以赤糖为基质的生物制氢生态系统与工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界矿质能源储备的消耗和持续的环境污染,已经成为全球亟待解决的重要问题。氢气作为高效和可再生的清洁能源,越来越被人们所接受,引起人们的广泛关注。氢气的制取技术的开发及其作为能源的利用,必将带来显著的环境生态效益、社会效益和经济效益。其中生物制氢技术已经逐渐被各国政府和科学家们重视。
     厌氧发酵生物制氢技术中不同底物及其不同浓度对产氢菌的产氢效能具有重要作用,选择成本低廉的底物也是目前研究的重点。而糖类又是在众多可用底物中最易被利用来制氢的。赤糖作为成品糖具有溶解性好、价格低、且成分中含有维生素和微量元素,是可用于生物制氢的化合物。
     本文依据厌氧发酵生物制氢的产氢机理,以赤糖为基质分别采用间歇培养方式和连续流培养方式对纯菌种和微生物混合培养的厌氧发酵制氢进行试验研究。围绕不同底物的筛选及以赤糖为基质的发酵法生物制氢反应器的启动和载体强化,并通过对影响生物制氢反应器的个别生态因子的控制,研究厌氧生物制氢反应器内群落的演替情况。
     研究结果表明,对于不同种类单糖(葡萄糖、果糖、半乳糖和甘露糖),分别取浓度为5g/L和10 g/L,不同单糖之间的氢气产量差别较小,但是底物浓度对氢气产量影响很大;产氢量最大的是10 g/L的半乳糖,产氢量为4072 mL/L,产氢量最小的是5g/L的果糖。蔗糖为双糖,其水解形成葡萄糖和果糖,转变成糖酵解途径的中间产物而进入糖酵解途径,以20g/L的葡萄糖和蔗糖为底物,葡萄糖为底物时产氢菌的产氢量(1.2 L/L)小于蔗糖为底物时的产氢量(1.42 L/L)。
     以赤糖浓度为20 g/L作为试验的底物浓度,研究产氢菌利用赤糖作为发酵底物时其发酵产氢工艺,发酵时间为60 h。实验发现不同发酵阶段,氢气的产量变化也不同。
     用可以做发酵产氢间歇试验底物的赤糖为CSTR底物来启动连续流生物制氢反应器(CSTR)。反应初期化学需氧量COD为4000 mg/L,系统内以丁酸菌群为主,为丁酸发酵型,产氢量降低后升高,生物量逐渐降低,由于液相发酵代谢产物增加导致pH值逐渐降低,当反应器运行到25 d时乙酸产量减少,乙醇产量增加,转变为乙醇型发酵,且此时产氢量增加,生物量也达到最高,这说明乙醇型发酵是此反应的最佳发酵产氢途径。反应中期化学需氧量COD为3000 mg/L,32 d以后总产酸量减少,pH值升高,液相末端产物中乙醇所占比例下降,丙酸成为占比例最高的液相产物,发酵类型为丙酸型发酵,生物量下降,菌群活性减弱,产氢量也随之下降。反应后期36 d~40 d时化学需氧量COD为1000 mg/L,之后41 d~45 d化学需氧量COD恢复为5000mg/L,这段时期各项参数均呈下降趋势,化学需氧量COD升高并未使生物活性和产氢量提高。
     采用活性炭颗粒对曝气条件下预处理的活性污泥进行固定化,以赤糖为底物,启动CSTR反应器。活性污泥固定化系统在COD为2000~6000mg/L条件下运行、水力停留时间(HRT)6小时,温度为(35℃±1)C,当pH值和氧化还原电位范围分别为3.4~4.8和-335~-422时,液态发酵产物为乙醇、乙酸与少量丙酸、丁酸和戊酸。11 d以后,乙醇和乙酸占液相产物总和的比例为72%,形成稳定的乙醇型发酵。化学需氧量(COD)的去除率最高达到66%,最后稳定在17%,。这显示载体强化条件下的CSTR生物制氢系统既有较高的产氢量,又有高强度有机废水处理能力。
     赤糖为底物的活性污泥生物制氢生态系统中的生态因子如pH、ORP的改变可以引发不同的发酵类型。当pH稳定在5.2~5.5时,发酵末端产物主要是丁酸和乙酸,表现为典型的丁酸型发酵。丁酸型发酵细菌的生态位与环境相符合,成为优势菌群。当pH稳定在3.8~4.2一段时间后,发酵产物以乙醇、乙酸为主,发酵类型转至乙醇型发酵,并持续较长时间,表现出乙醇型发酵的良好稳定性。ORP基本稳定在-350 mV~-400 mV,属于典型的丁酸型发酵;之后,丁酸和乙酸的含量逐渐降低,相反,乙醇的含量迅速增加,最大甚至达到411 mg/L,稳定在乙醇型发酵。
Nowadays, the consumption of mineral energy reserves and sustaining environmental pollution has become an important problem to be resolved emergency. As a sustainable and clean energy source with minimal or zero use of hydrocarbons, hydrogen is a promising alternative to fossil fuel which caused more and more people's concern. The production technology and usage of hydrogen must bring significant environmental benefits, social benefits and economic benefits. The biological hydrogen production technology has taken more and more attention gradually by governments and scientists.
