不同棉花种质资源耐热性鉴定及热激效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国棉花种植区域,特别是长江流域棉区,周期性的热害经常发生,筛选耐热种质,选育耐热新品种是解决热害,保证棉花高产的根本措施。而建立快速高效的室内高温鉴定体系,深入研究高温调控机理,明确耐高温有关的关键基因或作用元件,对培育耐高温品种具有重要意义。为此,本研究通过新疆吐鲁番自然高温条件下的田间耐热性鉴定,初步明确部分种质的抗感高温特性,利用这些材料在不同苗龄期在室内进行不同温度处理,并测定叶绿素、相对电导率、SOD、POD、CAT、MDA、APX、ASA、GSH和GR等十个生理生化指标,进而建立棉花室内耐热性快速鉴定系统。同时利用Race、染色体步移和普通PCR技术,获得棉花HSP18.5、HSP26、HSP70等热激蛋白的cDNA全长序列和DNA序列。然后通过荧光定量技术检测不同热激蛋白在不同耐热性材料中的表达水平,分析热激蛋白与棉花耐热性的关系。通过高通量测序技术和网络资源,分析不同耐热性材料在不同高温处理下,sRNAs种类和表达差异,预测棉花miRNAs在棉花耐热性中的功能。结果如下:
     (1)在新疆,调查了200份不同耐热性种质的脱落率、不孕籽率、叶片萎蔫程度、花粉形态、花粉活力和花粉不同温度离体培养的萌发率等指标。初步筛选出29份不同耐热性棉花种质资源,用于室内耐热性鉴定。
     (2)对耐高温材料常抗棉、南丹巴地大花以及高温敏感材料岱字棉55和早熟长绒7号于室内在子叶期、一叶一心期、二叶一心期、三叶一心期、四叶一心期和五叶一心期等不同苗龄期,分别进行30℃、35℃、40℃、45℃和48℃温度处理8h后,测定各项生理生化指标,初步建立了棉花耐热性室内鉴定体系:三叶期高温处理用于棉花耐热性鉴定的最佳叶龄期,最合适的鉴定温度是40℃处理8h,适合鉴定指标有相对电导率、MDA、APX、POD、SOD、CAT、GR、ASA等八项,如果是苗期快速鉴定,可以只考虑前五个鉴定指标。
     (3)为揭示棉花高温耐性的分子机制,本研究对棉花热激蛋白(Heat Shock Protein, HSP)进行深入分析,首先获得了棉花HSP18.5、HSP26和cHSP70热激蛋白基因的cDNA序列、DNA序列和上游调控区。然后用荧光定量PCR分析热激蛋白的表达量,发现耐高温材料南丹巴地大花的热激蛋白基因表达量要高于高温敏感材料的表达量。进一步分析发现,耐高温材料南丹巴地大花的小热激蛋白HSP18.5和HSP26的上游调控序列中都含有HSE调控元件,但是在高温敏感材料早熟长绒7号HSP26的启动子区中没有热激调控元件(HSE)。
     (4)通过Race,在高温敏感材料早熟长绒7号中获得到两个长度不同的cGhHSP70-1和cGhHSP70-2,通过分析发现,序列cGhHSP70-1中多出一段长度为238bp并包含终止密码子的内含子序列,同时剪接因子RSp41、RSp35、RSp45的表达量与cGhHSP70-1一致,造成了cGhHSP70-1等错误转录本的积累,从而破坏了早熟长绒7号中cGhHSP70的功能,进而影响该材料的耐高温性。根据sRNAs高通量测序的结果,发现miRNA1859以RSp41为靶基因,南丹巴地大花的Gh-miRNA1859表达量高于早熟长绒7号。棉花中还有7个内源miRNA与RSp相关。因此推测,棉花内源miRNA能够抑制RSp家族的表达,降低错误转录本的积累。
     (5)通过高通量测序技术,在不同耐热性材料中获得已知35种保守的已知miRNA和172种新miRNA。其中新预测nmiRNA31、nmiRNA32、nmiRNA39、nmiRNA42、nmiRNA43、nmiRNA45、nmiRNA46、nmiRNA58、nmiRNA59、nmiRNA67、nmiRNA68和nmiRNA94只在早熟长绒7号中表达。而nmiRNA52、nmiRNA52、nmiRNA61、nmiRNA62、nmiRNA63、nmiRNA64、nmiRNA65和nmiRNA66只在南丹巴地大花中表达。因此推测这些新nmiRNAs可以用于鉴定棉花耐热性的标记或者探针。
     (6)高温胁迫下,早熟长绒7号rRNA相对含量要高于南丹巴地大花,推测rRNA的降解与棉花热应激反应相关。无论是高温处理前,还是处理后,抗高温材料南丹巴地大花较高温敏感材料早熟长绒7号具有较多种类和数量的sRNA,较少种类和数量的siRNA;但随着高温处理时间的延长,抗高温和高温敏感材料的sRNA种类和数量都在逐渐减少,而siRNA种类和数量都在逐渐增加。在高温应激情况下,抗高温材料sRNA库可能出现首位碱基偏好U的19nt miRNA,高温敏感材料可能出现首位碱基偏好C的18nt或19nt miRNA。这说明不同类型的sRNA种类和数量在抗高温和高温敏感材料间是有差别的。
     (7)miRNAs测序分析和靶基因荧光定量分析,以热激蛋白70为靶基因的Gh-miRNA2919、以MYB1为靶基因的Gh-miRNA2651、以组蛋白去乙酰化酶为靶基因的Gh-miRNA946,以不同类型rRNA基因为靶基因的Gh-miRNA444等内源miRNA参与调控了棉花的耐热性。
Periodic heat damage happened frequently in cotton planting areas of China, especially in Yangtze Rivervalleys. Screening of heat resistent germplasm and breeding of new heat resistant varieties are theimportant ways to guarantee the high-yield production of cotton. For this purpose, the establishment ofefficient indoor evaluation system and research of the key genes and elements related with heat resistantare significant for developing the heat resistant cotton varieties. In this study, the characters of heatresistant were understood primarily after200cotton varieties which planted in the naturalhigh-temperature area (Turpan Basin in Xinjiang province, China) were assessed by assaying the relatedheat tolerance traits. Based on the treatment the above germplasm with clear understand of thecharacters of heat resistance with different temperature during different seedling period, and byinvestigating of chlorophyll content, relative conductivity, SOD、POD、CAT、MDA、APX、ASA、GSH and GR, the rapid cotton heat resistant evaluation system was constructed. On molecular level, thefull-length sequences and expression level of HSP genes were obtained and surveyed by RACE,Genome Walking and Quantitive RT-PCR technology. The analysis of small RNA in different varietiesand treatments were performed by high-throughput sequencing technology. The main results were asfollowing:
     (1).200different cotton germplasm planted in Xinjiang were investigated for boll dropping rate,infertility seed rate, degree of leaf wilting, pollen morphology and pollen viability,29varieties withdifferent heat resistance were screened.
