我国棉花黄萎病菌的致病力分化及致病相关基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采集并分离到我国三大棉区308个棉花黄萎病大丽轮枝菌菌株,采用无底纸钵定量蘸菌液接种法测定了167个代表菌株的致病力,采用特异引物检测了167个供试菌株的落叶型与非落叶型种类,并研究了致病力分化与SSR和ISSR指纹图谱的关系。同时,采用农杆菌介导的遗传转化方法,构建了棉花黄萎病菌强致病力菌株Vd080的T-DNA插入突变体库,成功克隆3个与致病力相关的基因,并对其基因的功能进行初步分析和预测。取得以下主要结果:
     1.采集分离到的308株大丽轮枝菌菌株,在PDA培养基上产生5种不同的培养类型:A型(0.6%)和B型(72.7%)菌株均产生大量的微菌核,A型有黑色菌丝,B型菌落边缘有白色圆环;C型菌株产生的微菌核较少,大多分布在菌落周围,形成黑色圆环(23.7%);D型(1.6%)和E型(0.1%)菌株在室温下不产生微菌核,E型菌株的菌落有明显凸起。其中,B型菌株为优势类群。长江流域棉区来源菌株的培养类型多样性丰富,其次是黄河流域棉区,新疆内陆棉区的最小。
     2.对棉花黄萎病菌167个代表菌株的致病力测定结果表明,参试菌株的致病力分化明显,可划分为强(平均病指为53.4~71.5)、中(平均病指为20.9~51.7)、弱(平均病指为6.4~27.4)3个致病力类型,中等致病力类型的菌株占测试菌株的57.5%。黄河流域棉区和长江流域棉区的菌株致病力分化趋势一致,致病力水平也比较接近,均以中等致病力类型的菌株为优势类群,新疆棉区的菌株以弱致病力类型为优势类群,致病力水平较低。
     3.大丽轮枝菌落叶型菌株特异引物D-1/D-2和非落叶型菌株特异引物ND-1/ND-2对167个菌株的检测结果表明,参试菌株中落叶型菌株占91.0%,分布于我国的各产棉地区。落叶型菌株多数为中等和强致病力类型,非落叶型菌株多数致病力较弱。温室生物测定结果表明,非落叶型菌株和落叶型菌株均能导致棉苗落叶,只是落叶型菌株出现落叶的时间早3~6天,且落叶株率高。在接种浓度为1×10~7孢子/ml时,落叶型菌株的落叶株率显著高于非落叶型菌株,但增加接种浓度能显著提高非落叶型菌株的落叶株率,当接菌量达到1×10~8孢子/ml时,落叶型菌株和非落叶型菌株之间差异不明显。表明非落叶型菌株导致棉花落叶需要的时间较长、接种剂量较大。
     4.依据莴苣黄萎病菌(V. dahliae)全基因组开发SSR标记,并根据侧翼序列设计高特异SSR引物,筛选出13对多态性较高的引物。SSR图谱的聚类分析结果将供试167个菌株划分为2个群体,群体Ⅰ以中等和强致病力类型为主,占84.4%;群体Ⅱ以弱致病力类型为主。9对ISSR引物对棉花黄萎病菌扩增图谱将供试菌株划为强致病力、中等致病力和弱致病力3个群体,中等致病力群体为优势类群。供试菌株的SSR和ISSR指纹图谱均与黄萎病菌的致病力存在明显相关性,致病力水平相近的菌株亲缘关系比较近。
     5.以强致病力落叶型菌株Vd080为初始菌株,利用农杆菌介导遗传转化(ATMT)的方法,成功构建了容量为2000个转化子的棉花黄萎病菌T-DNA插入突变体库。最佳转化体系是采用新鲜的农杆菌菌液和棉花黄萎病菌孢子悬浮液,农杆菌OD600为0.4左右,诱导剂乙酰丁香酮(AS)浓度为200μM,25℃共培养48h,转化效率可达150~540个转化子/106个孢子。对随机挑取的突变体检测表明,T-DNA成功插入到棉花黄萎病菌Vd080中,且多为单拷贝,突变体菌株能够稳定遗传。
     6.从突变体库中筛选到3株生物学性状或致病力发生显著变异的突变体。VdT286的变异主要表现为丧失微菌核产生的能力、分生孢子产量骤减、菌落生长速率显著降低、致病力略有下降。VdT1023和VdT1053均表现致病力显著降低,Vd1053丧失微菌核产生的能力,VdT1023还表现粗毒素产量显著增加。结合TAIL-PCR技术,对上述3个突变体中T-DNA侧翼序列扩增,成功克隆与棉花黄萎病菌生物学性状或致病力等重要性状相关的基因3个。VdT286中T-DNA插入到了CYC8(葡萄糖阻遏蛋白)上, CYC8是一个与分生孢子产生、菌丝生长及微菌核形成相关的基因,全长为3201bp,位于第五条染色体上,包括7个外显子和6个内含子,cDNA的长度为2679bp,编码892aa,CYC8在大丽轮枝菌中的相关功能目前还未见报道。VdT1023中T-DNA插入到了VDAG00467的上游启动子区,该基因位于第二条染色体上,基因长度为1152bp,无内含子,编码383aa,是一个尚未进行注释功能的未知新基因。VdT1053中T-DNA破坏了VDAG00607,分析得知该基因位于第二条染色体上,基因长度为2053bp,cDNA长度为1947bp,有一个内含子,编码648aa。编码产物是磷酸甘油变位酶(phosophoglyceratemutase),目前关于磷酸甘油变位酶的研究报道较少。
308Verticillium dahliae isolates were recovered from three cotton-planting regions inChina and of which, pathogenicity of167isolates was identified using a method namedvermiculate and sand in bottomless paper pot dipping in quantitative spores. The number ofdefoliating and non-defoliating isolates was also tested based on specific deofliating andnon-defoliating primers. Correlation between fingerprint of ISSR and ISSR and thepathogenicity was analysised. And a mutant library, which initiated from a high virulent V.dahliae strain Vd080, was constructed by agrobacterium tumefaciens-mediatedtransformation (ATMT). Three genes related to biological characteristics and pathogenicitywere cloned and analyzed. The main conclusions showed as fllowing:
     1. According to cultural characteristics on potato dextrose agar (PDA),308V. dahliaeisolates were divided into five culture types (A-E). Both type A (0.6%) and type B (72.7%)produced massive microsclerotia, moverover, type A produced black mycelia while there wasa white circle at the colony edge of Type B. Type C (23.7%) produced a few microsclerotiadistributed at the edge of colony which formed a black circle. Both type D (1.6%) and type E(0.1%) did not produce microsclerotia under room temperature, in addition, there were raisedaerial mycelium at the colony surface of type E Among them, Type B was the dominant groupaccounted for72.9%. The cultural characteristics of isolates from Yangtze River regionshowed highest variation, followed by those from Yellow River and Xinjiang.