     Different concentrations of different substrates play an important role in hydrogen production efficiency of hydrogen production bacterium in anaerobic fermentation biological hydrogen production technology. The selection of the low cost substrate is the focus of research currently. Among all the usable substrates, sugars can produce hydrogen easily.
     This paper investigated the effects of different subtracts to fermentation bio-hydrogen production in batch culture, we also studied the set up and control of continuous stirred tank reactor (CSTR) which made brown sugar as subtract in continuous culture and constructed the bio-hydrogen system of artificial ecosystem anaerobic fermentation.
     The concentrations of monosaccharide were set at 5 g/L and 10 g/L respectively. The results showed that, the different monosaccharide (glucose, fructose, galactose and mannose) had little effects on the hydrogen production yield of Hydrogen Production Bacteria while the different concentration of substrates had grate effects on hydrogen production. The hydrogen production got the maximum of 4072 mL/L when took 10 g/L galactose and the minimum hydrogen production appeared when took 5 g/L fructose as substrate.
     For disaccharide, the hydrolysis of sucrose are glucose and fructose, which transformed to the middle production of glycolysis and took part in it. The hydrogen production yield (1.2 L/L) of hydrogen production bacteria when took glucose as substrate was less than 1.42 L/L when made sucrose as substrate.
     We also made 20 g/L brown sugar as substrate to investigate the fermentation biohydrogen production technology of hydrogen production bacteria and the fermentation time was 60 h. The results found that the hydrogen production fluctuated with the fermentation stage.
     Set up the CSTR with brown sugar which was suitable for biohydrogen production. At the beginning of the system, the COD concentration were set at 5000 mg/L.The biohydrogen production decreased. The hydrogen yield decreased at first and then increased while biomass decreased gradually with the operation. The increasing of liquid fermentation metabolism production in CSTR caused pH value gradually decreased. When the CSTR operated at 25th day, the concentration of acetic acid decreased and the concentration of ethanol increased, the reactor changed into the ethanol fermentation type. The hydrogen production yield increased and the biomass got the maximum which suggested that the ethanol fermentation-type was the best ferment and hydrogen production way. In the middle reaction the COD decreased to 3000 mg/L, total volatile fatty acids (VFAs) reduced when the CSTR operated 32 days, and pH value increased. The concentration of ethanol dropped while the propionic acid became the majority of the VFAs and the reactor turned into propionic acid fermentation type. The biomass and the hydrogen production activity of bacterium declined while hydrogen production declined with the operation. The COD dropped to 1000 mg/L (36 d to 40 d) and then increased to 5000 mg/L (41d to 45d), all parameters were tend to declining of this period. The rising of COD hadn't improved the biological activities and hydrogen production yield.
     The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. It was indicated that the immobilized system was operated at the conditions of organic loading rate (OLR) of 8-32 kg/m3d, hydraulic retention time (HRT) of 6 h and temperature of (35±1)℃, when the pH value and oxidation-reduction potential (ORP) ranged from-335 and-422 respectively, liquid fermentation products were predominated by ethanol and acetate, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 72%to the total liquid products after 11 days operation. The biogas was free of methane throughout the study and the H2 content in biogas was estimated to be 50%. This fluctuation in the hydrogen yield was attributed to the formation of propionate. The rate of chemical oxygen demand (COD) removal reached 17%in the study. This CSTR system showed a promising efficient bioprocess for H2 production from high-strength organic wastewater.
     The ecological factors (such as pH, ORP) of activated sludge bio-hydrogen ecological system changed can trigger different fermentation type which made brown sugar as the substrate. When pH steady at 5.2-5.5, the end fermentation production were mainly butyrate and acetic acid and the concentration of ethanol and H2 yield were related lower, which performed for typical butyric acid type fermentation. The ecology niche of butyric acid fermented bacterium was suited with environment and became the major bacterium. When pH steady at 3.8-4.2 longer, the ethanol and acetic acid became the majority while hydrogen production yield got stable, fermentation type turned to ethanol type fermentation and lasted a long time, which showed the stability of ethanol fermentation.