     (2).High heat resistant varieties-Nandanbadidahua and heat sensitive varieties-Zaoshuchangrong7were treated at30℃、35℃、40℃、45℃and48℃for8hours in different growing stages.40℃for8hours in three-leaves stage was determined as the optimized treatment for indoor identification of heatresistant in cotton.8physiological and biochemical index (OD、POD、CAT、MDA、APX、ASA、GSH and GR) could be used as identification index, but only former5need to be considered for rapididentification in seedling stage.
     (3) To illuminate the molecular mechanism for heat tolerance cotton, the heat shock protein(HSP)were analyzed thoroughly in this study.Firstly, the whole cDNA, DNA and5’ regulator seaueces ofGhHSP18.5, GhHSP26and cytoplasm GhHSP70(cGhHSP70) in cotton were gained.Then, theexpressions of heat shock protein were analyzed by using Qrt-pcr. It was found that the tolerantmaterials―Nandanbadidahua‖had higher expression levels of heat shock protein than that of heatsensitive materials―Zaoshuchangrong7‖. Moreover, the upstream regulatory sequence of GhHSP18.5and GhHSP26contained heat shock regulatory element (HSE) in Nandanbadidahua with heat resistance,but there had not HSE in that of GhHSP26in zao shuchangrong7with heat sensitive.
     (4) By race technique, it was found cGhHSP70have two isoenzyme cGhHSP70-1andcGhHSP70-2in zao shuchangrong7with heat sensitive, and an extra sequence of238bp in cGhHSP70-1was an intron sequence with a termination code. Meanwhile, the same expression of splicing factorRSp41, RSp35, RSp45was consistent with that of cGhHSP70-1. These resulted in null cGhHSP70-1transcript accumulation and cGhHSP70function for heat tolerance lossed in zao shuchangrong7.According to the results of high throughput sequencing sRNAs, miRNA1859with the target encodingRSp41was higher expression in―Nandanbadidahua‖than that in―zaoshuchangrong7‖. There are sevenendogenous miRNA targets with RSp family. It implied the cotton endogenous miRNA inhibit theexpression of RSp family, and reduce the accumulation of null transcript at heat shock.
     (5) By high-throughput sequencing technology,35known conserved miRNAs and172kinds ofnew miRNA (nmiRNA) were acquired in the different cotton germplasm with different heat resistant.Some new miRNAs such as nmiRNA31, nmiRNA32, nmiRNA39, nmiRNA42, nmiRNA43, nmiRNA45,nmiRNA46, nmiRNA58, nmiRNA59, nmiRNA67, nmiRNA68and nmiRNA94only expressed in―Zaoshuchangrong7‖, and nmiRNA52, nmiRNA52, nmiRNA5261, nmiRNA62, nmiRNA63, nmiRNA64,nmiRNA65and nmiRNA66only were be observed in‖Nandanbadidahua‖. It suggests these newmiRNAs can be used as identified markers or probe for cotton thermotolerance.
     (6) The rRNA content in zaoshuchangrong7was higher than that in nandanbadidahua under hightemperature stress, we speculated that the degradation of rRNA in nandanbadidahua concerned withresponse of heat stress in cotton. Whatever before or after high temperature treatment, nandanbadidahuapossess more sRNA than zaoshuchangrong7, less siRNA. However, as treatment time went on. Thequantity of sRNA in both of the2varieties decreased, siRNA increased. Under heat stress, the first19ntU bias miRNA presented in library of high resitant., the first18nt or19nt C bias miRNA inzaoshuchangrong7, this result indicated that the type and quantity of miRNA were different betweenhigh resistant varieties and sensitive varieties.
     (7) Using miRNAs sequencing and their target gene expression analysis, we foundGh-miRNA2919targeted on heat shock protein70, Gh-miRNA2651targeted on MYB1, Gh-miRNA946on HDAC(histone deacetylase), Gh-miRNA444targeted on different rRNA, and other endogenousmiRNAs may involved in regulation of cotton heat response.
引文
[1] Adrian A. Lund, Paul H. Blum, Dinakar Bhattramakki, et al. Heat-stress response of maizemitochondria.1998,116(3):1097-1110.
    [2] Ajit kumar, Kuan-The Jeang. Insights into cellular MicroRNAs and Human immunodeficiency virustype1(HIV-1). J Cellular Physiology,2008,216,327-331.
    [3] Akan Das, Tapan Kumar Mondal. Computational identification of conserved microRNAs and theirtargets in tea. AJPS,2010,1(2):2158-2750
    [4] Akiko Sugio, René Dreos, Frederic Aparicio, et al. The cytosolic protein response as asubcomponent of the wider heat shock response in Arabidopsis. Plant Cell,2009, onlinepubilication:1-13.
    [5] Alessandro Rosa, Ali H Brivanlou. microRNAs in early vertebrate development. Cell cycleGeorgetown Tex,2009,8(21):3513-3520
    [6] Allen, E., Xie, Z., Gustafson, A.M., Carrington, J. C. MicroRNA-directed phasing duringtrans-acting siRNA biogenesis in plants. Cell,2005,121,207–221.
    [7] Almoguera, C. et al. A seed-specifc heat-shock transcription factor involved in developmentalregulation during embryogenesis in sunfower. J. Biol. Chem.,2002,277,43866–43872.
    [8] Alvarez-Garcia, I.&Miska, E. A. MicroRNA functions in animal development and human disease.Development,2005,132,4653–4662.
    [9] Alves M, Francisco R, Martins I, et al. Analysis of Lupinus albus leaf apoplastic proteins in responseto boron defciency. Plant Soil,2006,279,1–11.
    [10] Ambros, V., Lee, R. C., Lavanway, A.,et al. MicroRNAs and other tiny endogenous RNAs in C.elegans. Curr. Biol.,2003,13,807–818.
    [11] Anu Mathew, Sameer K. Mathur, Richard I., et al. Heat shock response and protein degradation:regulation of HSF2by the ubiquitin-proteasome pathway. Molecular and cellular biology,1998,18(9):5091-5098.
