to the simultaneous localizationand map building(SLAM) problem. IEEE Transactions on Robotics and Automation,2001,17(3):229-241P
    [45] Hui-Ping LI, De-Min XU, Fu-Bin ZHANG. Consistency Analysis of EKF-basedSLAM by Measurement Noise and Observation Times. Acta Automatica Sinica,2009,35(9):1177-1184P
    [46] Chandima D P, Lanka U, Kergo W, et al. A fuzzy logic based approach to the SLAMproblem using using pseudolinear models with multiframe data association. ArtificialLife and Robotics,2008,13(1):155-161P
    [47]石杏喜,赵春霞,郭剑辉.基于PF/CUKF/EKF的移动机器人SLAM框架算法.电子学报,2009,37(8):1865-1868页
    [48] Juliers J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems.Proceedings of the SPIE, Bellingham, WA, USA: SPIE,1997,3060:182-193P
    [49] Wan E A,vander Merwe R. The Unscented Kalman Filter for Nonlinear Estimation.Proceedings of symposium2000on Adaptive Systems for Signal Processing,Communication and Control(AS-SPCC), Lake Louise, Alta, Canada,2000,153-158P
    [50]张文玲,朱明清,陈宗海.基于强跟踪UKF的自适应SLAM算法.机器人,2010,32(2):190-195页
    [51]郭剑辉,赵春霞.尺度unscented变换在同时定位与地图创建算法中的应用研究.兵工学报,2008,29(7):859-863页
    [52] Kim C, sakthivel R, Chung W K. Unseented FastSLAM: A robust algorithm for thesimultaneous localization and mapping problem. Proceedings of IEEE InternationalConferenceon Roboties and Automation, Piscataway, NJ, USA: IEEE,2007,2439-2445P
    [53] Thrun S, Koller D, Ghahmarani Z, et al. Simultaneous localization and mapping withsparse extended information filters: Theory and Initial Results[EB/OL]. ComputerScience Technical Report, Carnegie Mellon University,2002. http://www.cs.cmu.edu/thrun/papers/thrun.tr-seif02.pdf
    [54] Frese U. A Proof for the Approximate Sparsity of SLAM Information Matrices.Proceedings of the IEEE International Conference on Robotics and Atomation.Barcelona, Spain,2005:329-335P
    [55] Murphy K P. Bayesian map learning in dynamic environments. Proc. Of Advances inNeural Information Processing System. Denver, USA: MIT Press,2000,12:1015-1021P
    [56] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to thesimultaneous localization and mapping problem. Proceedings of the AAAI NationalConference on Artificial Intelligence, Edmonton, Canada: AAAI Press,2002:593-598P
    [57] Montemerlo M, Thrun S, Koller D, et al. FastSLAM2.0: An improved particlefiltering algorithm for simultaneous localization and mapping that provably converges.Proceedings of the6th International Joint Conference on Artificial Intelligence,Acapulco, Mexico,2003:1151-1156P
    [58] Thrun S, Montemerlo M, Loller D, et al. FastSLAM: an efficient solution to thesimultaneous localization and mapping problem with unknown data association.Journal of Machine Leaning Research,2004,4(3):380-407P
    [59] Li M H,HONG B R,LUO R H. Coevolution Particle filter for mobile robotsimultaneous localization and mapping. Proceedings of IEEE International Conferenceon Natural language Proc and Knowledge engineering. Wuhan,China: IEEE Press,2005:808-813P
    [60] Masson F, Guivant J,Nebot E. Hybrid architecture for simultaneous localization andmap building in large outdoor areas. Proceedings of the International Conference onRobots and systems. Switzerland: IEEE Press,2002, l:570-575P
    [61] Thrun S. A probabilistic online mapping algorithm for teams of mobile robots.International Journal of Robotics Research,2001,20(5):335-363P
    [62] Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping andlocalization for mobile robots[J]. Machine Learning,1998,31(1/3):29-53P
    [63] Burgard W, Fox D, Jans H, et al. Sonar-based mapping of large-scale mobile robotenvironments using EM. Proceedings of the16th International Conference onMachine Learning. Bled, Slovenia: Morgan Kaufmann.1999,67-76P