引文
[1]J.M.Bockris. The Origin of Ideas on a Hydrogen Economy and Its Solution to the Decya of the Environment. Int.J. Hydrogen Energy.2002,27:731~740
    [2]钱伯章,朱建芳.氢气生产的技术进展.天然气与石油.2009,27(1):44~49
    [3]J.Benemann. Hydrogen Biotechnology:Progress and ProsPects. Nat. Biotechnol.1996, 14:1101~1103
    [4]H.Nakamura. Uber die photosynthese bei der schwefelfreren purpurbakterie rhodobacillus palustris.I. Beitrae zur stoffwechselphysiologie der purpubak-terirn. Acta phytochimica. 1937,9:189~229
    [5]李建政,任南琪.生物制氢技术的研究与发展.能源工程.2001,(2):18~20
    [6]D.Das, vT. Nejat. Hydrogen production by Biological processes:asuvrey Literattlre. Int.J. Hydrogen Energy.2001,26:13~28.
    [7]J.O'M.Bockris. The Origin of Ideas on a Hydrogen Economy and Its Solution to the Decay of the Environment. Int.J. Hydrogen Energy.2002,27:731~740
    [8]Anastasios Melis, Matthew R Melnicki. Integrated biological hydrogen production. Int.J. Hydrogen Energy.2006,31:1563~1573
    [9]李雯等.光发酵制氢的研究现状与发展.化工进展.2010,29(增刊):79~83
    [10]李白昆等.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究.环境科学学报1997,4:459~463
    [11]D. B Levin, L. Pitt, M. Love. Biohydrogen Production:Prospects and Limitations to Practical Application. Int.J. Hydrogen Energy.2004,29:173~185
    [12]H.N.Gavala, I.V.Skiadas, BK.Ahring. Biological hydrogen production in suspended and attached grow anaerobic reactor systems. Int.J. Hydrogen Energy 2006,31:1164~1175
    [13]申翔伟,周雪花,杜金宇等.生物制氢技术发展历程及其特征.太阳能.2010,1:22~25
    [14]李建政,任南琪.生物制氢技术的研究与发展.能源工程.2001,(2):18~20
    [15]S.W.Van Ginkel, B.E.Logan. Increased biological hydrogen production with reduced organic loading. Water Res.2005,39:3819~826
    [16]G.Kyaze, N.Martinez-Pwrez, R.Dinsdale, G.C.Premier, F.R.Hawkes. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng.2006,93(5):972~979
    [17]M.B.Salerno. Inhibition of biohydrogen production by ammonia. Water Res.2006, 40:1167-1172
    [18]S.Venkata Mohan. Enhancing biohydrogen production from chemhical wastewater treatment in anaerobic sequencing batch biofilm reachor by bioaugmenting with selective ly enriched kanamycin resistant anaerobicmixed consortia.Int.J. Hydrogen energy.2007, 32:3284~3292
    [19]谢国俊.暗发酵细菌B49与光合细菌RLD-53联合产氢影响因素研究.工学硕士学位论文.哈尔滨工业大学.2009,6
    [20]C. Collet, N. Adler, J-P. Schwitzgulebe, P. Peringer. Hydrogen Production by Clostridium Thermolacticum During Continuous Fermentation of Lactose. Int.J. Hydrogen Energy. 2004,29:1479~1485
    [21]R.A.Rozendal, H.V.M.Hamelers, Principles and perspectives of hydrogen production through biocatalysedelectrolysis. Int.J. Hydrogen Energy.2006,31(12):1632~1640
    [22]任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社.2004
    [23]N.Ren, B.Wang, J.C.Htlang. Ethanol-Type Fermentation from Cabrohydrate in High Rate Acidogenic Reactor.Biotech Bioeng.1997,54:428~433
    [24]王东阳.乙醇型发酵制氢工艺启动及生物强化运行定向调控研究.哈尔滨工业大学博士论文.2010
    [25]CY.Lin, CH.Cheng. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int.J. Hydrogen Energy.2006,31:832~840.
    [26]N.Francou, P. M.Vignais. Hydrogen Production by Rhodopsundomonas Cell Entrapped in Carrageenan Beads. Biotechnol Lett.1984,6:39-44
    [27]T. Melis. Green Alga Production:Process, Challenges, and Prospects. Int.J. Hydrogen Energy.2002,27:1217~1228
    [28]J.E.W.Polle, S.Jin, E.Kanakagiri, T.Masuda, A.Melis. A Truncated Chlorophyll Antenna Size of the Photosystems-a Practical Method to Improve Microalgal Productivity and Hydrogen Production in Mass Culture. Int.J. Hydrogen Energy.2002,27:1257~1264
    [29]H. Zhu, S. Ueda, Y. Asada, J. Miyake. Hydrogen Production as a Novel Process of Wastewater Treatment-Studies on Tofo Wastewater with Entrapped R. sphaetoides and Mutagenesis. Int.J. Hydrogen Energy.2002,27:1349~1358
    [30]DY.Lee, YY.Li, T.Noike. Continuous H2 production by anaerobic mixed microflora in membrane bioreactor. Bioresour Technol 2009,100 (2):690~695.