    [12] Aravin, A. A., Lagos-Quintana, M., Yalcin, A., et al. The small RNA profle during Drosophilamelanogaster development. Dev. Cell,2003,(5),337–350.
    [13] Arora R, Pitchay DS, Bearce BC. Water stress induced heat tolerance in geranium leaf tissues apossible link through stress proteins. Physiol. Plant.,1998,103,24–34.
    [14] Ashraf, M., Hafeez, M. Thermotolerance of pearl millet and maize at early growth stages: growthand nutrient relations. Biol. Plant.,2004,48,81–86.
    [15] Ayako Nishizawa-yokoi, Hitoshi Tainaka, Eriko Yoshida, et al. The26s proteasome function andHsp90activity involved in the regulation of hsfa2expression in response to oxidative stress. PCP,2010,51(3):485-496.
    [16] Ayako Nishizawa-Yokoi, Ryota Nosaka, Hideki Hayashi, et al. HsfA1d and HsfA1e Involved inthe Transcriptional Regulation of HsfA2Function as Key Regulators for the Hsf Signaling Network inResponse to Environmental Stress. Plant cell physiology,2011,52(5):933-945.
    [17] Baniwal, S.K. et al. Role of heat stress transcription factorHsfA5as specifc repressor of HsfA4. J.Biol. Chem.,2007,282,3605–3613.
    [18] Barrow Jerry R.Comparisons among pollen viability measurement methods in cotton[J].CropScience,1983,23(4):734~736.
    [19] Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116,281–297.
    [20] Baulcombe, D. C. RNA silencing in plants. Nature,2004,431,356–363.
    [21]Baumberger, N., Baulcombe, D. C. Arabidopsis Argonaute1is an RNA Slicer that selectivelyrecruits microRNAs and short interfering RNAs. Proc. Natl Acad. Sci. USA,2005,102,11928–11933.
    [22] Bernd jagla, Nathalie aulner, Perer D. Kelly,et al. Sequence characteristics of functional siRNA.RNA,2011,17(6):864-872.
    [23] Bernstein, E., Caudy, A. A., Hammond, S. M., et al. Role for a bidentate ribonuclease in theinitiation step of RNA interference. Nature,2001,409,363–366.
    [24] Bhadula SK, Elthon TE, Habben JE, et al. Heat-stress induced synthesis of chloroplast proteinsynthesis elongation factor (EF-Tu) in a heat-tolerant maize line. Planta,2001,212,359–366.
    [25] Bharti, K. et al. Structure and function of HsfA3, a new heat stress transcription factor of tomato.Plant J.,2000,22,355–365.
    [26] Bharti, K. et al. Tomato heat stress transcription factor HsfB1represents a novel type of generaltranscription coactivator with a histone-like motif interacting with the plant CREB binding proteinortholog HAC1. Plant Cell,2004,16,1521–1535.
    [27] Bin Liua, Zhiyu Chena, Xianwei Song,et al. Oryza sativa Dicer-like4Reveals a Key Role for SmallInterfering RNA Silencing in Plant Development. The plant cell,19:2705-2718.
    [28] Bona E, Marsano F, Cavaletto M, et al. Proteomic characterization of copper stress response inCannabis sativa roots. Proteomics,2007,7,1121–1130.
    [29] Borsani, O., Zhu, J., Verslues, P. E., et al. K.2006Endogenous siRNAs derived from a pair ofnatural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,123,1279–1291.
    [30] B sl B, Grimminger V, Walter S. The molecular chaperone Hsp104—a molecular machine forprotein disaggregation. J. Struct. Biol.,2006,156,139–148.
    [31] Brown JA, Li D, Ic M. Heat shock induction of manganese peroxidase gene transcription inPhanerochaete chryosporium. Appl. Environ. Microbiol.,1993,59,4295–4299.
    [32] Brenda L. Bass. Double-stranded RNA as a template for gene silencing. Cell,101:235-238.
    [33] Bucher, E., Hemmes, H., de Haan, P., et al. The infuenza A virus NS1protein binds smallinterfering RNAs and suppresses RNA silencing in plants. J. Genet. Virol.,2004,85,983–991.
    [34] Bukau B, Horwich AL. The Hsp70and Hsp60chaperone machines. Cell.,1998,92,351–366.
    [35] Burke JJ, Mahan JR, Hatfield JL. Crop-specific thermal kinetic windows in relation to wheat andcotton biomass production. Agron J,1998,80,553–556.
    [36] Busch W, Wunderlich M, Sch ff F. Identifcation of novel heat shock factor-dependent genes andbiochemical pathways in Arabidopsis thaliana. Plant J.,2005,41,1–14.
    [37] Byung Hyun Lee, Sung Hye Won, Hyo Shin Lee, et al. Expression of the chloroplast-localizedsmall heat shock protein by oxidative stress in rice. GENE,2000,245,283-290.
    [38] Callis J. Regulation of protein degradation. Plant Cell,1995,7,845–857.
    [39] ChangWWP, Huang L, Shen M,Webster C, et al. Patterns of protein synthesis and tolerance ofanoxia in root tips ofmaize seedlings acclimated to a low-oxygen environment, and identifcation ofproteins by mass spectrometry. Plant Physiol.,2000,122,295–317.
    [40] Camejo, D., Rodr′guez, P., Morales, et al. High temperature effects on photosynthetic activity oftwo tomato cultivars with different heat susceptibility. J. Plant Physiol.,2005,162,281–289.
    [41] Carmell, M. A., Xuan, Z., Zhang, M. Q., et al. The Argonaute family: tentacles that reach intoRNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.,2002,16,2733–2742.
    [42] Catalanotto, C., Azzalin, G., Macino, G., et al. Involvement of small RNAs and role of the qdegenes in the gene silencing pathway in Neurospora. Genes Dev.,2002,16,790–795.
    [43]Chuanghua Jiang, Jianyao Xu, Hao Zhang, et al. A cytosolic class I small heat shock protein,RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast andArabidopsis thaliana. Plant, Cell and Environment,2009,32:1046-1059.
    [44] Charng, Y.Y. et al. Heat-inducible transcription factor, HsfA2, is required for extension of acquiredthermotolerance in Arabidopsis. Plant Physiol.,2007,143,251–262.
    [45] Chen, X. MicroRNA biogenesis and function in plants. FEBS Lett.,2005,579,5923–5931.
    [46] Chen, P. Y. et al. The developmental miRNA profles of zebrafsh as determined by small RNAcloning. Genes Dev.,2005,19,1288–1293.