    [64] Thrun S, Burgard W, Fox D. A real-time algorithm for mobile robot mapping withapplications to multi-robot and3D mapping. Proceedings of IEEE InternationalConference on Robotics and Automation. San Francisco, USA: IEEE Press,2000,1:321-328P
    [65] Hahnel D, Schulz D, Burgard W. Map building with mobile robots in populatedenvironments. Advanced Robotics,2003,17(7):579-598P
    [66] Thrun S, Beetz M, Burgard W, et al. Probabilistic algorithms and the interactivemuseum tour-guided robot Minerva. International Journal of Robotics Research.2000,19(11):972-1000P
    [67] Lu F, Milios E. Globally consistent range scan alignment for environment mapping.Autonomous Robots,1997,4(4):333-349P
    [68] Golfarelli M, Maio D, Rizzi S. Elastic correction of deadreckoning errors in mapbuilding. Proceedings of the IEEE/RSJ International Conference on Intelligent Robotsand Systems. Victoria, Canada: IEEE Press,1998,2:905-911P
    [69] Duckett T, Marsland S, Shapiro J. Fast on-line learning of globally consistent maps.Autonomous Robots,2002,12(3):287-300P
    [70] Gutmann J S, Konolige K. Incremental mapping of large cyclic environments.Proceedings of the IEEE International Symposium on Computational Intelligence inRobotics and Automation. Monterey, USA: IEEE Press,1999:318-325P
    [71] Frese U. An O (log n) algorithm for simultaneous localization and mapping of mobilerobots in indoor environments. Germany: University of Erlangen Nurnberg,2004
    [72] Paskin M A. Thin junction tree filters for simultaneous localization and mapping.Proceedings of the18th International Conference on Artificial Intelligence. SanFrancisco, USA: Morgan Kaufmann,2003:1157-1164P
    [73] Dellaert F, Kaess M. Square Root SAM: Simultaneous location and mapping viasquare root information smoothing. International Journal of Robotics Research,2006,25(5):1181-1203P
    [74] Kaess M, Ranganathan A, Dellaert F. iSAM: Fast Incremental Smoothing andMapping with Efficient Data Association. Proceedings of IEEE InternationalConference on Robotics and Automation. Roma, Italy: IEEE Press,2007:1670-1677P
    [75] Kaess M, Dellaert F. Covariance recovery from a square root information matrix fordata association. Robotics and Autonomous Systems,2009,57(12):1198-1210P
    [76] Houles A, Bar-Shalom Y. Multisensor tracking of a maneuvering target in clutter.IEEE Trans on Aerospace and Electronic Systems,1989,25(2):176-189P
    [77] Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic dataassociation. Automatica,1975,11(9):451-460P
    [78] Kirubarajan T, Bar-Shalom Y. Probabilistic data association techniques for targettracking in clutter. Proceedings of the IEEE.2004,92(3):536-557P
    [79] Neira J Tardos J D. Data association in stochastic mapping using the jointcompatibility test. IEEE Transactions on Robotics and Automation.2001,17(6):890-897P
    [80] Reid D. An algorithm for tracking multiple targets. IEEE Transactions on AutomaticControl.1979,24(6):843-854P
    [81] Streit R L, Luginbuhl T E. Maximum likelihood method for probabilisticmulti-hypothesis tracking. Proceedings of SPIE International Symposium, Signal andData Processing of Small Targets. Bellingham, WA, USA: The International Societyfor Optical Engineering,1994.394-405P
    [82] Frank O, Nieto J, Guivant J, Scheding S. Multiple target tracking using sequentialmonte carlo methods and statistical data association. Proceedings of IEEE/RSJInternational Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEEPress,2003,3:2718-2723P
    [83] Newman P, Leonard J. Pure Range-Only Sub-Sea SLAM. Proceedings of IEEEConference on Robotics and Automation. Washington, DC, USA: IEEE Press,2003,2:1921-1926P
    [84] Williams S B, Newman P, Dissanayake G, et al. Autonomous UnderwaterSimultaneous Localisation and Map Building. Proceedings of IEEE Conference onRobotics and Automation.2000, San Francisco, CA, USA: IEEE Press,2000,2:1793-1798P