     2. Based on the results of the pathogenicity tests,167V. dahliae isolates were clusteredinto three groups, which showed strong (average disease index varied53.4~71.5), moderate(average DI varied20.9~51.7%) and weak (average DI varied6.4~27.4) pathogenicity oncotton, respectively. Moderate virulent isolates distributed dominantly in China (57.5%).Differentiation tendency of isolates recovered from Huanghe Basin cotton-planting region andYellow River Basin showed consistently. Isolates exhibited similarly pathogenicity. Amongthem, moderate pathogenic isolates belonged to the dominant group. However, in Xinjiang,the number of weak pathogenic isolates was largest.
     3. Among167tested isolates,91%of them were identified as defoliating V. dahliae withthe specific deofliating and non-defoliating primers (D-1/D-2, ND-1/ND-2), which widelydistributed main cotton producing regions. Most of the defoliating isolates belonged to strongand moderate pathogenicity groups. Howerver, The majority of non-defoliating isolatesexhibited weak pathogenicity. The results of greenhouse tests showed that bothnon-defoliating and defoliating isolates could lead to the leaf-defoliation of cotton seedlings.Compared with non-defoliating isolates, the cotton seedlings inoculated with defoliatingisolates showed defoliation3-6days earlier and the defoliating percentage significantly higher.Under the inoculating concentration of1×10~7spores per milliliter, the defoliating percentageof cotton seedlings inoculated with defoliating isolates was significantly higher than thoseinoculated with non-defoliating isolates. With the increasing of inoculating concentration, thedefoliating percentage of cotton seedlings inoculated non-defoliating isolates obviouslyincreased. When the inoculating concentration reached to1×10~8spores per milliliter, there wasnot distinct difference between cotton seedlings inoculated with non-defoliating anddefoliating isolates. The above results showed that non-defoliating isolates needed longerperiod and higher inoculating concentration to cause the defoliation of cotton leaves.
     4. SSR markers were explored from the genome database of V.dahliae on lettuce. Highspecific primers were designed based on the flanking sequence of SSR.13pairs of SSR withhigher polymorphism were selected for molecular fingerprint analysis. The results showedthat167tested isolates of V. dahliae from China were distinctly classified into two groups.GroupⅠcontained141isolates, of which,strong and moderate pathogenicity isolatesaccounted for89.4%;GroupⅡcontained26isolates, of which,84.6%of the isolates wereweak pathogenicity. Nine pairs of ISSR primer were used to analyze the genetic diversity of167tested isolates of V. dahliae from China. Clustering analysis results showed that167tested isolates were classified into strong, medium and weak three different pathogenicitygroups (strong, moderate and weak). There were17(10.2%),123(73.7%) and27(16.2%)isolates in strong, moderate and weak pathogenicity groups respectively. The study indicatedthat there was a significant correlation between fingerprint of ISSR and ISSR and thepathogenicity. Genetic relationship among isolates with similar pathogenicity was relativelyclose.
     5. A mutant library containing2000mutants of a high virulent and deofliating V. dahliaestrain Vd080was constructed by the ATMT. Fresh A.tumefaciens cells with OD600≈0.4, freshV. dahliae spore suspension,200μM Acetosyringone and48hours co-cultivation period at25℃were optimizing conditions. Mutant ratio could reach150~540transformants per106spores under the optimizing conditions.The results of PCR and Southern blot indicated thatT-DNA inserted into the genome of Vd080successfully, and T-DNA in mutants selected randomly were mostly single copy. All of the tested transformants maintained their resistanceto hygromycin B.
     6. Three mutants, with significant variation in biological characteristics andpathogenicity compared with wild strain Vd080, were screened from the mutantlibrary.VdT286showed significantly lower spore yield, growth rate and non-microsclerotia.In addition, its pathogenicity decreased slightly. Both VdT1023and VdT1053exhibitedsignificantly lower pathogenicity. Vd1053did not produce microsclerotia and the secretioncrude toxin of VdT1023increased significantly. Using TAIL-PCR, three genes related tobiological characteristics and pathogenicity of V. dahliae were cloned by amplying flankingsequence of inserted T-DNA. In VdT286, T-DNA was inserted into CYC8(glucose repressionmediator protein),which was a key gene in the control of spore yield, growth rate of myceliaand microsclerotia producing of V. dahliae. It was located in the fifth chromosome with3201bp in full length and contained7exons and6introns. The length of its cDNA was2679bpcoding892aa. The function of CYC8was still not reported in V. dahliae yet. In VdT1023,T-DNA was inserted upside promoter region of VDAG00467, which was a new unknown genewithout annotation. It was located in the second chromosome with1152bp in full lengthwithout intron, Coding protein contained383aa. In VdT1053, T-DNA disrupted VDAG00607,which was located in the second chromosome with1947bp in full length and contained1intron. Its coding product was phosophoglycerate mutase containing648aa.
