树脂吸附法处理印染废水生化尾水树脂脱附液的处置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Treatment of the Desorbed Wastewater from Resin with High Concentration from Biologically Treated Sewage Effluent
  • 作者:许玲
  • 论文级别:硕士
  • 学科专业名称:环境工程
  • 学位年度:2011
  • 导师:李爱民
  • 学科代码:083002
  • 学位授予单位:南京大学
  • 论文提交日期:2011-05-29
摘要
本论文在对印染废水生化尾水树脂脱附液的性质进行分析的基础上,针对树脂脱附液的盐含量较高的特点,采用纳滤膜技术,选用截留分子量为200Da-300Da的纳滤膜。树脂脱附液被分离成两部分:一部分为主要含有小分子有机物的纳滤透过液;一部分为主要含有大分子有机物的纳滤浓缩液。纳滤浓缩液的体积约是树脂脱附液体积的1/5-1/6。通过对纳滤透过液和纳滤浓缩液的常规性质、分子量分布、亲疏水性分级、紫外-可见光光谱、三维荧光进行分析,可知纳滤透过液的色度很低,TOC值在200mg/L左右,有机物含量低;然而纳滤透过液的pH值在11-12范围内,全盐量很高,为1.46×105mg/L,NaCl的含量高达7.39×10~4mg/L;纳滤透过液的平均分子量较低,主要含有四种荧光物质,分别为蛋白质、富里酸、腐殖酸和溶解性微生物副产物,其中富里酸的比例最高。分离后得到的纳滤浓缩液表观成深黑色、粘稠而且色度很高;纳滤浓缩液的TOC高达3000mg/L以上,SUVA值较高,表明芳香性有机物含量较高;纳滤浓缩液中HPO-A含量约占一半,有机酸占纳滤浓缩液中有机物的大部分,中极性物质含量较低;BOD5/CODcr低,可生化性差。平均分子量较高,分子量分布很宽。在四种荧光物质中,纳滤浓缩液中富里酸比例最高,腐殖酸其次。
     基于纳滤透过液的性质,将其作为脱附剂重复使用。结果表明体积相同时,纳滤透过液的脱附能力约是新鲜脱附剂脱附能力的71%,若继续补充17%的纳滤透过液,则脱附能力提高至新鲜脱附剂脱附能力的80%左右。经实验发现,纳滤透过液的脱附能力约是7.2%NaCl浓度的新鲜脱附剂的脱附能力。说明纳滤透过液可以作为脱附剂重复利用,大大减少了新鲜脱附剂的用量且节约了成本,实验了纳滤透过液的资源化利用。
     根据纳滤浓缩液的性质,比较了5种混凝剂的处理效果,结果表明选用聚合硫酸铁(PFS)混凝剂既经济又高效。因此确定了PFS混凝+Fenton氧化+Ca(OH)2混凝组合工艺。从经济和效果两方面考虑,确定组合工艺的参数为:PFS混凝剂的用量为1000Omg/L, Fe2+用量为500mg/L, H2O2/Fe2+摩尔比为20-30。最终处理出水有机物含量较低,BOD5/CODcr从小于0.1提高至0.4以上,说明纳滤浓缩液的毒性降低,可生化性提高,因此可考虑将处理后的纳滤浓缩液返回到生化系统进行处理。
     通过模拟活性污泥法实验已证明1‰的处理液(经PFS混凝+Fenton氧化+Ca(OH)2混凝组合工艺处理)不会对生化系统造成影响。由此说明本论文提出的PFS混凝+Fenton氧化+Ca(OH)2混凝组合工艺可行,最终处理出水可进入生化系统处理,从而实现了纳滤浓缩液的有效处理,达到树脂脱附液的资源化利用和零排放的目标。该工艺对其他树脂脱附液的处理具有重要的指导意义。
In this thesis, based on the characteristic properties analysis of printing and dyeing desorbed wastewater from resin saturated by pollutants in biochemical effluent, the wastewater was divided into two parts by nanofiltration(NF) membrane of 200Da-300Da. One was NF permeate dominated by inorganic salts; the other was NF concentrated wastewater containing most organic substances. The concentration ofNF concentrated wastewater was about 5-6 times that of the desorbed wastewater from resin. The results of NF permeate and NF concentrated wastewater analysis by molecular size distributions, hydrophilic and hydrophobic fractionation, UV-visible spectrum and excitation emission fluorescence spectrum analysis showed that NF permeate was with low color and TOC was about 200mg/L, however the pH value of NF permeate was between 11 and 12 and the content of NaCl was as high as 7.39×104mg/L. It was also concluded that NF permeate was with low average molecular weight, high content of Fulvic acid in four fluorescence substances (aromatic protein, Fulvic acid, soluble microbial by-product and Humic acid) detected by EEM. And NF concentrated wastewater was with high color, high organic matter content, high SUVA, high average molecular weight and low BOD5/CODcr ratio. HPO-A content is about half of the organic substances in NF concentrated wastewater and organic acids account for the majority of organic matter. The proportions of four substances was similar to NF permeate. The low BOD5/CODcr ratio of about 0.1 showed the NF concentrated wastewater had a poor biodegradability.