    [31]Y.Ueno, S.Otauka, M.Morimoto. Hydrogen Production from Industrial Wastewater by Anaerobic Microflora in Chemostat Culture. J Ferment Bioeng.1996,82:194~197
    [32]任南琪.有机废水处理生物产氢原理与工程控制对策研究.哈尔滨建筑大学博士论文.1993
    [33]李建昌,张无敌.生物制氢的研究现状与发展.能源工程.2001,6:15~18
    [34]邢德峰.产氢-产乙醇细菌群落结构与功能研究.哈尔滨工业大学博士论文.2006
    [35]Y.K.Oh. E.H.Seol, E.YLee, D.Park. Fermentative Hydrogen Production by a New Chemohe-terotro Phic Bacterium Rhodoj. Seudomonas Paulsrtis P4.Int.J.Hydrogen Enegry.2002,27:1373~1379
    [36]J.Miyake, M.Miyake, YAsada. Biotechnological Hydrogen Production Research of Efficient Light Enegry Conversion.J.Biotechno.1999,70:89~101
    [37]N.Kumar, D.Das. Enhancement of hydrogen production by Enterobacter cloacae ⅡT-BT08. Proc Biochem.2000,35:589~593.
    [38]李永峰.发酵产氢新菌种及纯培养生物制氢工艺研究.博士学位论文.哈尔滨工业大学.2005
    [39]S. Tanisho, Y. Ishiwata. Continuous Hydrogen Production from Molasses by Fermentation Using Urethane Foam as a Support of Flocks. Int.J. Hydrogen Energy.1995,20(7): 541~545
    [40]H.Yokoi, T.Ohkawara. J.Hirose, S.Hayashi, Y.Takasaki. Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng.1995, 80(6):571~574
    [41]M.A.Rachman, Y.Nakashimada, T.Eahizono, N.Nishio. Hydrogen Production with High Yield and High Evolution Rate by Self-flocculated Cells of Enterobacter aerogenes in a Packed-bed Reactor. Appl. Microbiol. Biotechnol.1998,49:450~454
    [42]H. Yokoi, Y. Maeda, J. Hirose. H2 Production by Immobilization Cells of Clostridium butyricum on Porous Glass Beads. Biotechnology Techniques.1997,11(6):431-433
    [43]F.Taguchi, N. Mizukami, T. Saiti-Taki, K. Hasegawa. Hydrogen Production from Continuous Fermentation of Xylose during Growth of Colstridium sp. No.2. Can. J. Microbiol,1995,41:536~540
    [44]N.Kumar, D.Das. Biological Hydrogen Production in a Packed Bed Reactor Using Agroresidues as Solid Matrices. Proceedings of the 13th World Hydrogen Energy Conference.2000:364~369
    [45]G.Y.Jung, J.R.Kim, J-Y,Park, S.H.Park. Hydrogen Production by a New Chemohetero-trophic Bacterium Citrobacter sp.19. Int.J. Hydrogen Energy.2002,27:601~610
    [46]Y.K Oh, E.H Seol, E.Y Lee, S.H.Park. Fermentative Hydrogen Production by a New Chemoheterotrophic Bacterium Rhodopseudomonas palustris P4. Int.J. Hydrogen Energy. 2002,27:1373~1379
    [47]S.Tashino. Feasibility Study of Biological Hydrogen Production from Sugar Cane by Fermentation. Hydrogen Energy Progress Ⅺ Proceedings of 11th WHTC.1996,3: 2601-2606
    [48]C.Collet, N.Adler, J-P.Schwitzgulebe, P.Peringer. Hydrogen Production by Clostridium Thermolacticum During Continuous Fermentation of Lactose. Int.J. Hydrogen Energy. 2004,29:1479~1485
    [49]W.M.Chen, Z.J.Tseng, K.S.Lee, J.S.Chang. Fermentative Hydrogen Production with Clostridium butyricum CGS5 Isolated from Anaerobic Sewage Sludge. Int.J. Hydrogen Energy.2005,30:1063~1070
    [50]L.Minnan, H.Jinli, W.Xiaobin, X.Huijuan, C.Jinzao, L.Chuannan, Z. Fengzhang, X. Liangshu. Isolation and Characterization of a High H2-producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology 2005,156:76-81
    [51]林明.高效产氢发酵新菌种的产氢机理及生态学研究.哈尔滨工业大学博士论文.2002
    [52]郑国香,任南琪,李永峰.一株高效产氢突变体RF-9的筛选与产氢特性.中国环境科学.2007,27(2):184~188