引文
陈旭生,陈永萱,黄骏麒.1997.棉花黄萎病菌鉴定技术进展.棉花学报,9(2):64~67
    陈婧,白应文,杨继娟,等.2010.苜蓿黄萎病菌中国菌株生物学特性研究.草地学报,18(2):274~279
    陈天子,袁洪波,杨郁文,等.2011.农杆菌介导转化大丽轮枝菌的体系优化.棉花学报,23(6):507~514
    邓先明,吴斌,何庆国.1985.四川省棉花黄萎病菌生理型的初步研究.西南农学院学报,(1):90~94
    杜威世,杜雄明,马峙英.2002.棉花黄萎病抗性遗传和分子生物学研究进展.棉花学报,14(5):311~317
    段维军,李国英,张莉,等.2004.新疆棉花黄萎病菌致病性分化监测研究.新疆农业科学,41(5):324~328
    段维军,郭立新,张慧丽,等.2012.进境台湾芹菜上一株变黑轮枝菌的鉴定.植物检疫,26(4):30~34
    段维军.2005.新疆棉花黄萎病菌致病性分化及其快速检测技术研究.[硕士学位论文].新疆石河子:石河子大学
    方卫国.2002.根癌农杆菌介导真菌遗传转化的研究进展.中国生物工程杂志,22(5):40~44
    傅容昭,孙勇如,贾士荣.植物遗传转化技术手册.北京:中国科学技术出版社
    冯娟,朱廷恒,崔志峰,等.2010.农杆菌介导的灰葡萄孢T-DNA插入突变体库构建及插入位点分析.微生物学报,50(2)169~173
    高峰,彭姗,彭晓玲,等.2011.棉花黄萎病菌插入突变体库的构建及致病相关基因DVK1的克隆与鉴定.棉花学报,23(1):64~68
    高兴喜,杨谦.2004.根癌农杆菌介导的木霉菌遗传转化方法.高技术通讯,5:31~35
    高剑,肖苏生,王文华,等.2009.农杆菌介导的香蕉枯萎病菌4号生理小种转化体系的优化.基因组学与应用生物学,28(6):1197~1203
    霍向东,李国英,张升.2000.新疆棉花黄萎病菌致病性分化的研究.棉花学报,12(5):254~257
    黄胜光,卢兆山,邱世明,等.2012.广西防城港首次截获苜蓿黄萎病菌.植物保护,38(1):180~183
    黄玉杰,杨合同,陈凯,等.2005.利用根癌农杆菌介导的转化方法改良木霉菌.山东科学,18(3):30~35
    胡小平,董艳玲,苟建军,等.2008.苹果黑星病菌遗传多样性的SSR分析.植物病理学报,38(3):329~332.
    韩宏伟,任毓忠,刘培源.等.2012.新疆南部棉区黄萎病菌种群致病性分化及变异.棉花学报,24(2):147~152
    贺春萍,林春花,廖奇亨,等.2007.稻瘟病T-DNA插入突变体库构建及致病相关突变体筛选.热带作物学报,28(1):80~84
    简桂良,马存,石磊岩.1996.1995年北方棉区黄萎病大发生及综合防治措施.植物保护,22(3):37~38
    简桂良,卢美光,朱荷琴.2005.棉田黄萎病菌致病型结构初步研究.植物保护学报,32(1):109~110
    姜占发,刘大群.2002.棉花黄萎病菌鉴定技术现状及展望.河北农业大学学报,25(1):95~99
    姜占发.2002.棉花大丽轮枝菌基因组ISSR分子指纹分析.[硕士学位论文].保定:河北农业大学
    江明.1992.一种提取真菌染色体DNA简便方法.生物学杂志,(2):24~25
    金利容,万鹏,孔令甲等.2011.湖北省棉花黄萎病病菌致病力分化研究.棉花学报,23(6):566~572
    金利容,万鹏,黄民松.等.2011.棉花变黑轮枝菌的鉴定及致病性的测定.湖北大学学报(自然科学版),33(4):413~417
    贾培松,丁丽丽,周邦军,等.2012.棉花黄萎病菌T-DNA插入突变体库的构建及其表型分析.棉花学报,24(1):62~70
    贾涛.棉田土壤棉花黄萎病菌致病力分化研究.[硕士学位论文].陕西:西北农林科技大学
    孔令甲,顾卫东.1996.湖北省棉花枯、黄萎病发生为害现状及防治对策.湖北植保,(6):7~8
    李雪铃,张天宇,王立新.1997.棉黄萎病菌微菌核研究进展.植物保护,23(5):35~37
    李延军.1990.中国棉花黄萎病菌营养亲和性研究,棉花病虫害综合防治及研究进展.北京:中国农业出版社.:364~369
    李正理,李荣敖.1980.棉花黄萎病病叶解剖.植物学报,22(1):11~15
    李敏慧,张荣,姜大刚,等.2009.根癌农杆菌介导的香蕉枯萎病菌4号生理小种的转化.植物病理学报,39(4):405~412
    李维,张义正.2005.根癌农杆菌介导的白腐丝状真菌—黄孢原毛平革菌的转化.微生物学报,45(5):784~787
    李海莲.2005.茄子黄萎病病原菌鉴定及其ISSR分子指纹分析.[硕士学位论文].保定:河北农业大学
    吕金殿,甘莉.1991.棉花黄萎病菌毒素的纯化与特性研究.植物病理学报,21(2):129~133
    陆家云,曹以勤,王克荣,等.1983.江苏省棉花黄萎病菌(Verticillium dahliae)致病力的分化.南京农学院学报,(3):36~43
    陆家云.1983.棉花黄萎病菌不同致病型在江苏的分布.植物保护学报,14(4):121~124
    林玲,章如意,张昕,等.2012.江苏省棉花黄萎病菌的培养特性及致病力分化监测.棉花学报,(3):199~206
    刘树俊,程光潮.1992. DNA指纹技术的应用及局限性.生物工程进展,12(5):13~17
    刘少华,陆金萍,朱瑞良,等.2005.一种快速简单的植物病原真菌基因组DNA提取方法.植物病理学报,35(4):362~845
    刘艳军.2003.棉花黄萎病菌系基于AFLP的遗传分化研究.[硕士学位论文].保定:河北农业大学
    刘燕霞,侯丽娟,李卫,等.棉花黄萎病菌ISSR反应体系优化及其遗传多样性分析,植物保护学报,37(5):425~430
    马峙英,王省芬,张桂寅,等.1996.河北省棉花黄萎病菌致病性的研究.北京:全国棉花黄、枯萎病学术研讨会论文.12
    马峙英,孙济中,刘金兰,等.1999.河北省棉区黄萎病菌系基于RAPD的遗传分化研究.棉花学报,11(3):123~127
    马存,简桂良,郑传临.2002.中国棉花抗枯、黄萎病育种50年.中国农业科学,35(5):508~513
    毛岚,宋培玲,杨家荣.2009.陕西棉花黄萎病菌致病力分化及其遗传多样性.植物保护学报,36(1):27~31