     Due to the properties of NF permeate, it was considered to be reused as desorption reagent. Experiments results demonstrated that the desorption capacity of NF permeate was about 71%that of fresh NaCl solution by using the same volume. It may reach 80% when adding NF permeate volume of 11mL. It was also found that the desorption capacity of NF permeate equaled to 7.2% NaCl solution. Therefore it can be concluded that NF permeate can be recycled and it decreased the usage of fresh NaCl solution and the cost.
     According to the characteristics of NF concentrated wastewater, a combined process for NF concentrated wastewater was then proposed. Five different coagulants was selected for treating NF concentrated wastewater, results showed that PFS was not only effective but also low cost. Thus combined PFS coagulation and Fenton oxidation processes was used. The optimum conditions for combined processes were 1000Omg/L of PFS,500mg/L of Fe2+ and the H2O2/Fe2+ molar ratio was between 20 to 30. The treated wastewater contained low content organic matter and the BOD5/CODcr ratio increased from 0.1 to no less than 0.4. These results suggested that the toxicity of the wastewater was greatly reduced and at the same time the biodegradability of the wastewater was improved greatly.
     It has been proved that l%o of the treated wastewater had no effect on activated sludge biological treatment system. So the combined processes were proved to be feasible. The treated wastewater could be returned to aerobic activated sludge system for further disposal and it realized the recycling of NF permeate and zero discharge of the desorbed wastewater from resin. It may be a promising technology for the treatment of the desorbed wastewater from resin and be instructable for other wastewater treatment.
引文
[1]戴日成,张统等.印染废水水质特征及处理技术综述[J].给水排水2000,26(10):33-37.
    [2]刘梅红.印染废水处理技术研究进展[J].纺织学报2007,28(1):116-117.
    [3]张艮林,徐晓军等.均相Fenton氧化-混凝法强化处理印染废水[J].化工环保2006,26(1):38-40.
    [4]T. H. Boyer, P. C. Singer. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors[J]. Water Res.2005,39(7): 1265-1276.
    [5]G. C. Budd, B. Long et al. Evaluation of MIEX process impacts on different source waters[R]. Denver:American Water Works Association Research Foundation. 2005.
    [6]R. Zhang. Magnetic ion exchange (MIEX(?)) resin as a pre-treatment to a submerged membrane system in the treatment of biologically treated wastewater[J]. Desalination 2006,192(1-3):296-302.
    [7]D. A. Fearing, J. Banks et al. Combination of ferric and MIEX(?) for the treatment of a humic rich water[J]. Water Res.2004,38(10):2551-2558.
    [8]T. H. Bayer, P. C. Singer. A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions[J]. Water Res. 2000,40(15):2865-2876.
    [9]M. R. D. Mergen, Jefferson B et al. Magnetic Ion-exchange resin treatment: impact of water type and resin use[J]. Water Res.2008,42(8-9):1977-1988.
    [10]P. B. Allpike, A. Heitz et al. Size exclusion chromatography characterize DOC removal in drinking water treatment[J]. Environ Sci Technol.2005,39(7):2334-2342.
    [11]T. H. Boyer, C. T. Miller et al. Modeling the removeal of dissolved organic carbon by ion exchange in a completely mixed flow reactor[J]. Water Res.2008, 42(8-9):1897-1906.
    [12]J. K. Edzwald. Coagulation in drinking water treatment:particles, organics and coagulants[J]. Water Sci. Technol. 1993,27(11):21-35.
    [13]B. Eikebrok, Coagulation-direct filtration of soft, low alkalinity humic waters[J]. Water Sci. Technol.1999,40(9):55-62.
    [14]E. Lefebvre, B. Legube. Coagulation-floculation parlechlorure ferrique de quelques acides organiques et phe'nolsen solution aqueuse[J]. Water Res.1993,27(3): 433-447.
    [15]S. W. Krasner, G. Amy. Jar tests evaluations of enhanced coagulations[J]. J. Am. Water Works Assoc.1995,87(10):93-107.
    [16]B. Bolto, D. Dixon et al. Removal of THM precursors by coagulation or ion exchange[J]. Water Res.2002,36(20):5066-5073.
    [17]S. J. Randtke. Organic contaminant removal by coagulation and related process combinations [J]. J. Am. Water Works Assoc.1988,80(5):40.
    [18]王金梅,薛叙明.水污染控制技术[M].化学工业出版社.