    [47] Chen GH, Huang LT, Yap MN, et al. Molecular characterization of a senescence-associated geneencoding cysteine proteinase and its gene expression during leaf senescence in sweet potato. Plant CellPhysiol.,2002,(9),984–991.
    [48] Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., et al. Regulation of phosphate homeostasis bymicroRNA in Arabidopsis. Plant Cell,2005,30,412–421.
    [49] Chitteti B, Peng ZP. Proteome and phosphoproteome differential expression under salinity stress inrice (Oryza sativa) roots. J.Proteome Res.,2007,(6),1718–1727.
    [50] Cooke RJ, Roberts K, Davies DD. Model for stress induced protein degradation in Lemna inor.Plant Physiol.,1980,66,1119–1122.
    [51] Czarnecka-Verner, E. et al. Plants contain a novel multi-member class of heat shock factors withouttranscriptional activator potential. Plant Mol. Biol.,2000,43,459–471.
    [52] Czarnecka-Verner, E. et al. Plant class B HSFs inhibit transcription and exhibit affnity for TFIIBand TBP. Plant Mol. Biol.,2004,56,57–75.
    [53] Davletova, S. et al. Cytosolic Ascorbate Peroxidase1is a central component of the reactive oxygennetwork of Arabidopsis. Plant Cell,2005,17,268–281.
    [54] Denes Kovacs, Bianka Agoston, Peter Tompa. Disordered plant LEA proteins as molecularchaperones. Plant Signaling&Behavior,2008,3(9),710-713.
    [55] Derry, J.M., Kerns, J. A., Francke, U. RBM3, a novel human gene in Xp11.23with a putativeRNA-binding domain. Hum. Mol. Genet.,1995,4,2307–2311.
    [56] Díaz-Martín, J. et al. Functional interaction between two transcription factors involved in thedevelopmental regulation of a small heat stress protein gene promoter. Plant Physiol.,2005,139,1483–1494.
    [57] Doench, J. G., Petersen, C. P., Sharp, P. siRNAs can function as miRNAs. Genes Dev.,2003,17,438–442.
    [58] Dresios, J., Aschraf, A., Owens, G. C., et al. Cold stress-induced protein Rbm3binds60Sribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc. Natl Acad. Sci.USA,2005,102,1865–1870.
    [59] Du, T., Zamore, P. D. MicroPrimer: the biogenesis and function of microRNA. Development,2005,132,4645–4652.
    [60] Ebrahim, M.K., Zingsheim, O., El-Shourbagy, M.N., et al. Growth and sugar storage in sugarcanegrown at temperature below and above optimum. J. Plant Physiol.,1998,153,593–602.
    [61]Ehlers, J.D., Hall, A.E. Heat tolerance of contrasting cowpea lines in short and long days. FieldCrops Res,1998,55,11–21.
    [62] Elbashir, S. M., Harborth, J., Lendeckel, W., et al, T. Duplexes of21-nt RNAs mediate RNAinterference in cultured mammalian cells. Nature1999,2001a,411,494–498.
    [63]Fire, A., Xu, S., Montgomery, M. K., et al. Potent and specifc genetic interference bydouble-stranded RNA in Caenorhabditis elegans. Nature,1998,391,806–811.
    [64] Sheryl S. Justice, David A. Hunstad, et al. Periplasmic Peptidyl Prolyl cis-trans Isomerases Are NotEssential for Viability, but SurA Is Required for Pilus Biogenesis in Escherichia coli. JOURNAL OFBACTERIOLOGY,2005,29,106:7680–7686.
    [65] Nomalie Jaya, Victor Garcia, Elizabeth Vierling1. Substrate binding site flexibility of the small heatshock protein molecular chaperones. PNAs,2001,70,603–647.
    [66]F U Hartl, J Martin, W Neupert. Protein Folding in the Cell: The Role of Molecular ChaperonesHsp70and Hsp60. Annual Review of Biophysics and Biomolecular Structure,1992,21:293-322
    [67] Fujii, H., Chiou, T. J., Lin, S. I., et al. A miRNA involved in phosphate-starvation response inArabidopsis. Curr. Biol.,2005,15,2038–2043.
    [68] Furguson DL, Guikema JA, Paulsen GM. Ubiquitin pool modulation and protein degradation inwheat roots during high temperature stress. Plant Physiol.,1990,92,740–746.
    [69] Wenxian Hu, Wayne Hofstetter, Xiaoli We,et al. Double-Stranded RNA-Dependent ProteinKinase-Dependent Apoptosis Induction by a Novel Small Compound. JPET,2009,328(3):866–872.
    [70] Goldoni, M., Azzalin, G., Macino, G., et al. Effcient gene silencing by expression of doublestranded RNA in Neurospora crassa. Fungal Genet. Biol.,2004,41,1016–1024.
    [71] Anat Peres Ben-Zvi, Pierre Goloubinoff. Review: Mechanisms of Disaggregation and Refolding ofStable Protein Aggregates by Molecular Chaperones. Journal of Structural Biology,2001,135,84–93
    [72] Guo Lihong, Chen Shan na, Gong Ming. Comparison of methods for glutathione reductase activityassays in maize seedlings[J], Journal of Yunnan university,1999,21(5):416~418.
    [73] Griffths-Jones, S. The microRNA registry. Nucleic Acids Res.,2004,32, D109–D111.
    [74] Gy rgy Hutvágner, Phillip D Zamore. A microRNA in a multiple-turnover RNAi enzyme complex.Sciene,2002,297:2056-2060.
    [75] Haibo Xin, Hua Zhang, Li Chen, et al. Cloning characterization of HSFA2from lily.2010,29:875-885.
    [76] Hall,A.E.Crop Responses to Environment.CRCPress LLC,2001, BocaRaton,Florida.
    [77] Hamilton, A. J., Baulcombe, D. C. A species of small antisense RNA in posttranscriptional genesilencing in plants. Science,1999,286,950–952.
    [78] Hall AE. Crop Responses to Environment. CRC Press LLC,2001, Boca Raton, Florida.
    [79] Herr, A. J. Pathways through the small RNA world of plants. FEBS Lett.,2005,579,5879–5888.
    [80]Hawkins JS, Kim H, Nason JD, et al. Differential lineage-specific amplification of transposableelements is responsible for genome size variation in Gossypium. GenomeRes2006,16:1252-1261.
    [81] Howarth, C.J. Genetic improvements of tolerance to high temperature.2005, In:Ashraf,M.
    [82]Harris, P.J.C.(Eds.), Abiotic Stresses: Plant Resistance ThroughBreeding and MolecularApproaches. Howarth Press Inc., New York.