    龙朝钦,邓军,郝飞等.2008.根癌农杆菌介导的烟曲霉转化条件的优化.西部医学,20(2):261~264
    潘家驹,张天真,蒯本科.棉花黄萎病抗性遗传研究.南京农业大学学报,1994,17(3):8~18
    齐俊生,马存,赵良忠,等.2000.海岛棉品种抗黄萎病遗传规律初步研究.棉花学报,12(4):169~171
    冉鸿晶,肖炎农,姜道宏,等.2005.湖北省棉花黄萎病菌致病力分化和遗传多样性分析.华中农业大学学报,24(5):442~447
    饶志明,张君胜,沈微,等.2007.根癌农杆菌介导工业化产甘油假丝酵母的遗传转化[J].应用与环境生物学报,13(6):868~871
    石磊岩,王波,文学.1993a.棉花黄萎病菌落叶型菌系研究.棉花学报,5(1):89~92
    石磊岩,王波,文学.1993b.我国棉花黄萎病菌类型分化及培养特性研究.植物保护学报,20(3):247~251
    石磊岩,王莉梅.1997.北方棉区棉花黄萎病菌的RAPD分析.植物保护,(5):3~7
    石磊岩.1998.我国棉花黄萎病研究现状与方向.植物保护学报,25(2):103~107
    沈其益.1992.棉花病害基础研究与防治.北京:科学出版社,5~26
    沈瑛,Frouin J,何月秋,等.2004.湖南烟溪病圃稻瘟病菌的有性态及微卫星标记的遗传多样性分析.中国水稻科学,18(3):262~268
    宋晓轩,朱荷琴,郭金城.1997.棉花黄萎病(Verticillium dahliae)安阳菌系致病力分化研究.中国农业科学,30(1):13~18
    孙文姬,简桂良,马存,等.1997.用相对病情指数评价棉花种质的抗病性.植物保护,23(2):36~37
    田黎,王克荣,陆家云.1997.大丽轮枝菌微菌核形成能力的遗传.菌物系统,16(3)197~201
    田秀明.1995.山西棉花黄萎病菌致病力分化与其类型和生理的关系.植物保护,21(3):8~10
    田新莉,李晖,赵宗胜,等.2001.新疆棉花黄萎病菌不同致病类型的RAPD分析.棉花学报,13(6):346~350
    潭联望.1994.北方棉区棉花黄萎病爆发原因及致力对策.中国棉花,21(7):2~4
    吴献忠,李风铃,王月福,等.1996.棉花黄萎菌(Verticillium dahliae)菌系及鉴定技术.植物病理学报,26(3):281~282
    吴翠萍,李彬,粟寒,等.2011.进境美国苜蓿草中苜蓿黄萎病菌的检疫鉴定.植物检疫,25(1)42~46
    吴毅歆,范成明,周惠萍,等.2008.一种农杆菌介导稻瘟病菌的遗传转化.植物保护学报,35(5):421~426
    王克荣,陆家云.1987.大丽轮枝菌培养性状的变异.植物病理学报,17(5):27~33
    王克荣.1994.中国大丽轮枝菌营养体亲和群.南京农业大学学报,17(增刊):128~133
    王克荣,陆家云.1982.变黑轮枝菌种的鉴定及其致病力的测定.南京农业大学学报,(2):59~62
    王克荣,陈瑞辉.2002.棉花黄萎病菌营养体亲和群的RAPD图谱特征.中国农业科学,35(6):645~649
    王莉梅,石磊岩,等.1999.北方棉区棉花黄萎病菌落叶型菌系鉴定.植物病理学报,29(2):181~189
    王彦,鹿秀云,郭庆港.2010.河北省棉花黄萎菌落叶型和非落叶型菌系初步鉴定.华北农学报,25(4):196~200
    王宏宇.2003.稻瘟病菌T-DNA插入突变研究.[博士学位论文].福建:福建农林大学
    王曦茁,朴春根,李虹,等.2010.根癌农杆菌介导的淡紫拟青霉遗传转化体系的建立.林业科学,46(10):95~102
    王广策,曾呈奎.2001.Achlya bisexualis丙酮酸激酶基因的筛选、克隆及序列分析.遗传学报,28(11):1068~1076
    王省芬.2003.中国棉花抗枯、黄萎病品种的抗性与DNA指纹图谱研究.保定:河北农业大学
    王红梅,张献龙,李运海,等.2004.陆地棉黄萎病抗性遗传分析.棉花学报,16(2):84~88
    王国宁,赵贵元,岳晓伟,等.2012.河北省棉花黄萎病菌致病性与ISSR遗传分化,棉花学报,24(4):348~357
    徐荣旗,石磊岩.2000.棉花黄萎病菌致害棉株叶片内源激素的动态变化.棉花学报,12(6):310~312
    徐荣旗,汪佳妮.2010.棉花黄萎病菌T-DNA插入突变体表型特征和侧翼序列分析.中国农业科学,43(3):489~496
    徐飞.2012.落叶型棉花黄萎病菌在华中棉区广泛分布及其原因分析.[硕士学位论文].湖北武汉:华中农业大学
    薛光华,范伟功,张祥林.2004.新疆截获进境植物疫情分析及检疫监管措施.新疆农业科学,41(5):263~267
    徐后娟,徐荣燕,李多川.2009.链格孢农杆菌介导转化体系的构建及弱毒突变株验证.基因组学与应用生物学,28(6):1056~1062
    徐红,唐玮,周艳.2010.建湖县棉花黄萎病的暴发成因及预防措施.现代农业科技.(2):193
    姚耀文,何礼远,李曼霞.1963.棉花黄、枯萎病的症状类型及其对棉花的影响.植物保护,(1):25~28
    姚耀文,朱颖初,胡旭.1986.棉花黄萎病的强致病类型---落叶型菌系.世界农业,36~38
    姚耀文.1982.棉花黄萎病菌生理型鉴定的初步研究.植物保护学报,9(3):145~147
    姚耀文.1985.长江流域棉区棉花黄萎病发生消长与气象因子关系的研究.植物保护研究报告,1~13
    姚耀文.1990.凝胶电泳在棉花黄萎病菌致病类型鉴定中的应用,棉花病虫害综合防治进展.北京:中国农业科技出版社,416~419
    杨继娟.2010.矿物油室温保存棉花黄萎病菌的ISSR分析.[硕士学位论文].西安杨凌:西北农林科技大学
    杨艳秋,贺丹,王爽,等.2006.正交法用于真菌微卫星PCR体系优化.吉林大学学报医学版,32(6):1108
    杨凤祥,桑茜,马奇祥,李洪连,汪敏.2009.河南省棉花黄萎病菌培养特性与致病力分化研究.河南农业科学,(6):85~89
    章元寿,王建新,顾本康,等.1991a.用棉花黄萎病菌毒素检测棉花抗病性的研究.植物保护,17(4):2~4
    章元寿,王建新,周明国,等.1991.棉花黄萎病菌毒素对棉花作用机制的初步探讨.植物病理学报,21(1):49~52.