    [85] Majumder S, Dissanayake G, Durrant-Whyte H. Multi-Sensor Data Fusion forUnderwater Navigation. Journal of Robotics and Autonomous System,2001,35(2):97-108P
    [86] Smith C M, Leonard J J. A Multiple Hypothesis Approach to Concurrent Mapping andLocalization for Autonomous Underwater Vehicles. Proceedings of InternationalConference on Filed and Service Robotics. Sydney Australia,1997:2174-2181P
    [87] Eustice R, Singh H, Leonard J, et al. Visually Navigating the RMS Titanic with SLAMInformation Filters. Proceedings of Robotics: Science and Systems,2005:57-64P
    [88] Ribas D, Ridao P, Tardos J D, et al. Visual SLAM for3D Large-Scale SeabedAcquisition Employing Underwater Vehicles. Proceedings of IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Nice, France: IEEE Press,2008:1011-1016P
    [89] Mallios A, Ridao P, Ribas D, et al. EKF-SLAM for AUV navigation underProbabilistic Sonar Scan-Matching. Proceedings of IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Taipei, Taiwan: IEEE Press,2010:4404-4411P
    [90]季秀才.机器人同步定位与建图中数据关联问题研究.长沙,国防科学技术大学博士学位论文,2008,6
    [91]王要强.同步定位与地图构建技术中的数据关联问题.哈尔滨,哈尔滨工业大学硕士学位论文,2008,7
    [92]周武.面向智能移动机器人的同时定位与地图创建研究.南京,南京理工大学博士学位论文,2009,4
    [93]余洪山.移动机器人地图创建和自主探索方法研究.长沙,湖南大学博士学位论文,2007,5
    [94]孙作雷.大规模不规则环境中的移动机器人定位与地图构建.上海,上海交通大学博士学位论文,2010,7
    [95]孙荣川,马书根,李斌,等.基于分治法的同步定位与环境采样地图创建.自动化学报,2010,36(12):1697-1704
    [96]张洁.基于声纳的水下机器人同时定位与地图构建技术研究.青岛,中国海洋大学硕士学位论文,2008,6
    [97]杨丽丽.基于粒子滤波器的大尺度环境下水下机器人的自主导航定位.青岛,中国海洋大学硕士学位论文,2009,6
    [98]杨柯.大尺度未知海底环境下的AUV同时定位与地图构建方法研究.青岛,中国海洋大学硕士学位论文,2009,6
    [99]曲镜圆.基于声纳的AUV环境感知与地形建模方法研究.哈尔滨,哈尔滨工程大学硕士学位论文,2009,1
    [100]王文晶.基于重力和环境特征的水下导航定位方法研究.哈尔滨,哈尔滨工程大学博士学位论文,2009,4
    [101] Durrant H F. Where am I. A tutorial on mobile vehicle localization. Industrial Robot,1994,11-16P
    [102] Ribas D, Ridao P. SLAM using an Imaging Sonar for Partially Structured UnderwaterEnvironments. Proceedings of the IEEE/RSJ International Conference on IntelligentRobots and Systems,Beijing, China: IEEE Press,2006:5040-5045P
    [103]甘永.水下机器人运动控制系统体系结构的研究.哈尔滨:哈尔滨工程大学博士学位论文,2007,1
    [104] Fox D, Burgard W, Thrun S. Markov Localization for Mobile Robots in DynamicEnvironments. Journal of Artificial Intelligence Research,1999:391-427P
    [105]郭利进.大尺度环境下移动机器人同时定位与地图创建研究.天津:天津大学博士学位论文,2007,8
    [106]王珂,王伟,庄严,等.基于几何-拓扑广域三维地图和全向视觉的移动机器人自定位.自动化学报,2008,34(11):1369-1378页
    [107] Tomatis N, Nourbakhsh I, Siegwart R. Simultaneous localization and map building: aglobal topological model with local metric maps. Proceedings of the IEEE/RSJInternational Conference on Intelligent Robotics and Systems, Hawaii, USA: IEEEPress,2001,1:1708-1714P
    [108]徐则中.移动机器人的同时定位与地图创建.杭州:浙江大学博士学位论文,2004,11
    [109] Majumder S. Sensor Fusion and Feature Based Navigation for Subsea Robots. Sydney:The University of Sydney,2001,6
    [110]沈郑燕.声纳图像去噪与分割技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2010,4
    [111]刘晨晨.高分辨率成像声纳图像识别技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2006,8
    [112]孙即祥.现代模式识别,长沙:国防科技大学出版社.2002:3-4页,216页
    [113]秦永元,张洪钱,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社.1998
    [114]李涛.非线性滤波方法在导航系统中的应用研究.长沙:国防科学技术大学博士学位论文,2003,10
    [115]史忠科,最优估计的计算方法.北京:科学出版社.2001
    [116]梁彦,潘泉,杨峰,等.复杂系统的现代估计理论及应用.北京:科学出版社.2009:147-153页
    [117] Shojaie K, Ahmadi K, Shahri A M. Effects of Iteration in Kalman Filters Family forImprovement of Estimation Accuraey in Simultaneous Localization and Mapping.IEEE/ASME International Conference on Advanced Intelligent Mechatronies, ETHZurieh, Switzerland, IEEE Press,2007:441-453P
    [118] Geng Y, Wang J. Adaptive estimation of multiple fading factors in Kalman filter fornavigation applications. GPS Solutions,2008,12(4):273-279P