    [53]宗文明,于瑞嵩,樊美珍.一株嗜热高效产氢细菌Clostridium sp.08~1的分离鉴定与产氢特征.武汉大学学报.2009,55(5):569~576
    [54]李珊珊,范代娣,马晓轩.厌氧发酵产氢细菌的筛选及其产氢优化.微生物学通报.2009,36(9):1275~1282
    [55]刘合钦,徐莉,周翔南.产氢菌的分离鉴定及其产氢特性研究.生物技术通报.2009,10:194~197
    [56]蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素.环境科学.2005,26(2):98~04
    [57]Z.P.Zhang, J.H.Tay, K.Y.Show. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int.J. Hydrogen Energy.2007,32:185~191
    [58]H.N.Gavala, I.V.Skiadas, B.K.Ahring. Biological hydrogen production in suspended and attached grow anaerobic reactor systems. Int.J. Hydrogen Energy 2006,31:1164~1175
    [59]V.Ginkel, B.E.Logan. Increased biological hydrogen production with reduced organic loading. Water Res..2005,39:3819~3826
    [60]G.Kyaze, N.Martinez-Pwrez, R.Dinsdale. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng.2006,93(5): 972~979
    [61]M.B.Salerno. Inhibition of biohydrogen production by ammonia. Water Res.2006,40: 1167~1172
    [62]S.Venkata Mohan. Enhancing biohydrogen production from chemical wastewater treatment in anaerobic sequencing batch biofilm reactor by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia. Int.J. Hydrogen energy.2007,32: 3284~3292
    [63]C. Collet, N. Adler, J-P. Schwitzgulebe. Hydrogen Production by Clostridium Thermolacticum During Continuous Fermentation of Lactose. Int.J. Hydrogen Energy. 2004,29:1479~1485
    [64]R.A.Rozendal, H.V.M.Hamelers. Principles and perspectives of hydrogen production through biocatalysed electrolysis. Int. J Hydrogen Energy.2006,31(12):1632~1640
    [65]S.Manish, K.V.Venkatesh, B.Rangan. Metaboic flux analysis of biological hydrogen production by Escherichia coli. Int.J. hydrogen Energy.2007,32:3820~3830
    [66]V.Krishnan, D.Ahmad. Biohydrogen generation from jackfruit peel using anaerobic contact filter.Int.J. Hydrogen Energy.2006,31:569~579
    [67]D.Mark. Redwood, E.Lynne. Macaskie. A two stage two—organi Sill process for biohydrogen from glucose, international Journal of hydrogen Energy.2006,31:1514~1521
    [68]R.Hawkes, D.L.Dionsdale, I.Hawkes. Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. Int.J. Hydrogen Energy.2002,27:1339~1347
    [69]A.Majizat, Y.Mitsunori, W.Mitsunori, et al. Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Water Sci.Technol.1997,36(6):279~286
    [70]于涛,张念慈,曹逸坤.纯培养生物制氢的分批培养工艺的建立与调控.化工进展.2010,29(增刊):198~200
    [71]李永峰.纯菌种产氢菌连续流厌氧发酵生物制氢.东北林业大学学报.2009,6(37):
    [72]刘敏,陈滢,任南琪.利用不同类型种泥启动生物制氢反应器的试验研究.四川大学学报(工程科学版).2009,41(1):86~90
    [73]李永峰,王璐,李建政,等利用Ethanoligenens harbinense产氢菌连续培养的CSTR的启动与运行.环境科学学报.2009,29(8):1624~1628
    [74]郝小龙.有机废水在UASB反应器中的厌氧发酵产氢的试验研究.合肥工业大学硕士论文.2003:77
    [75]H.Q.Yu, Z.H.Zhu, H.S.Zhang. Hydrogen production from rice winery wastewater in an up-flow anaerobic reactor by using mixed anaerobic culture. Int. J. Hydrogen Energy.2002, 27:1359~1365
    [76]朱葛夫,李建政,吕炳南等.大豆蛋白废水处理系统的产氢性能分析.武汉理工大学学报.2006,28(专辑Ⅱ):196~201
    [77]李建政,蒋凡,郑国臣.ABR发酵产氢系统的控制运行及产氢效能.环境科学学报.2010,30(1):79~87
    [78]W.Q.Guo, N.Q.Ren, Z.B.Chen, et al. Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int.J. Hydrogen Energy.2008,33:7397~7404
    [79]李建政,王淑静,昌盛等.活性污泥的热处理及其发酵产氢特性.科技导报.2009,27(12):75~78
    [80]郭婉茜,任南琪,王相晶等.接种污泥预处理对生物制氢反应器启动的影响.化工学报.2008,29(5):1284-1287
