彩色棉纤维比较蛋白质组学研究及花色素还原酶GhANR基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究目的
     彩色棉是一种成熟吐絮时纤维自身带有天然色彩的棉花。近年来,人们的健康和环保意识逐渐增强,天然彩色棉制品倍受人们青睐。然而,彩色棉纤维的颜色仅有绿色和棕色两大色系,颜色单调,远不能满足人们对于绚丽服饰的需求。由于缺乏除棕、绿两种颜色之外的其他颜色的种质资源,通过常规的杂交手段难以解决目前彩色棉颜色单调的问题。人们寄希望利用基因工程手段来改变彩色棉纤维的颜色,完成这项工作的前提是明确彩色棉纤维色素形成的分子机制。本研究利用2-DE结合质谱鉴定分析比较了彩色棉及其白色近等基因系棉纤维蛋白质组的差异,分离鉴定差异蛋白,为揭示彩色棉色素合成的分子机制及为利用基因工程手段改良彩色棉纤维色泽品质提供理论基础。
     2.结果与结论
     2.1利用差异蛋白质组学策略分析比较了棕色棉及其白色近等基因系棉纤维蛋白质组差异,利用MALDI-TOF/TOF质谱技术成功鉴定了3个纤维发育时期(12,18和24DPA)共计78个差异蛋白点。研究发现21个差异蛋白点与植物次生代谢途径相关,其中15个参与类黄酮物质的合成,且均在棕色纤维中表现上调;DMACA染色实验以及7个原花色素合成关键酶基因的qPCR分析表明,类黄酮在棕色棉纤维色素形成过程中起关键作用,推测原花色素与纤维颜色形成有关。本研究首次从蛋白质组学的角度明确了类黄酮在棕色棉纤维色素合成过程中的重要作用,也为类黄酮是棕色纤维中的色素物质这一假设提供了直接的证据。同时发现了一些在棕色纤维中下调的蛋白点,包括糖酵解、氧化还原平衡,细胞骨架和蛋白质代谢相关蛋白,推测棕色纤维中类黄酮化合物的活跃代谢影响了其它代谢途径的正常运作,一些纤维发育相关的蛋白,如ascorbate peroxidase、superoxide dismutase、actin、annexin和heat shock protein70等表现下调,是棕色棉纤维品质差的主要原因。
     2.2利用差异蛋白质组学策略分析比较了绿色棉及其白色近等基因系棉纤维蛋白质组差异,在3个纤维发育时期(12,15和24DPA)成功鉴定了25个差异蛋白点。这些差异蛋白点包括次生代谢、能量/碳水化合物代谢、细胞壁合成、蛋白质代谢、细胞骨架、氨基酸代谢、细胞响应和脂代谢等相关蛋白,其中大部分蛋白点表现为下调。几个差异明显的蛋白点分别为phospholipase D、phenylcoumaran benzylic ether reductase和s-adenosylmethionine synthase,暗示它们在绿色棉色素合成过程中起关键作用。为了进一步寻找绿色纤维中色素合成相关基因,本研究利用双向电泳技术研究了21DPA绿色棉纤维蛋白质组,从凝胶上挖取220个蛋白点进行MALDI TOF/TOF分析,成功鉴定出156个蛋白。根据蛋白的功能将这些蛋白分成12类,主要包括能量/碳水化合物代谢、细胞壁合成、氧化还原平衡和细胞骨架相关蛋白,反映了21DPA绿色棉纤维中的生理活动状态。根据差异蛋白质组策略和21DPA蛋白质组数据,在绿色纤维中没有发现明显的色素合成途径,类黄酮相关蛋白点在绿色纤维中无上调现象,表明绿色纤维中的色素物质与棕色纤维不同。
     2.3花色素还原酶是合成表儿茶素的关键酶之一,表儿茶素是原花色素的合成单元。利用比较蛋白质组学策略发现了一个在棕色棉纤维中明显上调的蛋白点,质谱鉴定为花色素还原酶。根据GenBank中该蛋白的cDNA序列克隆了GhANR基因,该基因包含1008bp核酸序列,编码336个氨基酸残基。实时荧光定量PCR分析显示GhANR在棕色纤维中的表达量高于白色棉。将GhANR连接至蛋白表达载体pET28a,转化大肠杆菌表达蛋白,酶活性测定表明GhANR蛋白能够催化矢车菊素转化为表儿茶素。
1. Object: Naturally colored cotton is cotton endowed with natural colors. Because the color exist in the fiber,dyeing is not required during the fabric manufacturing process. The use of naturally colored cotton couldeliminate dyeing costs and the disposal of toxic dye waste. As concerns for human health and the environmentincrease, naturally colored cotton has become an environmentally friendly option. However, the colors ofnaturally colored cotton primarily include green and several shades of brown. Cross-breeding can only generatenew shades of brown and green, which are insufficient for clothing versatility. Therefore, the color types havenot been altered by conventional breeding due to the lack of genetic resources for the generation of color.Genetic engineering is recognized as a way to generate new fiber color types and has just begun. For the geneticengineering approach, it is important to characterize the genes related to pigment biosynthesis. In this study, weused a proteomic approach to compare the protein profiles of brown color fiber (BCF) and white color fiber(WCF) to identify functional proteins involved in pigment synthesis. The comparison of the protein profiles ofBCF and WCF is of critical significance for the elucidation of the molecular mechanism of pigment biosynthesisand the development of new fiber color types via genetic manipulation.
     2. Results and Conclusions