    [119] Hide C, Moore T, Smith M. Adaptive Kalman filtering algorithms for integrating GPSand low cost INS. Proceedings of position location and navigation symposium,Monterey. IEEE Press,2004:227-233P
    [120]周卫东,乔相伟,吉宇人,等.基于新息和残差的自适应UKF算法.宇航学报,2010,31(7):1798-1804P
    [121] Hajiyev C. Adaptive filtration algorithm with the filter gain correction applied tointegrated INS/Radar altimeter. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering,2007,221(5):2041-3025P
    [122] Dah-Jing Jwo, Fong-Chi Chung. Fuzzy Adaptive Unscented Kalman Filter forUltra-Tight GPS/INS Integration. Proceedings of International Symposiumon Computational Intelligence and Design. Hangzhou, China, IEEE Press,2010:229-235P
    [123] Jwo D, Cho T. A practical note on evaluating Kalman filter performance optimalityand degradation. Applied Mathematics and Computation,2007,193(2):482-505P
    [124]张文玲,朱明清,陈宗海.基于强跟踪UKF的自适应SLAM算法.机器人,2010,32(2):190-195页
    [125] Xiong K, Liu L D, Zhang H Y. Modified unscented Kalman filtering and itsapplication in autonomous satellite navigation[J]. Aerospace Science and Technology,2009,13(4-5):238-246P
    [126] Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinearfiltering. Automatica,2006,42(2):261-270P
    [127] Wu Y X, Hu D W, Hu X P. Comments on performance evaluation of UKF-basednonlinear filtering. Automatica,2007,43(3):567-568P
    [128] Xiong K, Liu L D, Zhang H Y. Modified unscented Kalman filtering and itsapplication in autonomous satellite navigation. Aerospace Science and Technology,2009,13(4-5):238-246P
    [129]赵琳,王小旭,孙明,等.基于极大后验估计和指数加权的自适应UKF滤波算法.自动化学报,2010,36(7):1007-1019页
    [130] Australian Centre for Field Robotics. Souce Code.(2008-06-10)[2011-5-30].http://www-personal.acfr.usyd. edu.au/tbailey/
    [131] Dissanayake G, Williams S B, Durrant-Whyte H, et al. Map management for efficientsimultaneous localization and mapping(SLAM). Autonomous Robots,2002,12(3):267-286P
    [132] Frese U. Efficient6-DOF SLAM with Treemap as a Generic Backend. Proceedings ofInternational Conference on Robotics and Automation. Roma, Italy, IEEE Press,2007:4814-4819P
    [133] Shoudong H, Zhan W, Dissanayake, G. Sparse Local Submap Joining Filter forBuilding Large-Scale Maps. IEEE Transactions on Robotics,2008,24(5):1121-1130P
    [134] Thrun S, Koller D, Ghahmarani Z, et al. Simultaneous localization and mapping withsparse extended information filters: Theory and Initial Results. Computer ScienceTechnical Report, Carnegie Mellon University,2002. http://www.cs.cmu.edu/thrun/papers/thrun.tr-seif02.pdf
    [135] Ila V, Porta J M, Andrade-Cetto J. Information-Based Compact Pose SLAM. IEEETransactions on Robotics.2010,26(1),78-93P
    [136] Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing dataproblems. Journal of the American Statistical Association,1994,89(426):278-288P
    [137] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-GaussianBayesian state estimation. IEE Proceeds Part: F on Radar and Signal Processing, IEEEPress,1993,140(2):107-113P
    [138]祝继华,郑南宁,袁泽剑,等.基于中心差分粒子滤波的SLAM算法.自动化学报,2010,36(2):249-257页
    [139] Chanki K, Sakthivel R, Wan Kyun C. Unscented FastSLAM: A Robust Algorithm forthe Simultaneous Localization and Mapping Problem. Proceedings of IEEEInternational Conference on Robotics and Automation. Roma, Italy: IEEE Press,2007:2439-2445P
    [140]周武,赵春霞.一种基于遗传算法的FastSLAM2.0算法.机器人,2009,31(1):25-32页
    [141] Maybeck P S. Stochastic Models, Estimation and Control. New York: Academic,1982
    [142] Hahnel D, Thrun S, Wegbreit B, et al. Towards Lazy Data Association in SLAM.Robotics Research,2005:421-431P
    [143] Neira J, Tardós J D. Data association in stochastic mapping using the jointcompatibility test. IEEE Transactions on Robotics and Automation.2001,17(6):890-897P