    [83] Howell MD, Fahlgren N, Chapman EJ, et al. Genome-wide analysis of the RNA-DEPENDENTRNA POLYMERASE6/DICER-LIKE4pathway in Arabidopsis reveals dependency on miRNA-andtasiRNA-directed targeting. Plant cell,2007,19:926-942.
    [84] Han-hua Liu, Xin Tian, Yan-jie Li, et al. Microarray-based analysis of stress-regulated microRNAsin Arabidopsis thaliana. RNA,2008,14:836-843.
    [85] Iwahashi Y, Hosoda H. Effect of heat stress on tomato fruit protein expression. Electrophoresis,2000,21,1766–1771.
    [86] István Papp, M. Florian Mette, Werner Aufsatz,et al. Evidence for Nuclear Processing of PlantMicro RNA and Short Interfering RNA Precursors. Plant physiol,2003,132(3),1382–1390.
    [86] Jane Larkindale, Jennifer D. Hall, Marc R. Knight,et al. Heat Stress Phenotypes of ArabidopsisMutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance. Plantphysiology,2005,2005,138:882-897.
    [87] Jesper Givskov S rensen1,Torsten Nygaard Kristensen, Volker Loeschcke1. The evolutionary andecological role of heat shock proteins. Ecology Letters,2003,6:1025–1037.
    [88] Jianming Fu, Ivana Momcilovic,Thomas E. Clemente, et al. Heterologous expression of a plastidEF-Tu reduces protein thermal aggregation and enhances CO2fxation in wheat (Triticum aestivum)following heat stress. Plant Mol Biol,2008.
    [89] Jingkang Guo, Jian Wu, Qian Ji, et al. Genome-wide analysis of heat shock transcription factorfamilies in rce and Arabidopsis. J Genetics and Genomics,2008,35(2):8-16.
    [90] John J. Burke, Donald F. Wanjura. Plant responses to temperature extremes. Physiology of cotton,2010,123-128.
    [91] John J. Burke, Jerry L. Hatfleld, Robert R, et al. Accumulation of Heat Shock Proteins inField-Grown Cotton. Plant Physiol,1985,78:394-398.
    [92] Jones PD, New M, Parker DE, et al. Surface area temperature and its change over the past150years. Rev. Geophys.,1999,37,173–199.
    [93] Joost Haasnoot, Walter de vries, Ernst-Jan Geutjes, et al. The ebola virus VP35protein is asuppressor of RNA Sliencing. Plos Pathog,2007,3(6):794-803.
    [94] Joshua-Tor, L. SiRNAs at RISC. Structure,2004,12,1120–1122.
    [95] Kakani V G, Reddy K R,Wallace T P,et al.Differences in vitro Pollen Germination and PollenTube Growth of Cotton Cultivars in Response to High Temperature[J].Annals of Botany,2005,96:59~67.
    [96] Karin van Dijk, Hengping Xu, Heriberto Cerutti. Epigenetic silencing of transposons in the GreenAlga Chlamydomonas reinhardtii. Nucleic Acids and Molecular Biology,2006,17:159-178.
    [97] Klaus Richter, Birgit Meinlschmidt, Johannes Buchner. The Hsp90family of molecular chaperones.Protein science encyclopedia,2008, online.
    [98] Klaus Dieter Scharf, Harald Heider, Ingo h hfeld, et al. The tomato hsf system: hsfA2needsinteraction with hsfA1for efficient nuclear import an may be localized in cytoplasm heat stress granules.Mol Cell Biol,1998,18(4):2240-2251.
    [99] Kotak, S. et al. A novel transcriptional cascade regulating expression of heat stress proteins duringseed development of Arabidopsis. Plant Cell,2007,19,182–195.
    [100] K.V. SUMESH, P. SHARMA-NATU and M.C. GHILDIYAL. Starch synthase activity and heatshock protein in relation to thermal tolerance of developing wheat grains. Biologia plantarum,52(4):749-753.
    [101] Labra M, Gianazza E, Waitt R, Eberini I, et al. Zea mays L. protein changes in response topotassium dichromate treatments. Chemosphere,2006,62,1234–1244.
    [102] Laino P, Shelton D, Finnie C,et al. Comparative proteomic analysis of the metabolic seed proteinfraction in the Italian durum wheat cv. Svevo after heat treatment.2008.
    [103] Lakatos, L., Szittya, G., Silhavy, et al. Molecular mechanism of RNA silencing suppressionmediated by p19protein of tombusviruses. EMBO J.,2004,23,876–884.
    [104] Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature.Plant Physiol.,2008,146,748–761.
    [105] Laura Marin-Vinader, Chanseok Shin, Carla Onnekink,et al. Hsp27Enhances recovery of splicingas well as rephosphorylation of SR38affter heat shock. Molecular Biology of the cell,2006,17:886-894.
    [106] Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003,425,415–419.
    [107] Lifu Ma, Linda C. HsieH-Wilson, et al. Antibody catalysis of peptidyl-prolyl cis-transisomerization in the folding of RNase T1. Proc. Natl. Acad.Sci.USA,1998,95,7251-7256.
    [108] Lindquist S. The heat-shock response. Annu. Rev. Biochem.,1986,55,1151–1191.
    [109] Li, H., Li, W. X., Ding, S. W. Induction and suppression of RNA silencing by an animal virus.Science,2002,296,1319–1321.
    [110] Li, W. X. et al. Interferon antagonist proteins of infuenza and vaccinia viruses are suppressors ofRNA silencing. Proc. Natl Acad. Sci. USA,2004,101,1350–1355.
    [112] Lie-Bo Shu, Wei Ding, Jin-Hong Wu,et al. Proteomic analysis of rice leaves shows the differentregulations to osmotic stress and stress signals.2010,11:28-35.
    [113] Lindquists.Heat shoek response.Annu Rev Biochem,1986,55:1151-1191
    [114] Lippman, Z., Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature,2004,431,364–370.
    [115] Liu zhi, Yuan youlu, Liu shaoqing, et al. Screening for high-temperature tolerant cotton cultivasby testing in vitro pollen germination, pollen tube growth and boll retention. Journal of Integrative PlantBiology,2006,48(6):706-714.
    [116] Lohmann, C. et al. Two different heat shock factors regulate immediate early expression of stressgenes in Arabidopsis. Mol. Genet. Genomics,2004,271,11–21.
    [117] Lorraine D. Hernandez, Elizabeth Vierling. Expression of Low Molecular Weight Heat-ShockProteins under Field Conditions. Plant Physiol,1993,101:1209-1216.