     2.1A comparative proteomic analysis was performed to identify the differences between brown cotton fiber anda white near-isogenic line, and78differential spots were identified at three time points (12-,18-, and24-daypost-anthesis [DPA]) using MALDI-TOF/TOF. Our data illustrate several aspects of pigment synthesis and fiberdevelopment in brown color fiber (BCF). First,21spots were associated with secondary metabolism;15of thesewith high abundance in BCF were involved in flavonoid biosynthesis. DMACA staining and qPCR of7genesencoding enzymes involved in proanthocyanidins demonstrated that a multitude of proanthocyanidins weredeposited in BCF, which, when taken together with our comparative proteomic analysis and previous studies,suggested proanthocyanidins should be the pigment products in BCF and confirmed the crucial role offlavonoids in pigment synthesis in brown color fibers. This is the first time a proteomic approach has providedevidence to support the hypothesis that flavonoids are responsible for pigment synthesis in BCF. Second, severalspots with lower abundance in BCF were found, including glycolytic pathway, redox homeostasis, cytoskeleton,and protein metabolism related proteins. Our results implied that flavonoid synthesis was prevalent, and manymetabolic pathways that are active during fiber development may have been repressed in BCF, which may partlyaccount for the inferior fiber qualities of BCF. The identification of these protein spots with lower abundance inBCF, including proteins that are critical for fiber development, such as ascorbate peroxidase, superoxidedismutase, actin, annexin and heat shock protein, shows molecular evidence for explaining the inferior fiberqualities of color genotypes and provides insights for the fiber quality improvement of color types by geneticmanipulation.
     2.2A comparative proteomic analysis was performed to identify the differences between green cotton fiber and awhite near-isogenic line, and25differential spots were identified at three time points (12-,18-, and24DPA)using MALDI-TOF/TOF. These proteins were related to secondary metabolism, energy/carbohydrate metabolism,cell wall-related, protein metabolism, cytoskeleton, amino acid metabolism, cell response, lipid metabolism.Several spots with significantly changed abundance were identified as phospholipase D, phenylcoumaranbenzylic ether reductase and s-adenosylmethionine synthase, suggested that they may play very important role inpigment biosynthesis. In addition, the proteome of21DPA (Days Post Anthesis) green cotton fiber was analyzedusing two-dimensional gel electrophoresis to yield a protein map. A total of220individual spots were excisedand analyzed by MALDI-TOF/TOF MS. A total of156proteins were identified and cataloged according to theirfunctions. Twelve different classes of proteins were identified in21DPA green cotton fiber. Many of theseproteins were related to carbohydrate metabolism and energy production. Other notable functional classesincluded oxidoreductases, cell wall-related and cytoskeleton. This study provides insight into the majorphysiological events in21DPA green cotton fiber, and advances our understanding of molecular mechanismsrelated to pigment biosynthesis in green cotton fiber. Although pigment metabolism is an additional process innaturally colored cotton fiber that differs from white cotton fiber, we did not find specific proteins related topigment biosynthesis. In addition, flavonoid biosynthesis related protein spots showed no any changes in abundance, suggesting that the pigment in green cotton fiber was different from that in brown cotton fiber.