    [144] Cooper A J. A comparison of data association techniques for simultaneous localizationand mapping. Minnesota: Aerospace Engineering and Mechanics, University ofMinnesota,2005
    [145] Giannopoulos E, Streit R, Swaszek P. Probabilistic multi-hypothesis tracking in amulti-sensor, multi-target environment. First Australian Data Fusion Symposium,Adelaide, Australia: IEEE Press,1996:184-189P
    [146] Booij O, Zivkovic Z, Kr se B. Efficient data association for view based SLAM usingconnected dominating sets. Robotics and Autonomous Systems,2009,57(12):1225-1234P
    [147] Watanabe K, Pathiranage C D, Izumi K. T-S fuzzy model adopted SLAM algorithmwith linear programming based data association for mobile robots. Proceedings of the2009IEEE International Symposium on Industrial Electronics. Seoul, Korea: IEEEPress,2009:244-249P
    [148] Aziz A M. A new all-neighbor fuzzy association technique for multitarget tracking in acluttered environment. Proceedings of the2009International Conference on FuzzySystems. Jeju Island, Korea: IEEE Press,2009:1767-1772P
    [149]张化光,何希勒.模糊自适应控制理论及其应用,北京:北京航空航天大学出版社,2002,7
    [150] Zadeh L A. The concept of a linguistic variable and its applications to approximatereasoning, part II. Information Science,1975,8(3):199-249P
    [151] Koenig S, Likhachev M, Liu Ya-xin, et al. Incremental Heuristic Search in ArtificialIntelligence. Artificial Intelligence Magazine,2004,25(2):99-112P
    [152] Mahler R. Statistical multisource multitarget information fusion. Boston: ArtechHouse Publishers,2007
    [153] Lin L, Bar-Shalom Y, Kirubarajan T. Track Labeling and PHD Filter for MultitargetTracking. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):778-795P
    [154] Bo B T. Random finite set in multi-object filtering. Perth: University of WesternAustralia,2008
    [155]孟凡彬.基于随机集理论的多目标跟踪技术研究.哈尔滨:哈尔滨工程大学博士论文,2009
    [156] Mahler R. Random set theory for target tracking and identification, Data Fusion HandBook. D Hall and J Llinas(eds.), CRC Press, Boca Raton,2001:14-33P
    [157] Mahler R. Statistical multisource multitarget information fusion, Boston: ArtechHouse,2007
    [158] Mahler R. Multitarget Bayes filtering via first-order multitarget moment. IEEETransactions on Aerospace and Electronic Systems,2003,39(4):1152-1178P
    [159] Schoenberg F. Transforming spatial point processes into Poisson processes. StochasticProcesses and Their Applications,1999,81(2):155-164P
    [160] Mahler R. PHD filters of higher order in target number. IEEE Transactions onAerospace and Electronic Systems,2007,43(4):1523-1543P
    [161] Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEETransactions on Signal Processing,2006,54(11):4091-4104P
    [162] Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Computing Surveys,1999,31(3):264-323P
    [163] Tobias M and Lanterman A D. Techniques for birth-particle placement in theprobability hypothesis density particle filter applied to passive radar. IET, Radar,Sonar and Navigation,2008,2(5):351-365P
    [164] Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modelingusing nonparametric kernel density estimation for visual surveillance. Proceedings ofthe IEEE,2002,90(7):1151-1163P
    [165] Han B, Comaniciu D, Zhu Y, et al. Sequential kernel density approximation and itsapplication to real-time visual tracking. IEEE Transactions on Pattern Analysis andMachine Intelligence,2008,30(7):1186-1197P
    [166]庄泽森,张建秋,尹建军.多目标跟踪的核粒子概率假设密度滤波算法.航空学报,2009,30(7):1264-1270页
    [167] Panta K, Vo B N, Singh S, et al. Probability Hypothesis Density Filter versus MultipleHypothesis Tracking. Proceedings of Signal Processing, Sensor Fusion, and TargetRecognition XIII. Orlando, USA: SPIE, Bellingham, WA,2004:284-295P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700