    [118] Lu, C., Tej, S. S., Luo, S., et al. Elucidation of the small RNA component of the transcriptome.Science,2005a,309,1567–1569.
    [119] Lu, S., Sun, Y. H., Shi, R., et al. Novel and mechanical stress-responsive microRNAs in Populustrichocarpa that are absent from Arabidopsis. Plant Cell,2005b,17,2186–2203.
    [120] Manabu Yoshikawa, Angela Peragine, Mee Yeon Park, et al. A pathway for the biogenesis oftrans-acting siRNAs in Arabidopsis. Gen&Den,2005,19:2164-2175.
    [121] Miao QR, Zhou ZJ, Yin YY, et al. The highest temperature characteristics of China for past nearlyhalf century. Sci Meteorol Sin,1998,(2),103–111.
    [122] Mohamed H. Al-Whaibi. Plant heat-shock proteins: A mini review. Journal of King SaudUniversity (Science).2010:1-12.
    [123] Monica C. vella, Frank J. Slack. C.elegans microRNAs. Molecular biology,2005, online.
    [124] M.R. Rebagliati, D.A. Melyon. Antisense RNA injections in fertilized frog eggs reveal an RNAduplex unwinding activity. Cell,1987,48(4):599-605.
    [125] Morris, K. V., Chan, S. W., Jacobsen, S. E. et al. Small interfering RNA-induced transcriptionalgene silencing in human cells. Science,2004,305,1289–1292.
    [126] Mukesh Kumar, Wolfgang Busch, Hannah Birke, et al. Heat shock factors hsfB1and hsfB2b areinvolved in the regulation of pdf1.2expression and pathogen resistance in Arabidopsis. Mol. Plant,2009,2(1):152-165.
    [127] Na-Hyun Song, Yeh-Jin Ahn. DcHsp17.7, a small heat shock protein in carrot, istissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnology,2011,00:1-7.
    [128] Napoli, C., Lemieux, C., Jorgensen, R. Introduction of a chimeric chalcone synthase gene intoPetunia results in reversible co-suppression of homologous genes in trans. Plant Cell,1990,2,279–289.
    [129] Nathan D. Trinklein, John I. Murray, et al. The Role of Heat Shock Transcription Factor1in theGenome-wide Regulation of the Mammalian Heat Shock Response. Molecular Biology of the Cell,2004,15:1254-1261.
    [130] Nishizawa, A. et al. Arabidopsis heat shock transcription factor A2as a key regulator in responseto several types of environmental stress. Plant J.,2006,48,535–547.
    [131] Nover, L. et al. Cytoplasmic heat shock granules are formed from precursor particles and areassociated with a specifc set of mRNAs. Mol. Cell. Biol.,1989,9,1298–1308.
    [132] Nover, L., Scharf, K-D. Heat stress proteins and transcription factors. Cell. Mol. Life Sci.,1997,53,80–103.
    [133] Nover, L. Heat Shock Response,1991, CRC Press.
    [134] Olivie, Didier picardet. RNA interference in mammalian cells using siRNAs synthesized with T7RNA polymerase. Nucleic Acids Research.2002,30(10):46.
    [135] Ortiz C, Cardemil L. Heat-shock responses in two leguminous plants: a comparative study. J. Exp.Bot.,2001,52,1711–1719.
    [136] Pascal bon Koskull-D ring, Klaus-Dieter Scharf, Lutz Nover. The diversity of plant heat stresstranscripition factors. Trends in plant sciene,2007,12(10):452-457.
    [137] Pasquinelli, A. E. MicroRNAs: deviants no longer. Trends Genet.,2002,18,171–173.
    [138] Pelham, H.R.B. A regulatory upstream promoter element in the Drosophila hsp70heat-shock gene.Cel,1982,(l)30,517–528.
    [139] Pfeffer, S. et al. Identifcation of virus-encoded microRNAs. Science,2004,304,734–736.
    [140] Prieto-Dapena, P. et al. Improved resistance to controlled deterioration in transgenic seeds. PlantPhysiol.,2006,142,1102–1112.
    [141] Qin, F. et al. Regulation and functional analysis of ZmDREB2A in response to drought and heatstress in Zea mays L. Plant J.,2007,50,54–59.
    [142] Queitsch C, Hong SW, Vierling E, et al. Heat shock protein101plays a crucial role inthermotolerance in Arabidopsis. Plant Cell,2000,12,479–492.
    [143] Queitsch C, Sangster TA, Lindquist S. Hsp90as a capacitor for phenotypic variation. Nature,2002,417,618–624.
    [144] Reddy VR, Baker DN, Hodges HF.1991Temperature effect on cotton canopy growth,photosynthesis, and respiration. Agron J,1991,83,699–704.
    [145] Reddy KR, Hodges HF, McKinion JM. Crop modeling and applications: A cotton example. AdvAgron J,1997,59,225–290.
    [146] R. H. Cross, S. A. B. McKay, A. G. McHughen, et al. Heat-stress effects on reproduction andseed set in Linum usitatissimum L.(flax). Plant,Cell and Environment,2003,26:1013~1020.
    [147] Ristic Z, Williams G, Yang G, et al. Dehydration, damage to cellular membranes, and heat-shockproteins in maize hybrids from different climates. J. Plant Physiol.,1996,149,424–432.
    [148] Ristic Z, Wilson K, Nelsen C, et al. A maize mutant with decreased capacity to accumulatechloroplast protein synthesis elongation factor (EF-Tu) displays reduced tolerance to heat stress. PlantSci.,2004,167,1367–1374.
    [149] R.M. Udayangani RATNAYAKE, Hitoshi INOUE, Hiroshi nonami,et al. Alternative processing ofArabidopsis HSP70precursors during protein import in to Chloroplasts.Bioscience, Biotechnology, andBiochemistry,2008,72(11):9-2926-2935.
    [150] Sachin Kotak, Jane Larkindale, Ung Lee, et al. Comlexity of the heat stress response in plant.Plant biology,2007,10:310-316.
    [151] Sahi C, Agarwal M, Singh A, et al. Molecular characterization of a novel isoform of rice (Oryzasativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperature stressresponse. Plant Sci.,2007,173,144–155.
    [152] Sakuma, Y. et al. Dual function of an Arabidopsis transcription factor DREB2A inwater-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. U. S. A.,2006,103,18822–18827.
    [153] Salekdeh GH, Komatsu S. Crop proteomics: aim at sustainable agriculture of tomorrow.Proteomics,2007,(7),2976–2996.