     2.3Anthocyanidin reductase (ANR) is a key enzyme which catalyzes the anthocyanidins into the correspondingepicatechin, an initiating monomer of proanthocyanidin synthesis. Using2D-PAGE comparisons, a protein spotwere found to be significantly up-regulated in brown color cotton fiber but hardly detectable in the white colorcotton fiber. The spots were excised from the gel, partially sequenced and identified to be ANR. GhANR cDNAcontained an open reading frame of1008bp encoding a protein of336amino acid residues. Real-time PCRanalysis showed that the expression level of GhANR was higher in BCF compared with WCF. When GhANR wasexpressed in Escherichia coli, the GhANR protein was showed possessing ANR activity and can catalyze theconversion of cyanidin to epicatechin.
引文
曹景林,朱龙付,谭家福,邓锋林,李允静,郝娟,徐士成,张献龙.适合于蛋白质双向电泳的棉花胚性培养物蛋白质提取技术.棉花学报,2009,21(1):3-9.
    丁锦平,刘冬梅,周瑞阳,李付广,李成伟.2种棉花叶片总蛋白质纯化方法比较研究.河南师范大学学报:自然科学版,2009,37(5):103-107.
    董合忠,李维江,唐薇,李振怀.2个彩色棉材料的农艺性状和纤维发育特点研究.山东农业科学,2002,(4):6-9.
    董合忠,李维江,唐薇,张冬梅.彩色棉纤维发育与色素形成.中国棉花,2004,(2):2-5.
    李明月,李艳军,张新宇,杨会娜,孙杰.天然棕色棉葡萄糖苷转移酶基因Gh3GT的克隆与表达分析.分子植物育种,2010,8(4):655-672.
    李锐,李生泉,范月仙.不同抗冷级别的棉苗低温诱导蛋白比较.棉花学报,2010,22(3):254-259.
    李艳军,张新宇,杨会娜,田新惠,孙杰.利用抑制差减杂交技术分离棕色棉纤维特异表达基因.分子植物育种,2009,7(1):194-198.
    李悦有,王学德.彩色棉纤维德超微结构观察.浙江大学学报(农业与生命科学版),2002,28(4):379-382.
    刘康,高起飞,万振昆,毛婵娟,张天真.蛋白质组学研究中的质谱鉴定与生物信息学分析.棉花学报,2008,20(4):281-288.
    潘兆娥,杜雄明,孙君灵,周忠丽,庞保印.遮光对彩色棉的色泽及纤维品质的影响.中国棉花,2006,(5):264-268.
    邱新棉,李付振,包立生,赵连英,叶尧良,王世林.天然彩色棉现状与未来发展策略.中国棉花学会2010年年会论文汇编,2010,50-53.
    邱新棉,周文龙,李茂松,马永根.天然彩色棉纤维素的遗传基础形成及湿处理色素变化规律的研究.中国农业科学,2002,35(6):610-615.
    邰付菊,李扬,陈良,李学宝.低温胁迫下棉花子叶蛋白质差异表达的双向电泳分析.华中师范大学学报院自然科学版,2008,42(2):262-266.
    舒晨.蛋白质质谱数据处理方法的研究.同济大学硕士论文,2009.
    田新惠,李艳军,张新宇,王红娟,孙杰.绿色棉纤维类黄酮3’,5’羟基化酶基因GhF3′5′H的克隆及实时定量表达分析.棉花学报,2010,22(5):403-408.
    田新惠,李艳军,张新宇,孙杰.棕色棉纤维四种类黄酮化合物HPLC测定方法的研究.棉花学报,2010,22(6):597-602.
    王娟.棉花纤维不同发育阶段蛋白质组的比较分析.新疆农业大学硕士论文,2010.