    [81]计新静,李涛,孙学习等.生物发酵制氢菌种富集优化与产氢的关联研究.河南化工.2010,27(8):31~33
    [82]李宇亮,李小明,郭亮等.污泥发酵制氢技术的现状和展望.中国沼气.2008,26(1)
    [83]李玉友,褚春凤,堆洋平.厌氧发酵生物制氢微生物及工艺开发的研究进展.环境科学学报.2009,29(8):1569~1588
    [84]I.Valdez-Vazquez, E.Rios-Leal, K.M.Mu oz-Paez, et.al. Effect of inhibition treatment, type of inoculate and incubation temperature on batch H2 production from organic solid waste. Biotechnol Bioeng.2006,95 (3):342~349
    [85]D.Y.Cheong, C.L.Hansen. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol,2006,72 (4):635~643
    [86]C.C.Chen, C.T.Lin, M.C.Lin. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol.2002,58:224~228
    [87]C.N.Lin, S.Y.Wu, J.S.Chang. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone immobilized anaerobic sludge. Int.J. Hydrogen Energy. 2006,31 (5):2200~2210
    [88]刘晓烨,庄蓓岚,宋倩雯等.厌氧发酵产氢污泥的驯化技术.化工进展.2009,28(增刊):527~529
    [89]C.C.Wang, C.W.Chang, C.P.Chu, D.J.Lee, B.V.Chang, C.S.Liao, J.H.Tay. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res. 2006,37:2789~2793.
    [90]E.Cigdem, T.Nicolas, K.J.Kennedy. Mohamed Hamoda. Athermal microwave effects for enhancing digestibility of waste activated sludge.Water Res.2007,41:2457~2466
    [91]袁瑛,韩伟,周雅珍等CSTR厌氧发酵产氢系统中载体强化的研究.化工进展.2010,29(增刊):215~217
    [92]曲媛媛,郭婉茜,丁杰等.接种污泥对产氢颗粒污泥形成的影响.哈尔滨工业大学学报.2010,42(6):876~880
    [93]任南琪,王爱杰,马放.产酸发酵生理生态学.北京:科学出版社,2005
    [94]任南琪,王宝贞.有机废水发酵法生物制氢技术原理与方法.黑龙江:黑龙江科学技术出版社.1994
    [95]李建政.有机废水发酵法生物制氢技术研究.哈尔滨工业大学博士论文.1999
    [96]A.Cohen, J.M.Van Gemert, R.J.Zoetemeyer A.M.Breure. Main Characteristics and Stoi-chiometric Spects of Acidogenesis of Soluble Cabrohydrate Containing Castewater.Proc. Biochem.1984,19:228-237
    [97]F.E.Mosey. Mathematical Modelling of the Anaerobic Digestion Process regulatory Mechanisms for the Formation of Short Chain Volatile Acids from Glucose. Water Sci. Tech.1983,15:209~232
    [98]N.Q.Ren, B.Z.Wang, J.C.Htlang. Ethanol-Type Fermentation from Cabrohydrate in High Rate Acidogenic Reactor.Biotech Bioeng.1997,54:428~433
    [99]刘敏,任南琪,刘艳玲等.初始条件对生物制氢反应器中顶极群落的影响.哈尔滨工业 大学学报.2009,41(6):194~196
    [100]N.V托雷斯,E.O.沃伊特.修志龙,腾虎译.代谢工程的途径分析与优化.北京:化学工业出版社.2009
    [101]G. N. Stephanopoulos, A. A. Ardtidou, J. Nielsen赵学明,白冬梅译.代谢工程原理与方法.北京:化学工业出版社.2004
    [102]H.S.Shin, J.H.Youn, S.H.Kim. Hydrogen Productiosn from Food Wastein Anaerobic Mesophilic and Thermophilic Acidogenesis. Int.J. Hydrogen Energy.2004,29:1355~1363
    [103]Y.Ueno, Haurta, M.Ishii. Microbial Community in Anaerobic Hydrogen Producing Microflora Enriched from Sludge ComPost. APPIMicrobiol. Biotechnol.2001, 57:555-562
    [104]H.H.P.Fang, H.Liu. Effect of pH on Hydrogen Production from Glucose by a Mixed Culture. Bioresource Technol.2002,82:87~93
    [105]秦智.生物制氢反应器发酵类型控制对策及生物强化作用研究.哈尔滨工业大学博士论文.2003
    [106]宫曼丽.连续流生物制氢反应器的定向启动及群落演替规律.哈尔滨工业大学博士论文.2006
    [107]W.T.Liu, T.L.Marsh, H.Cheng,et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16SrRNA. Apple Environ Microbial,1997,63:4516~4522
    [108]J.M.Stach, S.Bathe, J.Clapp, et al. PCR-SSCP comparison of 16SrDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbial Ecol.2001,36:139~151