    章元寿,王建新.1988.棉花黄萎病菌毒素产生条件的研究.南京农业大学学报,11(3):57~61.
    张绪振.1981.我国棉花黄萎病菌“种”的鉴定.植物病理学报,11(3):13~18
    张桂寅,吴立强,李志坤,等.2012.不同抗性品种对棉花黄萎病菌致病力的影响,棉花学报,24(6):529~534
    张莉,马慧宁,陈文霞,等.2007.石河子地区棉花黄萎病菌致病型监测研究.安徽农业科学,35(16):4879~4880,4882
    郑文明,刘峰,康振生,等.2000.中国小麦条锈菌的主要流行菌系的AFLP指纹分析.自然科学进展,10(6):532~537
    钟慧敏.1992.苏联棉花黄萎病的研究进展.植物检疫,6(5):396~400
    朱荷琴,宋晓轩,孙君灵,等.1999.棉花黄萎病菌安阳菌系致病类型变异研究.棉花学报,11(6):312~317
    朱荷琴,宋晓轩,孙君灵.1996.北方棉区棉花黄萎病新症状----早期落叶型.中国棉花,(8):37
    朱荷琴,简桂良,宋晓轩.2004a.棉田黄萎病菌致病型群落结构研究.棉花学报,16(3):147~151
    朱荷琴,宋晓轩,简桂良.2004b.棉花黄萎病菌致病力变异生理机制的初步研究.棉花学报,16(5):275~279
    朱荷琴.2007.棉花主要病害研究概要.棉花学报,(19)5:391~398
    朱有勇,王云月.1999.大丽轮枝菌核糖体基因ITS区段的特异扩增.植物病理学报,29(3):250~255
    朱有勇,王云月,Dilbag S.M,Bruce R.L.1998.棉花黄萎病菌致病类型及其分子指纹分析.中国农业科学,31(3):56~61
    朱阳阳,徐齐君,雷娟,等.2012.陕西棉花黄萎菌落叶型及非落叶型的鉴定.西北农业学报,21(9):166~173
    周兆华,郭旺珍,潘家驹,等.1999.我国棉花黄萎病菌群体的遗传变异分析.中国农业科学,32(2):60~65
    邹亚飞,简桂良,马存,等.2003.棉花黄萎病菌致病型的AFLP分析.植物病理学报,33(2):135~141
    赵志坚,曹继芬,杨明英,等.2008.用两个微卫星标记分析云南马铃薯晚疫病菌的遗传多样性.中国农业科学,41(11):3610~3617
    赵凤轩,戴小枫.2009.棉花黄萎病菌的侵染过程.基因组学与应用生物学,28(4):786~792
    张莉,段维军,李国英,等.2004.应用聚合酶链式反应鉴定新疆棉花落叶型黄萎病菌.植物检疫,5(18):266~268
    张君胜,饶志明,吴蕾,等.2006.根癌农杆菌介导酿酒酵母的遗传转化.食品与生物技术学报,25(3):37~40
    章如意.2010.江苏省棉花黄萎病菌致病力分化和分子检测.[硕士学位论文].江苏扬州:扬州大学
    赵湛.2006.不同根癌农杆菌菌株类型对木霉菌遗传转化效率的影响.北方园艺,(3):14~15
    臧威,张兰兰,张国民,等.2007.稻瘟病菌SSR反应体系的优化.农业生物技术科学,23(61):174
    Agrios G N.1997. Plant Pathology (4th edition).San Diego:Academic Press
    Anna Klimes, Katherine F.2006. A hydrophobin gene, VDH1, is involved in microsclerotial developmentand spore viability in the plant pathogen Verticillium dahliae. Fungal Genetics and Biology,43:283~294
    Ashworth L J Jr.et al.1984. Selection of pathogenic strains of Verticillium dahliae and their influence onthe useful life of cotton cultivars in the field. Phytopathology,74:1637~1639
    Ashworth L J Jr.1983.Aggressiveness of random and selected isolates of Verticillium dahliae from cottonand the quantitative relationship of internal inoculum to defoliation. Phytopathology,73:1292~1295
    Ashworth L J Jr.et al.1979. Verticillium wilt disease of tomato: influence of inoculum density and rootextension upon disease severity. Phytopathology,69:490~492
    Azizova Z S.1990.5th International Verticillium Symposium. p99
    Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN.2000. Genetic transformation of Coccidioidesimmitis facilitated by Agrobacterium tumefaciens. Infect Dis,181:2106~2110
    Barbara D J and Clewes E.2003. Plant pathogenic Verticillium species: how many of them are there?Molecular Plant Pathology,4(4):297~305
    Boman E S,Khush G S,NelsonR J.1993. Genetic differentiation among isolates of Pyricularia griseainfecting rice and weed hosts. PhotoPathology.83:393~399.