    王娟,倪志勇,石庆华等.棉花纤维蛋白双向电泳体系的建立.新疆农业科学,2010,47(1):31-35.
    王雪,马骏,张桂寅,李喜焕,王省芬,马峙英.黄萎病菌胁迫条件下棉花叶片的蛋白质组分析.棉花学报,2007,19(4):273-278.
    王学德,李悦有.彩色棉纤维发育的特性研究.浙江大学学报(农业与生命科学版),2002,28(3):237-242.
    王学德,李悦有.彩色棉纤维色素提取和测定方法的研究.浙江大学学报(农业与生命科学版),2002,28(6):596-600.
    吴永成,丁海萍,李首成.天然彩色棉叶片光合色素测定分析.四川农业大学学报,2002,20:182-184.
    吴永成,李首成.天然有色棉纤维早期分化发育的细胞形态观察.四川农业大学学报,2006,24(1):40-43.
    徐子剑,舒骁,杨亦玮,刘进元.棉花纤维蛋白质3种提取及二维电泳方法的比较.中国生物化学与分子生物学报.2006,22(1):77-80.
    杨会娜,田新惠,李艳军,李明月,冯鸿杰,孙杰.天然棕色棉查尔酮合成酶基因(GhCHS1)的克隆和实时定量表达分析.棉花学报,2010,22(1):42-48.
    于伯龄.天然绿色棉的金属盐固色实验.纺织导报,2001(3):80.
    詹少华,林毅,蔡永萍,李正鹏.天然棕色棉纤维色素光谱学特性及其化学结构初步推断.植物学通报,2007a,24(1):99-104.
    詹少华,林毅,蔡永萍,李正鹏.缩合单宁与天然棕色棉纤维色素合成的关系.棉花学报,2007b,19(3):183-188.
    詹少华,林毅,蔡永萍,汪曙.天然棕色棉色素提取、纯化及其UV光谱研究.激光生物学报,2004,13(5):324-328.
    詹少华,林毅,张倩.天然棕、绿彩色棉叶片光和色素分析.安徽农业大学学报,2005,32(2):174-177.
    张根连,范术丽,宋美珍,庞朝友,喻树讯.植物蛋白质组学技术研究进展.生物技术通报,2011,(7):
    26-30.
    张镁,胡伯陶.彩棉纤维的结构特点与加工性能.纺织学报,2004,25(5):7-9.
    张镁,胡伯陶,赵向前.天然彩色棉的基础和应用.中国纺织出版社,2005.
    张镁,吴红霞,马长华,胡伯陶.彩棉纤维的形态结构、超微结构和主要化学组成.印染,2002,6:1-5.
    张祥,刘晓飞,吕春花,董召娣,陈源,陈德华.两个不同类型彩色棉品种纤维发育的生理特征.2011,37(3):489-495.
    张志刚,邱德文,官春云,杨秀芬,肖立一,杨晓萍.双向电泳联用质谱技术研究棉苗对细极链格孢菌激发子诱导的应答.棉花学报,2008,20(6):425-430.
    赵伟涛,李艳军,张新宇,吴莉,孙杰.绿色棉苯丙氨酸解氨酶基因GhPAL的克隆和实时荧光定量表达分析.分子植物育种,2012,(3):311-316.
    赵向前.彩色棉的纤维色素与品质形成机理.浙江大学硕士学位论文,2003.
    赵向前,王学德.天然彩色棉纤维色素成分的研究.作物学报,2005,31(4):456-462.
    周仲华,王峰,陈金湘.从基因组学到蛋白质组学:棉花分子生物学研究进展.棉花学报,2012,24(4):370-378.
    Alabady M, Wilkins T. Expression profiling of the cotton fiber transcriptome reveals preferential linkage ofubiquitin-proteasome genes to fiber QIL in Pima cotton (Gossypium barbadense L.). In proceedings ofBotany and Plant Biology2007Joint Congress. American Fern Socity, American Society of PlantBiologists, American Society of Plant Taxonomists, and Botanical Society of America. July7-11,2007,Chicago, lllinois.