    [109]T.Zhang, H.P.Fang. Digitization of DGGE (denaturant gradient gelel ectrophoresis) profile and cluster analysis of microbial communities. Biotechnology Letters,2000,22: 399~405
    [110]GMuyzer, E.C.Waal, UitterlindenAG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Appl Environ Microbial.1993,59:695~700
    [111]A.Felske, A.Wolterink, R.Lis, et al. Searching for predominant soil bacteria:16S rDNA cloning versus strain cultivation. FEMS Microbial Ecol.1999,30:137~145
    [112]Y.F.Li, Q.R.Nan, Y.Chen. Ecological mechanism of fermentative hydrogen production by bacteria. Int.J. Hydrogen Energy.2007,32:755~760
    [113]蒋志城.生物发酵制氢技术的研究及进展.浙江化工.2008,39(2):14~17
    [114]J.Miyake, S.kawamura. Efficiency of Light Energy Conversion to Hydrogen by the Photosynthenic Baterium Rhodobacter sphaeroides. Int. J Hydrogen Energy.2009,12(3): 147~149
    [115]L.J.Chidwick, R.L.Irgens. Hydrogen Gas Production By an Ectothiorhodospira vacuolata Strain. Appl Environ. Microbial.1991,57(2):594~596.
    [116]谢天卉,赵鑫,路璐等.哈尔滨商业大学学报(自然科学版).2010,263:303~306
    [117]B. Fabiano, P. Perego. Thermodynamic Study and Optimization of Hydrogen Production by Enterobacter aerogenes, Int. J. Hydrogen Energy.2002,27:149~156
    [118]S.K. Han, H.S Shin. Biohydrogen Production by Anaerobic Fermentation of Food Waste. Int. J. Hydrogen Energy.2004,29:569~577
    [119]M.Monmoto, M.Atsuka, A.A.Y.Atif. Biological Production of Hydrogen from Glucose by Natural Anaerobic Microflora. Int. J. Hydrogen Energy.2004,29:709~713
    [120]Z.Kadar, T.D.Vrijek, G.E. van Noorden. Yields from Glucose, Xylose, and Paper Sludge Hydrolysate during Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor Saccharolyticus. Appl. Biochem. Biotech.2004,113(16):497~508
    [121]I.Hussy, F.R.Hawkes, R.Dinsdale. Continuous Fermentative Hydrogen Production from a Wheat Starch Co-product by Mixed Microflora, Biotechnol. Bioeng.2003,84:619~626
    [122]J.H.Wu, C.Y.Lin. Biohydrogen Production by Mesophilic Fermentation of food Wastewater, Water Sci. Technol.2004,49:223~228
    [123]H.Q.Yu, Z.H.Hu, T.Q.Hong. Hydrogen Production from Rice Winery Wastewater By Using A Continuously Stirred Reactor. J. Chem. Eng. Jpn.2003,36:619~626
    [124]许丽英,王兴组,任南琪.糖蜜的可发酵性与制氢条件.辽宁工程技术大学学报.2007,26(4):618~621
    [125]郑先君,陈志军,魏丽芳等.不同底物种类对厌氧发酵产氢的影响.河南化工.2005,(7):30~32
    [126]W.S Kisaalita, K.V Lo. Kinetics of Whey-Lactose Acidogenesis. Biotechnol Bioeng. 1989,33:623~30
    [127]M.Talabardon, J.P.Schwitzgulebel, P.Pleringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Permeate. J Biotechnol.2000,76(1):83~92
    [128]C. Collet, J-P. Schwitzgulebel, P. Pleringer. Improvement of Acetate Production from Lactose By Growing Clostridium Thermolacticum in Mixed Batch Culture. J Appl Microbiol.2003,95(4):824~831
    [129]L. Minnan, H. Jinli, W. Xiaobin. Isolation and Characterization of a High H2 producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology.2005,156: 76~81
    [130]刘敏,任南琪,丁杰等.糖蜜、淀粉与乳制品废水发酵法生物制氢.环境科学.2004,25(5):65~69
    [131]徐琰,张茂林.纤维素类生物质厌氧发酵产氢的研究.化学研究.2005,2:86~89
    [132]张雪松,朱建良.影响纤维素物质厌氧发酵产氢因素的研究.生物技术通报.2005, 2:47~50
    [133]李永峰,任南琪,郑国香.碳氮质量比对发酵细菌产氢性能的影响.化学工程.2005,4:41-43
    [134]李永峰, 任南琪,王兴祖等.发酵液中总碳与总氮对产氢菌释氢行为的影响.哈尔滨商业大学学报(自然科学版).2004,6:627~683