    Berk A J.1999.Activation of RNA polymerase II transcription. Current Opinion of Cell Biololgy,11:330~335
    Brandt W H, Lacy W H and Horner C E.1984. Distribution of Verticillium in stems of resistant andsusceptible species of mint. Phytopathology,74(5):587~591
    Balhadère P V, Foster A J, TalboN J.1999. Identification of pathogenicity mutants of the rice blast fungusMagnaporthe grisea by insertional mutagenesis. Molecular plant microbe interaction.12,(2):129-142
    Cander J H,Barbara D J.1991. Nfoleeular variation and restriction fragment lellgth polymorphisms(PFLPs) within and between six species of Verticillium [J]. Mycologieal Reseach,95:935~942
    Cander J H,Barbara D J.1994. Molecular variation within some Japanese isolates of Verticillium dahliae[J].Plant Pathology,43(5):947~950
    Caras N A, Wilhelm S, et al.1986. Relationship of cultivar Resistance to distribution of Verticilliumdahliae in inoculated cotton plants and growth of single conidia on excised stem segments.Phytopathology,76:1005
    Carrell J C, Gordon T R. and McCain A H.1988. Vegetative compatibility and pathogenicity of Verticilliumalbo-utrum. Phytopathology,78(8):1017~1021
    Combier J P,Meyayah D,Raffier C.et al.2003. Agrobacterium tumefaciens-mediated transformation as atool for insertional mutagenesis in the symbiotice ctomycorrhizal fungus Hebelomasylindro-sporum.FEMSMicrobiolLet,220(1):14l~148
    Carder J.H.et al.1991. Molecuar variation and RFLPs within and between six species of Vetercillium.Mycological Research,95(8):935~942
    Chen X.Stone M.Schlagnhaufer C.Romaine CP.2000. A fruiting body tissue method for efficientAgrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol,66(10):4510~4513
    Campoy S, Perez F, Martin JF,et al.2003. Stable transformants of the azaphilone pigment-producingMonascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNAtransfer. Curr Genet,43:447~452
    Collins A, Okoli CAN, Morton A, Parry D, Edwards SG, Barbara DJ.2003. Isolates of Verticillium dahliaepathogenic to crucifers are of at least three distinct molecular types. Phytopathology,93:364~376
    Cerff R,1995.The chimeric nature of nuclear genomes and the antiquity of introns as demonstrated byGAPDHgene system.In: GoM, Schimmel P ed.
    Devay J.E.1970. Physiology of Verticillium wilt: host-pathogen interaction. Cotton Dis.Res.in the SJVCalifornia Res.report for1968-1969,43~53
    Dobinson K F, Grant SJ, Kang SK.2004. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae.Current Genetics,45:104~110
    Dombek P, Ream W.1997. Functional domains of Agrobacterium tumefaciens single-strandedDNA-binding protein VirE2. Bacteriol,179:1165~1173
    DeRisi J L, Iyer VR.1997. Exploring the metabolic andgenetic control of gene expression on a genomicscale. Science,278:680~686
    Degroot M J, Bundock P, Hooykaasp J, et al.1998. Agrobacterium tumefaciens-mediated transformation offilamentous fungi[J]. Nature Biotechnol,16(9):839~842
    Enacarnacion P A,Maria G P,Jose B A.2000. Differentiation of cotton-defoliating and nondefoliatingpathotypes of Verticillium dahliae by RAPD and specific PCR analyses.European Journal of PlantPathology,106:507~517
    Fernanda L. S. Sebastianes,Paulo T. Lacava,Le′ia C. L, et al.2012. Genetic transformation of Diaporthephaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacteriumtumefaciens. Curr Genet,58:21~33
    Fitzell R, Evans G and Fahy PC.1980. Studies on the colonization of plant roots by Verticillium dahliaeKlebahn with use of immunofluorescent staining, Australian Journal of Botany,28:357~368
    Fradin E F and Thomma B P H J.2006. Physiology and molecular aspects of Verticillium wilt diseasescaused by V. dahliae and V. albo-atrum.Molecular Plant Pathology,7(2):71~86
    Garas N A.1986b. Differential accumulation and distribution of antifungal sesguiterpenoids in cotton stemsinoculated with Verticillium dahliae. Phytopathology.76(10):1011~1017
    Gao F, Zhou BJ, Li GY, Jia PS, Li H, Zhao YL, Zhao P, Xia GX, Guo H S.2010. A glutamic acid-richprotein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotialformation and pathogenicity. Plos One,5(12): e15319
    Groot MJ de, Bundock P, Hooykaas PJ,et al.1998. Agrobacterium tumefaciens-mediated transformation offilamentous fungi.Natuare Biotechnology,16:839~842
    Gutierrez A P, de Vay J E, Pullman G S and Friebertshauser G E.1983. A model of Verticillium wilt inrelation to cotton growth and development.Phytopathology,73:89~95
    Gerik J S and Huisman O C.1988. Study of field-grown cotton roots infected with Verticillium dahliaeusing an immunoenzymatic staining technique. Phytopathology,78:1174~1178
    Huisman O C.1982. Interrelations of root growth dynamics to epidemiology of root-invading fungi. AnnualReview of Phytopathology,20:303~327
    Huisman O C.1988. Seasonal colonization of roots of field-grown cotton by Verticillium dahliae and V.tricorpus. Plant Diseases,78:708~716
    Huisman O C and Ashworth J L J.1976. Influence of crop rotation on survival of Verticillium albo-atrum insoils. Phytopathology,66:978~981
    Hu X P, Wang M X, Hu D F, et al.2011. First report of wilt on alfalfa in China caused by Verticilliumnigrescens. Plant Disease.95(12):1591
    Han YN, Liu X G, Benny U, Kistler H C, VanEtten H D.2001. Genes determining pathogenicity to pea areclustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. PlantJournal.25:305-314.