    Al-Chazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ. Transcript profiling during fiber developmentidentifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiberquality. Plant Cell Physiol,2009,50(7):1346-1381.
    Anterola AM, Lewis NG. Trends in lignin modification: a comprehensive analysis of the effects of geneticmanipulations/mutations on lignification and vascular integrity. Phytochemistry,2002,61(3):221-294.
    Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, WilkinsTA. Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol,2004,54(6):911-929.
    Basra AS, Malik CP. Development of the cotton fiber. Int Rev Cytol,1984,89:65-113.
    Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. Flavonoid accumulation inArabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell,2007,19(1):148-162.
    Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, VerhoeyenM, Hughes S, Santos-Buelga C, van Tunen A. High-flavonol tomatoes resulting from the heterologousexpression of the maize transcription factor genes LC and C1. The Plant Cell,2002,14(10):2509-2526.
    Buer CS, Sukumar P, Muday GK. Ethylene modulates flavonoid accumulation and gravitropic responses inroots of Arabidopsis. Plant Physiol,2006,140(4):1384-1396.
    Chiang PK, Gordon RK, Tal J, Zeng GC, Dotor BP, Pardhasaradhi K, McCann PP. S-Adenosylmethionineand methylation. FASEB J,1996,10(4):471-480.
    Coumans JV, Poljak A, Raftery MJ Backhouse D, Pereg-Gerk L. Analysis of cotton (Gossypium hirsutum)root proteomes during a compatible interaction with the black root fungus. Proteomics,2009,9(2):335-349.
    Craig EA, Gambill BD and Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis.Microbiol Rev.1993,57(2):402-414.
    Cui X, Brown RM. Molecular cloning of a phospholipase D gene from cotton fibers. Plant physiol,1999,120(4):1207.
    Dickerson DK, Lane EF, Rodriguez DF. Naturally colored cotton: resistance to changes in color anddurability when refurbished with selected laundry aids. California Agricultural Technology Insititute,Califounia State University, Fresno,1999.
    Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plane Cell,1995,7(7):1085-1097.
    Domon B, Aebersold R. Mass spectrometry and protein analysis. Science,2006,312(5771):212-217.
    Dutt Y, Wang XD, Zhu YG, Li YY. Breeding for high yield and fibre quality in colored cotton. Plant Breed,2004,123(2):145-151.
    Exton JH. New developments in phospholipase D. J Biol Chem,1997,272(25):15579-15582.
    Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, et al. Molecular and biochemical evidence forphenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol,2009,51(7):626-637.
    Feng QY, Zhang P, Hao S et al. Sequence and analysis of rice chromosome4. Nature,2002,420(6913):316-320.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass-spectrometryof large biomolecules. Science,1989,246(4926):64-71.
    Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol,2001,12(2):155-160.
    Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S. Colour-enhancing protein in blue petals.Nature,2000,407(6804):581.
    Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rdgenes are involved in proanthocyanidin synthesis in rice pericarp. Plant J,2007,49(1):91-102.
    Gao P, Zhao PM, Wang J, Wang HY, Wu XM, Xia GX. Identification of genes preferentially expressed incotton fibers: A possible role of calcium signaling in cotton fiber elongation. Plant Sci,2007,173(1):61-69.
    Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNAexpression levels on a genomic scale. Genome Biol,2003,4(9):117.
    Grotewold Erich (editor). The science of flavonoids. the Springer Press, The Ohio State UniversityColumbus, Ohio, USA,2006,71-90.
    Gou JY, Wang LJ, Chen SP, Hu W L, Chen XY. Gene expression and metabolite profiles of cotton fiberduring cell elongation and secondary cell wall synthesis. Cell Res,2007,17(5):422-434.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex proteinmixtures using isotope-coded affinity tages. Nature Biotech,1999,17(10):994-999.
    Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein.Science,2002,295(5561):1852-1858.
    Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell,1995,7(7):1071-1083.
    Hovav R, Udall JA, Hovav E, Rapp R, Flagel L, Wendel JF. A majority of cotton genes are expressed insingle-celled fiber. Planta,2008,227(2):319-329.