    [154] Scharf, KD. et al. The tomato Hsf system: HsfA2needs interaction with HsfA1for effcientnuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell. Biol.,1998,18,2240–2251.
    [155] Sch ff, F. et al. Regulation of the heat-shock response. Plant Physiol.,1998,117,1135–1141.
    [156] Baniwal, S.K. et al. Heat stress response in plants: a complex game with chaperones and morethan twenty heat stress transcription factors. J. Biosci.,2004,29,471–487.
    [157] Schramm, F. et al. The heat stress transcription factor HsfA2serves as a regulatory amplifer of asubset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol.,2006,60,759–772.
    [158]Shailendra K. Bhadula, Thomas E. Elthon, Jeffrey E. Habben, et al. Heat-stress induced synthesisof chloroplast protein synthesis elongation factor (EF-TU) in a heat-tolerant maize line. Planta,2001,212:359-366.
    [159] S.M.Locke, R.A. Martienssen. Slicing and spreading of heterochromatic silencing by RNAinterference. Cold spring Harb Symp Quan Biol,2006,71:497-503.
    [160] Solomon M, Belenghi B, Delledonne M, et al. The involvement of cysteine proteases and proteaseinhibitor genes in the regulation of programmed cell death in plants. Plant Cell,1999,11,431–443.
    [161] Song, J. J., Liu, J., Tolia, N. H., et al. The crystal structure of the Argonaute2PAZ domain revealsan RNA bindingmotif in RNAi effector complexes. Nat. Struct. Biol.,2003,10,1026–1032.
    [162]Stefan Walter,Johannes Buchner. Molecular chaperones-cellular machines for folding. Angew.Chem. Int. Ed.,2002,411098-1113.
    [163] Steven C. Hand, Michael A. Menze, Mehmet Toner, et al. LEA Proteins DuringWater Stress: NotJust for Plants Anymore. Annu. Rev. Physiol,2011,73:115–34.
    [164] Steven M. Johnson, Shin-Yi Lin, Frank J. Slack. The time of appearance of the C. elegans let-7microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter.Development Biology,2003,259:364-379.
    [165] Sung DY, Vierling E, Guy CL. Comprehensive expression profle analysis of the ArabidopsisHsp70gene family. Plant Physiol.,2001,126,789–800.
    [166] T.J.Bouma, R.De Visser, J.H.J.A.janssen, et al. Respiratory energy requirements and rate ofprotein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assessits effect. Physiologia Plantarum,1994,92(4):585-594.
    [167] Tomari, Y., Matranga, C., Haley, B., et al. A protein sensor for siRNA asymmetry. Science,2004,306,1377–1380.
    [168] Thompson, J.D. et al. The CLUSTAL_X windows interface: fexible strategies for multiplesequence alignment aided by quality analysis tools. Nucleic Acids Res.,1997,25,4876–4882.
    [169] Vargason, J.M., Szittya, G., Burgyan, J., et al. Size selective recognition of siRNA by an RNAsilencing suppressor. Cell,2003,115,799–811.
    [170] V.B. Reddy, E.A. Lerner. Plant cysteine proteases that evoke itch activate protease-activatedreceptors. BJD,2010,163(3):532-535.
    [171] Vierling E. The role of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1991,42,579–620.
    [172] Vincenzo Salvatore, Nicoletta Potenza, Umberto Papa, et al. Bacterial expression of mouseargonaute2for functional and mutational studies. Int.J.Mol.Sci,2010,11,745-753.
    [173] Voellmy, R. Onmechanisms that control heat shock transcription factor activity in metazoan cells.Cell Stress Chaperones,2004,9,122–133.
    [174] Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet.,2001,17,449–459.
    [175] Voinnet, O., Pinto, Y. M., Baulcombe, D. C. Suppression of gene silencing: a general strategyused by diverse DNA and RNA viruses of plants. Proc. Natl Acad. Sci. USA,1999,96,14147–14152.
    [176] Wahid A, Close TJ. Expression of dehydrins under heat stress and their relationship with waterrelations of sugarcane leaves. Biol. Plant.,2007,51,104–109.
    [177] Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: an overview. Environ. Exp. Bot.,2007,61,199–223.
    [178] Wahid, A., Close, T.J. Expression of dehydrins under heat stress and their relationship with waterrelations of sugarcane leaves. Biol. Plant.,2007,51,104–109.
    [179] Wanner L A,Oliavi J. Cold-induced freezing tolerance in Arabidopsis. Plant Physiology,1999,120(6):391-399.
    [180] Weaich, K., Briston, K.L., Cass, A. Modeling preemergent maize shoot growth. II. Hightemperature stress conditions. Agric. J.,1996,88,398–403.
    [181] Wianny, F., Zernicka-Goetz, M. Specifc interference with gene function by double-stranded RNAin early mouse development. Nat. Cell Biol.,2000,2,70–75.
    [182] Xu J, Tian J, Belanger FC, et al. Identifcation and characterization of an expansin gene AsEXP1associated with heat tolerance in C3Agrostis grass species. J. Exp. Bot.,2007,58,3789–3796.
    [183] Xu, P., Vernooy, S. Y., Guo, M. et al. The Drosophila microRNA mir-14suppresses cell death andis required for normal metabolism. Curr. Biol.,2003,13,790–795.
    [184] Yamanouchi, U. et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factorprotein. Proc. Natl. Acad. Sci. U. S. A.,2002,99,7530–7535.
    [185] Yang Q, Wang Y, Zhang J, et al. Identifcation of aluminum-responsive proteins in rice roots by aproteomic approach: Cysteine synthase as a key player in Al response. Proteomics,2007,(7),737–749.
    [186] Ye, K., Malinina, L., Patel, D. J. Recognition of small interfering RNA by a viral suppressor ofRNA silencing. Nature,2003,426,874–878.
    [187] Yekta, S., Shih, I. H., Bartel, D. P. MicroRNA directed cleavage of HOXB8mRNA. Science,2004,304,594–596.
    [188] Yoshikawa, M., Peragine, A., Park, M. Y., et al. A pathway for the biogenesis of trans-actingsiRNAs in Arabidopsis. Genes Dev.,2005,19,2164–2175.
    [189] Younousse Saidia,b, Andrija Finkaa, Maude Muriset,et al. The Heat Shock Response in MossPlants Is Regulated by Specific Calcium-Permeable Channels in the Plasma Membrane, the plantcell,2009,21:2829-2843.
    [190] Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E.&Filipowicz, W. Single processing centermodels for human Dicer and bacterial RNase III. Cell,2004,118,57–68.