    [19]G. Grozes. Enhanced coagulation:its effect on NOM removal and chemical costs[J]. J. Am. Water Works Assoc.1995,87(1):78-89.
    [20]周玲玲,张永吉等.铁盐和铝盐混凝对水中天然有机物的去除特性研究[J].环境科学2008,29(5):1187-1191.
    [21]庞梅俊.硫酸铝、三氯化铁处理黄河水的混凝效果比较[J].能源及环境2010,15:24-25.
    [22]贺延龄.废水的厌氧生物处理[M].北京:中国轻工出版社1998:17-18.
    [23]同帜,李宇等.A/O工艺处理印染废水的探讨[J].2010,24(4):444-447.
    [24]Pera-Titus M, Garcia-Molina V et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review[J]. Appl. Catal. B:Environ.2004, 47(4):219-256.
    [25]S. Esplugas, Gimenez et al. Comparison of different advent oxidation processes for phenol degradation[J]. Water Res.2002,36(4):1034-1042.
    [26]W. Zhu, Y. Bin et al. Application of catalytic wet air oxidation for the treatm ent of H-acid manufacturing process wastewater [J]. Water Res.2002,36(8):1947-1954.
    [27]N. Graham, W. Chu et al. Observations of 2,4,6-trichlorophenol degradation by ozone[J]. Chemosphere 2003,51(4):237-243.
    [28]王世琴,刘宝生等.印染废水催化氧化处理技术的研究进展[J].广西纺织科技2009,38(2):25-29.
    [29]C. P. Huang, C. Dong et al. Advanced chemical oxidation:its present role and potential future in hazardous waste treatment[J]. Waste Management 1993,13(3): 61-77.
    [30]S. Y. Oh, P. C. Chiu et al. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron[J]. Water Res.2003,37(17):4275-4283.
    [31]H. Tekin, O. Bilkay et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater[J]. Journal of Hazardous Materials 2006,136(2):258-265.
    [32]鲁璐,刘汉湖Fenton试剂预处理实际印染废水的实验研究[J].环境科学与管理2008,33(3):88-92.
    [33]I. Eternel, N. Koprivanac et al. UV-based processes for reactive azo dye mineralization [J]. Water Res.2006,40(3):525-532.
    [34]关春雨,马军等.臭氧催化氧化-活性炭处理微污染源水[J].水处理技术2007,33(11):75-78.
    [35]L. Zhao, Z. Z. Sun. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environ. Sci. Technol.2009,43(6):2047-2053.
    [36]J. Cao, L. Wei et al. Reducing degradation of azo dye by zero-valent iron in aqueous solution[J]. Chemosphere 1999,38(3):565-571.
    [37]S. Nam, P.G. Tratnyek, Reduction of azo dyes with zero-valent iron[J]. Water Res.2000,34(6):1837-1845.
    [38]S. H. Chang, K. S. Wang et al. Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process[J]. Journal of Hazardous Materials 2009,166(2-3): 1127-1133.
    [39]吴德礼,马鲁铭.催化还原技术处理水溶液中氯代有机物的实验研究[J].工业水处理2005,25(1):21-24.
    [40]樊金红,徐文英等.催化还原法处理硝基苯废水的技术经济分析[J].同济大 学学报(自然科学版)2008,36(7):937-941.
    [41]A. Bottino, G. Capannelli et al. Membrane technologies for water treatment and agroindustrial sectors[J]. Comptes Rendus Chimie 2008.
    [42]仝志明,沈霖.膜法水处理技术在废水回用中的应用[J].节能与环保2003(8):47-49.
    [43]夏利国.膜分离技术原理及在水处理行业中的应用[J].山东化工2010,39(9):48-51.
    [44]A. Bottino, G. Capannelli et al. Industrial wastewater recovery and reuse with membranes[J]. Filtration and Separation 2003,40(7):38-40.
    [45]王学松.现代膜技术及其应用指南[M].北京:化学工业出版社2005:52-64.
    [46]刘华云,许春华等.膜分离技术处理丙烯腈装置含氰废水研究中外能源[J].2009,14(1):96-99.
    [47]高萌,陈玉成等.印染废水的混凝处理效果研究[J].西南大学学报(自然科学版)2010,32(7):88-92.
    [48]洪金德,蔡晓.几种混凝剂处理印染废水实验研究[J].华侨大学学报(自然科学版)1999,20(3):283-286.
    [1]蒋少军.印染废水处理的探讨[J].染料工业2002,39(4):39-42.
    [2]T. H. Boyer, P. C. Singer. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors[J]. Water Res.2005,39(7): 1265-1276.
    [3]R. Zhang. Magnetic ion exchange (MIEX(?)) resin as a pre-treatment to a submerged membrane system in the treatment of biologically treated wastewater[J]. Desalination 2006,192(1-3):296-302.