    Hua SJ, Wang XD, Yuan SN, Shao MY, Zhao XQ, Zhu SJ, Jiang LX. Characterization of pigmentation andcellulose synthesis in colored cotton fibers. Crop Sci,2007,47(4):1540-1546.
    Hua SJ, Yuan SN, Shamsi IH, Zhao XQ, Zhang XQ, Liu YX, Wen GJ, Wang XD, Zhang HP. Acomparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis.Crop Sci,2009,49(3):983-989.
    Jaakola L, Maatta K, Pirttila AM, Torronen R, Karenlampi S, Hohtola A. Expression of genes involved inanthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels duringbilberry fruit development. Plant Physiol,2002,130(2):729-739.
    Kim HJ, Kato N, Kim S, Triplett B. Cu/Zn superoxide dismutases in developing cotton fibers: evidence foran extracellular form. Planta,2008,228(2):281-292.
    Kim HJ, Triplett B. Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary andsecondary cell wall biosynthesis. Plant Signal Behav,2008,3(12):1119-1121.
    Konopka-Postupolska D. Annexins: putative linkers in dynamic membrane–cytoskeleton interactions inplant cells. Protoplasma,2007,230(3-4):203-215.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M,Fitzhugh W et al. Initial sequencing and analysis of the human genome. Nature,2001,409(6822):860-921.
    Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fiber development.Ann bot,2007,100(7),1391-1401.
    Lee S and Tsai FT. Molecular chaperones in protein quality control. J Biochem Mol Biol.2005,38(3):259-265.
    Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, Zhu YX. A cotton ascorbate peroxidase is involved inhydrogen peroxide homeostasis during fibre cell development. New Phytol,2007,175(3):462-471.
    Li XB, Fan XP, Wang XL, Cai L, Yang WC. The cotton ACTIN1gene is functionally expressed in fibersand participates in fiber elongation. Plant Cell,2005,17(3):859-875.
    Liu CJ, Blount JW, Steele CL, Dixon RA. Bottlenecks for metabolic engineering of isoflavoneglyconjugates in Arabidopsis. Proc Natl Acad Sci USA,2002,99(22):14578-14583.
    Liu K, Han M, Zhang C, Yao L, Sun J, Zhang T. Comparative proteomic analysis reveals the mechanismsgoverning cotton fiber differentiation and initiation. J Proteomics,2012,75(3):845-856.
    Lopez-Ribot JL, Chaffin WL. Members of the Hsp70family of proteins in the cell wall ofSaccharomycescerevisiae. J Bacteriol,1996,178(15):4724-4726.
    Macilwain C. World leaders heap praise on human genome landmark. Nature,2000,405(6790):983-984.
    Miliko M, Fowler JH, Walling LL. Leucine aminopeptidases: diversity in structure and function. BiolChem,2006,387(12):1535-1544.
    Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM. Annexins:multifunctional components of growth and adaptation. J Exp Bot,2008,59(3):533-544.
    Murthy MSS. Never say dye: the story of coloured cotton. Resinance,2001,11:29-35.
    Nijveldt RJ, van Nood E, van Hoom DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: areview of probable mechanisms of action and potential applications. Am J Clin Nutr,2001,74(4):418-425.
    Oliver S. Proteomics: Guilt-by-association goes global. Nature,2000,403(6770):601-603.
    Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, et al. Comparative proteomics indicates thatbiosynthesis of pectin precursors is important for cotton fiber and Arabidopsis root hair elongation.Mol Cell Proteomics,2010,9(9),2019-2033.
    Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet,2003,33:311-323.
    Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A. The involvement of hydrogen peroxide in thedifferentiation of secondary walls in cotton fibers. Plant Physiol,1999,119(3):849-858.
    Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA. Translation control: bridging the gapbetween genomics and proteomics. Trends Biochem Sci,2001,26(4):225-229.
    Punyasiri PAN, Abeysinghe ISB, Kumar V. Flavonoid biosynthesis in the tea plant Camellia sinensis:properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys,2004,431(1):22-30.
    Qin YM, Hu CY, Zhu YX. The ascorbate peroxidase regulated by H2O2and ethylene is involved in cottonfiber cell elongation by modulating ROS homeostasis. Plant Signal Behav,2008,3(3):194-196.