    [135]江浩元,李龙,曹莉等.磷源和氮源对CSTR反应器生物制氢的影响.化工进展.2010,29(增刊):78~81
    [136]A.A.Tsygankov, V.B.Borodin, K.K.Rao, D.O.Hall. H2 Photo-production by Batch Culture of Anabaena Variablis ATCC29413 and its Mutant PK84 in a Photobioteactor. Biotech.&Bioeng.2007,64(6):709~715
    [137]林明,任南琪,王爱杰等.高效产氢发酵细菌在不同气相条件下产氢.中国沼气.2002,(2):56-59
    [138]王建龙.生物固定化技术与水污染控制.北京:科学出版社.2002:57-60
    [139]N.Q.Ren. Hydrogen Production Biotechnology from Wastewater Fermentation theory and Method. Harbin:Press of Heilongjiang Science & Technology,1994
    [140]李建政,任南琪.两相厌氧生物工艺相分离优越性的探讨.哈尔滨建筑大学学报.1998,31(2):1220~1226
    [141]S.Tanisho, Y.Suzuki, N.Wakao. Fermentative Hydrogen Evolution by Enterobacter aerogenes Strain E82005. Int. J. Hydrogen Energy.1987,12(9):623~627
    [142]S.Y.Tanisho, Ishiwata. Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter aerogenes. Int. J. Hydrogen Energy.1994,19(10):807~812
    [143]T.Yokoi, J.Tokushige, S.Hirose, Y.Hayashi, Takasaki. Hydrogen Production by Immobilized Cells of Aciduric Enterobacter aerogenes Strain HO-39. J. Ferment. Bioeng. 1997,83(5):481-484
    [144]R.Bagai, D.Madamwar. Prolonged evolution of photohydrogen by intermittent supply of nitrogen using a combined system of Phormidium valderiannum, halobacterium halobium and Escherichia coli. Int.J. Hydrogen Energy.1998,23:545~550.
    [145]J.S.Chang, K.S.Lee, et al. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrogen Energy,2002,27:1167~1174
    [146]C.N.Lin, J.S.Chang, et al. Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int.J. Hydrogen Energy,2005,30:1375~1381
    [147]韩伟.CSTR生物制氢反应器的快速启动及运行特性的研究.东北林业大学硕士论文.2009,6
    [148]R.E Hungater. Methods in Microbiology. New York:Academic press.1969
    [149]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展.生物质化学工程.2006,40(1):27~31
    [150]刘一威,王爱杰,陈瑛.糖蜜废水生物制氢研究进展.中国甜菜糖业.2007,(3):30-34
    [151]国家环境保护总局.《水和废水检测分析方法》编委会.《水和废水检测分析方法》北京:中国环境科学出版社(第四版).2002
    [152]王相晶.发酵产氢细菌B49生理特性及其固定化应用研究.哈尔滨工业大学博士学位论文.2003
    [153]G. Y.Jung, J.R.Kim, J.Y.Park, S.H.Park. Hydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp.19. Int.J. Hydrogen Energy.2002,27:601~610
    [154]樊耀亭,李晨林等.天然厌氧微生物发酵生产生物氢气的研究.中国环境科学,2002,22(4):370~374
    [155]王亚楠,傅秀梅,刘海燕等.生物制氢最新研究进展与发展趋势.应用与环境生物学报,2007,13(6):895~900
    [156]W.H.Cathcart. High-frequency heating produces mold-food bread. Food Ind.2000(18): 864-865
    [157]R.V.Dezcaru, Microwave energy in food processing applications. Rev. Food Technol. 2002(1):199~224
    [158]D.A.Copson. Microwave irradiation of fruit juice. U.S. Patent 2833657
    [159]G.P.Loor. Dielectric properties of homogeneous mixtures containing water J. Microwave Power,2002 (3):67~73.
    [160]M.Anastasios, M.R.Melnicki. Integrated biological hydrogen production. Int.J. Hydrogen Energy.2006,31:1563~1573
    [161]T.Karube, S.Matsunaga, S.Tsuru, Suzuki. Continuous Hydrogen Production by Immobilized Whole Cells of Clostridium butyricum. Biochim Biophys Acta.1976,444(2): 338~343
    [162]N.Q.Ren, D.Y.Wang, C.P.Yang. Election and isolation of S hydrogen producing fermentative bacteria with high yield and rate and its bioaugmentation process. Int.J. Hydrogen Energy,2010:2877~2882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700