    [4]Y. Ping. Chin, G. Alken, et al. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances [J]. Environ. Sci. Technol.1994, 28(11):1853-1858.
    [5]刘志宏,蔡汝秀.三维荧光光谱技术分析应用进展[J].分析科学学报2000,16(6):516-523.
    [6]薛爽.土壤含水层处理技术去除二级出水中溶解性有机物.工学博士学位论文.
    [7]赵庆良,张静等Fenton深度处理渗滤液时DOM结构变化[J].哈尔滨工业大学学报2010,42(6):977-981.
    [8]C. Jarusutthirak, G. Amy. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM) [J]. Water Res.2007,41(12): 2787-2793.
    [9]T. Robinson, G. Memullan et al. Remediation of dyes in textile effluents:a critical review on current review[J]. Bioresour. Technol.2001,77(3):247-255.
    [10]张晓云.有关聚合物平均分子量和分子量多分散性的教学点滴[J].高分子通报2003(2):80-81.
    [11]李素真,张博等.凝胶渗透色谱法测定HDPE的分子量及分子量分布[J].分析与测试2003,31(4):345-346.
    [12]K. H. Kang, H. S. Shin, et al. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Res.2002, 36(16):4023-4032.
    [13]W. Chen, P. Westerhoff et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environ. Sci. Technol. 2003,37(24):5701-5710.
    [1]董秉直,曹达文.强化混凝中不同分子质量有机物的变化特点[J].工业水处理2003,23(9):41-43.
    [2]E. M. Vrijenhoek, A. E. Childress et al. Removing particles and THM precursors by enhanced coagulation[J]. J. Am. Water Works Assoc.1998,90(4):139-150.
    [3]Kimberly, Bell-Ajy et al. Conventional and optimized coagulation for NOM removal[J]. J. Am. Water Works Assoc.2000,92(10):47-58.
    [4]P. Jarvis, M. Mergen et al. Pilot scale comparison of enhanced coagulation with magnetic resin plus coagulation systems[J]. Environ. Scl. TechnoL 2008,42(4): 1276-1282.
    [5]H. Tekin, O. Bilkay et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater[J]. Journal of Hazardous Materials 2006,136(2): 258-265.
    [6]S. Y. Oh, P. C. Chiu et al. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron[J]. Water Res.2003,37(17):4275-4283.
    [7]M.I. Badawy, M.E.M. Ali. Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater[J]. Journal of Hazardous Materials 2006,136(3):961-966.
    [8]张旭Fenton试剂处理染料废水的实验研究[J].山西建筑 2010,36(35):167-168.
    [9]A.E. Papadopoulos, D. Fatta et al. Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load[J]. Journal of Hazardous Materials 2007,146(3):558-563.
    [10]赵庆良,张静等Fenton深度处理渗滤液时DOM结构变化[J].哈尔滨工业大学学报2010,42(6):977-981.
    [11]C. Jarusutthirak, G. Amy. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM)[J], Water Res.2007,41(12): 2787-2793.
    [12]杜树新,杜阳锋等.基于三维荧光导数光谱的水体有机污染物浓度检测[J].光谱学与光谱分2010,30(12):3268-3271.
    [13]Z. P. Wang, T. Zhang. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Res.2010,44(18):5499-5509.
    [14]李宏斌,刘文清等.三维荧光光谱技术在水监测中的应用[J].光学技术2006,32(1):27-30.
    [1]X. Huang, X. M. Wang et al. Toxicity change patterns and its mechanism during the degradation of nitrogen-heterocyclic compounds by O3/UV[J]. Chemosphere 2007,69(5):747-754.
    [2]W. T. Zhao, X. Huang et al. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system[J]. Sep. Sci. Technol.2009, 66(2):279-286.
    [3]赵风云,孙根行.工业废水生物毒性的研究进展[J].工业水处理2010,30(4):22-25.
    [4]梁冰,邢奕等.A/O-接触氧化工艺处理焦化废水[J].给水排水,2010,36(12):59-62.
    [5]李芙蓉,王文清等.培养温度对好氧法处理棉浆黑液的影响分析[J].江苏环境科技2008,21(3):21-23.
    [6]H. W. Yang, Z. P. Jiang et al. INT-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds[J]. Ecotoxicology and Environmental Safety.2002,53(3):416-421.
    [7]P. Gong. Dehydrogenase activity in soil:A comparison between the TTC and INT assay under their optimum conditions[J]. Soil Biol. Biochem.1997,29(2):211-214.
    [8]朱文杰,徐亚同.发光细菌法在环境污染物监测中的进展与应用[J].净水技术2010,29(4):54-59.
    [9]马勇,黄燕.发光细菌急性毒性测试方法的优化研究[J].环境污染与防治2010,32(11):48-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700