    Radchuk VV, Sreenivasulu N, Radcbuk RL, Wobus U, Weschke W. The methylation cycle and its possiblefunctions in barley endosperm development. Plant Mol Biol,2005,59(2):289-307.
    Ramesh A, Lee DJ, Wong JW. Thermodynamic parameters for adsorption equilibrium of heavy metals anddyes from wastewater with low-cost adsorbents. J Colloid Interface Sci,2005,291(2):588-592.
    Ryser U, Meier H, Holloway PJ. Identification and locailzation of suberin in the cell wall of green(Gossypium hirsutum L. Var. green lint). Protoplasma,1983,117(3):196-205.
    Ryser U, Holloway PJ. Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seedcoats and fibers of Gossypium species. Planta,1985,163(2):151-163.
    Sasaki T, Matsumoto K, Yamamoto K et al. The genome sequence and structure of rice chromosome1.Nature,2002,420(6913):312-316.
    Schmutz A, Jenny T. Amrhein N, Ryser U. Caffeic acid and glycerol are constituents of the suberin layersin green cotton fibers. Planta,1993,189:423-460.
    Schmutz A, Jenny T, Ryser U. A caffeoyl-fatty acid-glycerol ester from wax associated with green cottonfibre subrin. Phyochemistry,1994,36:1343-1346.
    Shirley WB. It takes a garden. How work on diverse plant species has contributed to an understanding offlavonoid metabolism. Plant Physiol,2001,127(4):1399-1404.
    Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX.Transcriptome profiling, molecular biological, and physiological studies reveal a major role forethylene in cotton fiber cell elongation. Plant Cell,2006,18(3):651-664.
    Song P, Allen RD. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display.Biochim Biophys Acta,1997,1351(3):305-312.
    Sparvoli F, Martin C, Scienza A, Scienza A, Tonelli C. Cloning and molecular analysis of structural genesinvolved in flavonoid and stilbene biosynthesis in grape (Vitis vinifer L.). Plant Mol Biol,1994,24(5):743-755.
    Stemlicht H, Farr GW, Stemlicht ML, Driscoll JK, Willison K, Yaffe MB. The t-complex polypeptide1complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA,1993,90(20):9422-9426.
    Sung DY, Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1inArabidopsis. Evidence for pleiotropic consequences. Plant Physiol,2003,132(2):979-987.
    Sung DY, Kaplan F, Guy CL. Plant Hsp70molecular chaperones: protein structure, gene family,expression and function. Physiol Plant,2001,113(4):443-451.
    Sweeney MT, Thomson MJ, Pfeil BE, McCouch S. Caught red-handed: Rc encodes a basicHelix-Loop-Helix protein conditioning red pericarp in rice. Plant Cell,2006,18(2):283-294.
    Taliercio E, Kloth R. Expression and characterization of a UDP-Glucose pyrophosphorylase gene in cotton.J Cotton Sci,2004,8:91-98.
    Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids.Plant J,2008,54(4):733-749.
    Tauber MM, Guebitz GM, Rehorek A. Degradation of azo dyes by laccase and ultrasound treatment. ApplEnviron Microb,2005,71(5):2600-2607.
    Thompson JD, Schaeffer-Reiss C, Ueffing M. Functional Proteomics: Preliminary Entry2036: Methodsand protocols. Humana Press, USA,2008.
    Udall JA, Swanson JM, Haller K, Rapp RA, Sparks ME, Hatfield J, Yu YS, Wu YR, Dowd C, Arpat AB,Sickler BA, Wilkins TA, Guo JY, Chen XY, Scheffler J, Taliercio E, Truly R, McFadden H, Payton P,Klueva N, Allen R, Zhang DS, Haigler C, Wilkerson C, Suo JF, Schulze SR, Pierce ML, Essenberg M,Kim H, Llewellyn DJ, Dennis ES, Kudrna D, Wing R, Paterson AH, Soderlund C, Wendel JF. A globalassembly of cotton ESTs. Genome Res,2006,16(3):441-450.
    Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changesin protein extracts. Electrophoresis,1997,18(11):2071-2077.
    Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W.Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associatedwith phenylpropanoid biosynthesis in lignifying cells. Planta,2000,211(4):502-509.
    Waghmare VN, Koranne KD. Colored cotton: present status, problems and potentials. Indian J Genet Pl Br,1998,58(1):1-15.
    Walling LL. Recycling or regulation? The role of amino-terminal modifying enzymes. Curr Opin PlantBiol,2006,9(3):227-233.
    Wan CY, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNAfrom cotton (Gossypium hirsutum L.). Anal Biochem,1994,223(1):7–12.
    Wang FX, Ma YP, Yang CL, Zhao PM, Yao Y, Jian GL, Luo YM, and Xia GX. Proteomic analysis of thesea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics,2011,11(22),4296-4309.
    Wang HY, Wang J, Gao P, Jiao GL, Zhao PM, Li Y, Wang GL, Xia GX. Down-regulation of GhADF1gene expression affects cotton fibre properties. Plant Biotechnol J,2009,7(1),13-23.
    Wang Q, Zhang X, Li F, Hou Y, Zhang X. Identification of a UDP-glucose pyrophosphorylase from cotton(Gossypium hirsutum L.) involved in cellulose biosynthesis in Arabidopsis thaliana. Plant cell report,2011,30(7):1303-1312.
    Wang W, Vinocur B, Shoseyov O and Altman A. Role of plant heat-shock proteins and molecularchaperones in the abiotic stress response. Trends in Plant Sci,2004,9(5):244-252.
    Wang X. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties,and cellular functions. Prog Lipid Res,2000,39(2):109-149.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R,Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasmagenitalium. Electrophoresis1995,16(7):1090-1094.
    Whale SK, Singh Z. Endogenous ethylene and color development in the skin of ‘Pink Lady’ apple. J AmSoc Hort Sci,2007,132(1):20-28.
    Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, andbiotechnology. Plant Physiol,2002,126(2):485-493.
    Wu Z, Soliman KM, Bolton JJ, Saha S, Jenkins JN. Identification of differentially expressed genesassociated with cotton fiber development in a chromosomal substitution line (CS-B22sh). Funct IntegrGenomics,2008,8(2):165-174.
    Xiao YH, Zhang ZS, Yin MH, Luo M, Li XB, Hou L, Pei Y. Cotton flavonoid structural genes related tothe pigmentation in brown fibers. Biochem Biophys Res Commun,2007,358(1):73-78.
    Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded byBANYULS in plant flavonoid biosynthesis. Science,2003,299(5605):396-399.
    Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL. Molecular and biochemical analysis of two cDNAclones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant physiol,2004,134(3):979-994.
    Yatsu LY, Espelie KE, Kolattukudy PE. Ustrastructural and chemical evidence that the cell wall of greencotton fiber suberlized. Plant Physiol,1983,73(2):521-524.
    Yatsu LY, Mod RR, Kolattukudy PE. Cytochemical studies of green colored cotton fiber. Plant Physiol,1983,72(1):72-73.
    Yao Y, Yang Yi-wei, Liu Jin-Yuan. An efficient protein preparation for proteomic analysis of developingcotton fiber by2-DE. Electrophoresis,2006,27(2):4559-4569.
    Yang YW, Bian SM, Yao Y, Liu JY. Comparative proteomic analysis provides new insights into the fiberelongating process in cotton. J Proteome Res,2007,7(11):4623-37.
    Yates JR, Ruse CI, Nakorchevsky A. Proteomics by Mass Spectrometry: Approaches, Advances, andApplications. Annu Rev of Biomed Eng,2009,11(1):49-79.
    Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in thecytosol. Nat Rev Mol Cell Biol,2004,5(10):781-791.
    Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX. Proteomicidentification of differentially expressed proteins in the ligon lintless mutant of upland cotton(Gossypium hirsutum L.). J Proteome Res,2010,9(2):1076-1087.
    Zheng M, Wang Y, Liu K, Shu H, Zhou Z. Protein expression changes during cotton fiber elongation inresponse to low temperature stress. J Plant Physiol,2012,169(4):399-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700