    Isaac I.1949.A comparative study of pathogenic isolates of Verticillium. Transactions of the BritishMycological Society,32:137~157
    Jennifer L. Flowers,Lisa J.2005. Vaillancourt. Parameters affecting the efficiency of Agrobacteriumtumefaciens mediate transformation of Colletotrichun graminicola. Curr Genet,380~388
    Junhyun Jeon, Sook-YoungPark, Myoung-Hwan Chi et al.2007. Genome-wide functional analysis ofpathogenicity genes in the rice blast fungus. Nature Genetics,39(4):561~565
    Kasyanenko A.G.1976. Differentiation in virulence of Verticillium dahliae.2nd International VerticilliumSymposium, p24
    Klosterman S J, Atallah Z K, Vallad G E and Subbarao K V.2009. Diversity, pathogenicity, andmanagement of Verticillium species. Annual Review of Phytopathology,47:39~62
    Kobayashi Y, Inai T, Mizunuma M, et al.2008. Identification of Tup1and Cyc8mutations defective in theresponses to osmotic stress. Biochemical and Biophysical Research Communications,368:50~55
    Koikko M.1995. Moleeular analysis of Japanese isolates of Verticillium dahliae and V.albo-atrum [J]Letters in applied Mierobiology,21:75~78
    Kemppainen M, Duplessis S, Martin F, et al.2008. T-DNA insertion, plasmid rescue and integrationanalysis in the model mycorrhizal fungus Laccaria bicolor. Microbial Biotechnology,1(3):258~269
    Klimes A, Dobinson KF.2006. A hydrophobin gene, VDH1, is involved in microsclerotial development andspore viability in the plant pathogen Verticillium dahliae. Fungal Genetics and Biology,43:283~294
    Li K N, Rouse D I, Eyestone E J, German T L.1999. The generation of specifc DNA primers using randomamplifed polymorphic DNA and its application toVerticillium dahliae. Mycological Research,103:1361~1368
    Li K N.1993. A unique RAPD fragment for Vertieillium dahliae and its application to the speeific deteetionof the pathogen [J]. PhytoPathology,83:1370
    Li K N.1995.Detection and differentiation of Verticillium dahliae [D].Thesis for the degree of doctorof philosophy at the University of Wisconsin-Madison.
    Leclerque A, Wan H, Abschutz A, et al.2003. Agrobacterium-mediated insertional mutagenesis (AIM) ofthe entomopathogenic fungus Beauveria bassiana. Curr Genet,45:111~119
    Luizr IM,Marcia C F,Andrea C B, et al.2006. Efficient genetic transformation system for the hratoxigenicfungus Aspergillus carbonarius.CurrMicrobio,52:469~472
    Maruthachalam K, Klosterman S J, Kang S,et al.2011. Identification of pathogenicity-related genes in thevascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertionalmutagenesis [J].Mol Biotechnol,49(3):209~221
    Messner R.et al.1996. Molecuar characterization of plant pathogen Verticillium dahliae kleb. UsingRapd-pcr and sequencing of the18srRna-gene. Journal of Phytopathology,144(7-8):347~354
    Mussell H., Stilwell P.and Peck S.1982. The possible origin of ethylene in Verticillium wilt of tomato(Abstract). Phytopathology,72:968
    Mullins ED, Chen X, Romaine P, et al.2001. Agrobacterium-mediated transformation of Fusariumoxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology,91:173~180
    Maruthachalam K, Klosterman S J, Kang S, Hayes R J, Subbarao K V.2011. Identification ofpathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacteriumtumefaciens-mediated T-DNA insertional mutagenesis. Molecular Biotechnology,49:209~221
    Mercado-Blanco J,Rodriguez-Jurado D,Perez-Artes E,et al.2002. Detection of the defoliating pathotype ofVerticilliumd ahliae in infected olive plants by nested PCR.European Journal of Plant Pathology,108:1~13
    Mercado-Blanco J,Rodriguez-Jurado D,Perez-Artes E,et al.2001. Detection of the nondefoliating pathotypeof Verticillium dahliae in infected olive plants by nested PCR.Plant Pathology,50:609~619
    Michielse CB, Ram AFJ, Hooykaas PJJ, et al.2004. Role of bacterial virulence proteins inAgrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol,45:571~578
    Michielse CB, Salim K, Ragas P, et al.2004. Development of a system for integrative and stabletransformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. MolGen Genomics,2004c,271:499~510
    Michielse CB, Hooykaas PJ, Hondel CA.2005. Agrobacterium-mediated transformation as a tool forfunctional genomics in fungi. Curr Genet,48:1~17
    Meyer V, Mueller D, Strowig T, et al.2003. Comparison of different transfor Hebeloma cylindrosporummation methods for Aspergillus giganteus.Curr Genet,43:371~377
    Mol L and Riessen H W V.1995. Effect of plant roots on thegermination of microsclerotia of Verticilliumdahliae I. Use of root observation boxes to assess differences among crops.European Journal of PlantPathology,101:673~678
    Nachmias A.et al.1982. Coparison of protein-lipolysaccharide complexes produced by pathogenic andnon-pathogenic strains of Verticillium dahliae kleb from potato.Physiological. Plant and Pathology,20:213~221
    Nazar R N, Hu X, Schmidt J, Culham D, Robb J.1991. Potential use of PCR-amplified ribosomalintergenic sequences in the detection and differentiation of Verticillium wilt pathogens, Physiologicaland Molecular Plant Pathology,39(1):1~11
    Nicot,P.C.,Li YJ, Li QJ,et al. Vegetative compatibility groups within Chinese strains of Verticillium dahliae,In,The Proceeding of Beijing International Symposium of Plant Pathology, Bejing,PRC.
    Nadia K, Encarnacio′n P A, Jose′B A, Dolores R J, et al.2001. Comparative study of genetic diversityand pathogenicity among populations of Verticillium dahliae from cotton in Spain and Israel.European Journal of Plant Pathology107:443~456.