    [191] Zhikang Yin, David Stead, Jan Walker,et al. A proteomic analysis of the salt, cadmium andperoxide stress responses in candida albicans and the role of the Hog1stress-activated MAPK inregulating the stress-induced proteome. Proteomics,2009,9,4686-4703.
    [192] Liu zhi,Yuan you lu, Liu shaoqing, et al. Screening for High-Temperature Tolerant CottonCultivars by Testing In Vitro Pollen Germination, Pollen Tube Growth and Boll Retention. Journal ofIntegrative Plant Biology,2006,48(6),706~714.
    [193] Zhixin Xie, Lisa K. Johansen, Adam M. Gustafson,et al. Genetic and fuctional diversification ofsmall RNA pathways in plant. Plos biology,2004,2(5):642-652.
    [194]蔡义东,袁小玲,邓茳明,等.基于花粉萌发与结铃性表现选育耐高温高产杂交棉[J].湖南农业大学学报(自然科学版),2010,36(2):119~122.
    [195]陈宁福.温湿度对棉花花粉生活力的影响.新疆农业科学,1964,03:109.
    [196]邓家术,段彬江,刘中来.植物热激蛋白的研究进展及其应用IJI.生命的化学,2003,23(3):26-228
    [197]邓茳明,熊格生,袁小玲,等.棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应.2010,22(3):242~247.
    [198]丁自立.棉花热激效应的研究.华中农业大学硕士论文,2005:1-5.
    [199]樊治成,贾洪玉,郭洪芸.西葫芦耐冷性生理指标研究.园艺学报,1999,26(5):309~313.
    [200]谷崇光,陈文.电导率百分率法鉴定黄瓜耐热性.上海蔬菜,1991,1:33-34.
    [201]郭尚境,陈娜,孟庆伟,等.叶绿体小分子量热激蛋白介绍.植物学通报,2005,22(2):223-230.
    [202]贺亚军,郭旺珍,张天真.棉花6个小分子质量热激蛋白基因的序列、表达与定位.作物学报,2008,34(9):1574-1580.
    [203]黄宏文.猕猴桃研究进展.科学出版社,2000,141-148.
    [204]黄祥富.萌发中水稻胚和幼苗的热激蛋白生物合成与抗冷性研究.中山大学博士学位论文,2000:30-35.
    [205]李雪梅,李玥莹,马莲菊等.逆境胁迫下水稻蛋白质组学研究进展.2009,(3):115-162.
    [206]梁超英.萝卜耐热性鉴定和叶片生化指标含量研究.西北农林科技大学硕士论文,2006,
    [207]刘进生,汪隆植,李式军.番茄耐热优良品种筛选初报.中国蔬菜,1999,46:33-35.
    [208]刘蕾,杜海,唐晓凤,等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传,2008,30(10),1265-1271.
    [209]刘志,刘少卿,余筱南,等.特棉S-1雄性不育发生的细胞学基础及可育花粉对温度的反应.湖南农业大学学报:自然科学版,2007,33(4):403-406.
    [210]刘志勇,杜永臣,王孝宣等。高温胁迫下番茄叶片差异表达基因的cDNA-AFLP分析。园艺学报,2008,7:152-156.
    [211]马德华,庞金安,李淑菊。黄瓜对不同温度逆境的抗性研究。中国农业科学,1999,32(5):38-40.
    [212马德华。不同品种黄瓜幼苗对温度逆境耐性的研究。中国农业大学博士论文,2000:60-68.
    [213]孟焕文。黄瓜幼苗对热胁迫的生理反应及耐热性鉴定指标筛选。西北农业学报,9:96-99.
    [214]唐蜻。植物RNA结合蛋白的研究进展。安徽农业科学,2010,38(1):38-41.
    [215]宋美珍。短季棉早熟不早衰生化遗传机制及QTL定位。中国农业科学院博士论文,2006,48~54。
    [216]苏秀红.不同紫茎泽兰种群耐旱与耐热性的评价及耐热性生理生化特征的研究[D].南京农业大学博士论文:43~48.
    [217]王邦锡。渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系。中国科学,1992,4:35-37.
    [218]王苗苗,唐灿明。高温胁迫后的棉花花粉活力测定方法。江苏农业科学,2010,26(2):236-239.
    [219]王利军,黄卫东。水杨酸和高温锻炼与葡萄抗热性及抗氧化的关系。园艺学报,2003,30(4):452-454.
    [220]王学奎。植物生理生化实验原理技术(第二版)。北京:高等教育出版社,2006:134~135.
    [221]吴国胜,王永健,曹宛虹等。大白菜热害发生规律及耐热性筛选方法的研究。华北农学报,1995,10(1):111-115.
    [222]吴耀荣,谢旗。ABA与植物胁迫抗性。植物学通报,2006,2(5):511-518.
    [223]杨燕。小麦Vp-1基因的表达特性和STS标记的开发与应用。内蒙古农业大学博士论文,2007:55-59.
    [224]杨光。玉米苗期冷响应分子机理的研究.吉林大学博士论文,2010:113-161.
    [225]袁小玲,熊格生,邓茳明等.三个不同耐高温棉花基因型主茎叶的生理生化特征。棉花学报,2009,21(6):492~496。
    [226]耶兴元.高温胁迫对猕猴桃的生理效应及耐热性诱导研究。西北农林科技大学硕士论文,2004:20~22。
    [227]张桂莲,陈立云,张顺堂等。高温胁迫对水稻剑叶保护酶活性和膜透性的影响。作物学报,2006,32(9):1306-1310.
    [228]张欣.冷诱导相关基因SICZFP1和SICMYB1的克隆及功能分析。中国农业科学院博士论文,2010,75-80.
    [229]张亚冰,刘崇怀,孙海生等。葡萄砧木耐盐性与丙二醛和脯氨酸关系的研究。西北植物学报,2006,26(8):1709-1712.
    [230]张宗申.高温胁迫下辣椒叶片GSH和ASA的变化.中国农业科学,2001,24(1):213-217。
    [231]张祖新. RNA干涉原理及其应用。湖北农学院学报,2002,6:560-565.
    [232]赵艳梅.组蛋白乙酰化修饰调控果蝇热休克基因表达和寿命的分子机制研究。东北师范大学博士论文:107-108.
    [233]郑冬官,方其英,蔡永立,等.高温对棉花花粉生活力的影响.棉花学报,1995,7(1):325-332。
    [234]朱绍琳,黄骏麒.陆地棉变异与―退化‖研究。作物学报,1964,3(1):51-67。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700