    Puhalla J.E.1974. The mechanism of heterokaryotic growth in V.dahliae. Genetics,(76):411~422
    Puhalla J.E.1979. Classification of isolates of V.dahliae based on heterokaryon in compatibility.Phytopathology,(69):1186~1189
    Puhalla J.E. and hummal M.1983. Vegetative compatibility groups within Verticillium dahliae.Phytopathology,73:1305~1189
    Puhalla J.E.1973. Differences in sensitiveity of Verticillium species to ultraviolet irradiation.Phytopathology,63:1488~1492
    Presley J.T.1950. Verticillium wilt of cotton with particular emphasis on variation of the causal organism.Phytopathology,40:497~511
    Piers KL, Heath JD, Liang X, et al.1996. Agrobacterium tumefaciens-mediated transformation of yeast.Proc Natl Acad Sci USA,93:1613~1618
    Pegg G F, Brady B L.2002. Verticillium wilts. New York, NY: CABI Publishing,142~167
    Payungsak Rauyaree, Ospina-Giraldo Seogchan Kang, Ravindra G, et al.2005. Mutations in VMK1, amitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity inVerticillium dahliae.Curr Genet,48:109~116
    Park S-M, Kim D-K.2004. Transformation of a filamentous fungus Cryphonectria parasitica usingAgrobacterium tumefaciens [J].Biotechnol Bioprocess Eng,9:217~222
    Pantelides I S, Tjamos S E, Striglis I A, Chatzipavlidis I and Paplomatas E J.2009. Mode of action of anon-pathogenic Fusarium oxysporum strain against Verticillium dahliae using real time QPCRanalysis and biomarker transformation.Biological Control,50(1):30~36
    Rauyaree P, Ospina-Giraldo MD, Kang SH, Bhat RG, Subbarao KV, Grant SJ, Dobinson KF.2005.Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation andpathogenicity in Verticillium dahliae. Current Genetics,48:109~116
    Rho HS, Kang S, Lee YH.2001. Agrobacterium tumefaciens mediated transformation of the plantpathogenic fungus, Magnaporthe grisea. Mol Cells,12:407~411
    Ramsay J R,Multani D S.1996. RAPS-PCR identifieation of Verticillium dahliae isolates with differentialpathogenieity on cotton [J]. Agric Res,47:681~693
    Rauyaree P, Ospina-Giraldo M D, Kang S, Bhat R G, Subbarao KV, Grant S J, Dobinson K F.2005.Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation andpathogenicity in Verticillium dahliae. Current Genetics.2005,48:109-16
    Rogers LM, Flaishmanm A, Kolattukudy P E.1994. Cutinase gene disruption in Fusarium solanif. sp. Pisidecreases its virulence on pea.Plant Cell.6:935-945.
    Roldán M, MAIER F J, Schafer W.2001. PTK1, a mitogenactivated-protein kinase gene, is required forconidiation, appressorium formation, and pathogenicity for Pyrenophora tereson barley MolecularPlant-Microbe Interactions.14:116-125.
    Schnathorst W.C. and Mathre D.E.1966. Host range and differentiation of a severe form of V.albo-atrum incotton. Phytopathology56:1155~1161
    Schnathorst W.C.et al.1973. Nomenclature and physiology of verticillium species with emphasis on theV.albi-aaatrum versus V.dahliae comtroversy. Verticillium wilt of cotton,1~19
    Schnathorst W.C., Fogel D.1976. World distribution and differentiation of Verticillium dahilae Strainspathogenic in Gossfpium hirsutum.2nd International Verticillium symposium,39
    Sundaram S. et al.1991.Enzyme-linked immunosorbent assay for detection of Verticillium spp.usingantisera produced to Verticillium dahliae from potato. Phytopathology,81:1485~1489
    Smith, H C.1965. The morphology of Verticillium albo-atrum, V. dahliae, and V. tricorpus. New ZealandJournal of Agricultural Research,8(3):450~478
    Smith R, Johnson A.2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptionalrepression in eukaryotes. Trends in Biochemical Sciences,25:325~330
    Stachel S E, Nester E W.1986.The genetic and transcriptional organization of the vir region of the A6Tiplasmid of Agrobacterium tumefaciens. EMBO,5:1445~1454
    Sullivan T D, Rooney P J, Klein BS.2002. Agrobacterium tumefaciens integrates transfer DNA into singlechromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast.Eukaryot Cell,1:895~905
    Soichit, Noriok, Shigeon.2007. Isolation of pathogenicity and gregatin deficient mutants of phialophoragregata.f sp.adzuki cola through Agrobacterium tumefaciens-mediated transformation. GenPlantPathol,73:242~249
    Tzima AK, Paplomatas EJ, Rauyaree P, Ospina-Giraldo MD, KangSC.2011. VdSNF1, the sucrosenonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression ofgenes involved in cell-wall degradation. Molecular Plant-Microbe Interactions,24(1):129~142
    Takahara H, Tsuji G, Kubo Y, et al.2004. Agrobacterium tumefaciens mediated transformation as a tool forrandom mutagenesis of Colletotrichum trifolii. Gen Plant Pathol,70:93~96
    Tsuji G, Fujii S, Fujihara N, et al.2003. Agrobacterium tumefaciens-mediated transformation for randominsertional mutagenesis in Colletotrichum lagenarium. Journal of General Plant Pathology,69(4):230~239
    Trumbly RJ.1988. Cloning and characterization of the CYC8gene mediating glucose repression in yeast.Gene,73:97~111
    Talboys P W.1964. A concept of the host-parasite relationship in Verticillium wilt diseases, Nature,202:361~364
    Takano Y, Kikuchi T, Kubo Y, HamerJE, Mise K, Furusawa I.2000. The Colletotrichum lagenarium MAPkinase gene CMK1regulates diverse aspects of fungal pathogenesis. Molecular Plant-MicrobeInteractions.13:374-383
    Verhalen L M,Brinkerhoff L A,Fun K C,et al.1971. A quantitative genetic study of Verticillium wiltresistance among selected lines of upland cotton. Crop Science,11(3):407~412
    Villalba F, Lebrun M H, Hua-Van, A Daboussi M J, Grosjean-Cournoyer MC.2001. Transposon impala, anovel tool for gene tagging in the rice blast fungus Magnaporthe grise. Molecular plant microbeinteraction.14,3:308-315.
    Wyllie T.D. and Devay,J.E.1970. Growth characteristics of Verticillium albo-atrum and V.nigrescens.Phytopathology,60:907~910
    White T J, Bruns T, Lee S, Taylor J.1990.Amplification and direct sequencing of fungal ribosomal RNAgenes for phylogenetics. Genetics Selection Evolution,38:315~322
    Zwiers LH, De Waard MA.2001. Efficient Agrobacterium tumefaciens-mediated gene disruption in thephytopathogen Mycosphaerella graminicola. Curr Genet,39:388~393
    Zhu H Q, Feng Z L, Li Z F,Zhao L H, Shi Y Q, Yang J R.2013. Characterization of two fungal isolatesfrom cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton. Journal ofPhytopathology,161:70~77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700