变速箱减振与降噪的动力仿真与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低变速箱箱体的振动和噪音,在箱体薄壳的内表面粘贴阻尼层和约层,形成约阻尼结构。考虑到箱体结构的复杂性,为了降低计算量、提高效率,本文将箱体中最容易产生振动和噪音的拱板结构单独隔离出来,在拱板内表面粘贴阻尼层和约层,对边界条件进行简化处理,基于ABAQUS软件平台对其进行动力仿真分析,并对约阻尼结构各层厚度在许用范围内进行减振降噪效果最佳结构优化设计和造价最经济结构优化设计,分别得到结构质量约下的振动加速度级最小化结构和振动加速度级约下的造价最小化结构。主要工作可总结为如下内容:
     (1)减振降噪效果最佳结构优化设计。以约阻尼结构中基础层厚度、阻尼层厚度和约层厚度为设计变量;约条件为满足结构的总质量上限值要求;以结构上多个点的最大法向振动加速度最小为目标函数,建立减振降噪效果最佳结构优化模型。这是一个多目标优化模型,利用K-S函数将多个典型点的最大法向振动加速度处理为结构的振动综合指标,进而采用该振动综合指标的振动加速度级值作为结构减振降噪效果的评价参数,运用响应面方法将其显式化,建立以结构的振动加速度级值为目标的单目标优化模型。序列二次规划求解优化模型,程序运行稳定,得到了较理想的减振降噪结构。
     (2)造价最经济结构优化设计。由于结构面积不变,粘贴阻尼层和约层的加工费用是固定的,可以不考虑,因此只考虑结构的材料费用。以约阻尼结构各层厚度为设计变量;约条件为满足环境标准规定的振动噪音上限值要求;建立造价最经济结构优化模型。该优化模型是一个线性规划优化模型,采用设计变量的倒数作为新的设计变量,运用响应面方法将结构的振动加速度级约条件显式化为倒变量的函数,将倒变量的造价目标函数进行泰勒二阶展开,得到标准的二次规划求解优化模型,优化程序收敛速度快,得到了满足结构性能约下的最经济结构。
     (3)响应面方法是对样本点及其响应值的近似拟合,在进行初次响应面拟合后对拟合得到的显式函数进行检验和拟合精度运算,提高拟合函数的精确性和拟合效率。
To reduce the vibration and noise of the gear-box structure, the damping layer and constraint layer are pasted on the surface of thin shell, forming the constraint damping structure. Due to the complication of the gear-box model,the arched plate structure which arises the most serious vibration and noise, is isolated from the gear-box to reduce the computing amount. The constraint layer and the damping layer are pasted on the inner surface of the arched plate. The boundary conditions are simplified. The dynamic simulation of the arched plate structure is made based on ABAQUS, and the optimal designs for the most effective structure of vibration and noise reduction and the most economical structure of cost are made in the allowable ranges of the thickness of each layer of the constraint damping. The optimization of the vibration acceleration level with the mass condition and the optimization of cost with the vibration acceleration level condition are obtained respectively. The main researches are summarized as follows:
     (1) The optimal design for the most effective structure of vibration and noise reduction. The design variables are respectively the thickness of basic layer, the thickness of damping layer and the thickness of constraint layer in the constrained damping structure; the designing constraint is to meet the total mass requirement; the objective functions are minimizing the normal maximal vibration acceleration of a few nodes on the structure, establishing the optimal model of the most effective structure of reducing vibration and noise, which is a multiobjective optimization. The K-S function is adopted to process the normal maximal acceleration of all representative points as a synthesis parameter, with the vibration acceleration level of it as the evaluation parameter for effect of reducing vibration and noise. The response surface methodology is used to explicit the vibration acceleration level function. The new model with a signal objective of the vibration acceleration level of the structure is obtained, which is solved by the sequential quadratic programming stably and gives out the more ideal structure.
     (2) The optimal design for the most economical structure of cost. As the structure of the same size, the cost of processing the damping layer and the constraint layer is fixed, which could be out of considering. The material cost of the structure is the only to be think about. Thickness of each layer of the constraint damping structure are taken as design variables; meeting upper limit of the vibration noise required by the environmental standards is the designing constraint; establish the most economical structure optimization model, which is a linear programming optimization. Reciprocals of the designing variables are used as the new designing variables. The constraint of vibration acceleration level is explicated as the function of the reciprocal variables with the response surface methodology. The objective function of the reciprocal variables can be lunched as the second-order Taylor function. The standard model of sequential quadratic programming is obtained and solved. The convergence speed of the optimal program is fast. The most economical structure satisfying the performance condition is also obtained.
     (3) Response surface methodology(RSM) is the curve fitting of the relationship between the inputs(variables) and outputs(responses) of a physical system by explicit functions. For RSM function of the first fitting, tests and fitting precision are made to improve the fitting accuracy and the fitting efficiency.
引文
1.徐世勤,王樯.工业噪声与振动控制第二版.北京:冶金工业出版社, 2000: 141~142
    2.周新祥.噪声控制技术及其新进展.北京:冶金工业出版社, 2007: 276~277
    3.李小华.影响齿轮箱噪声的因素及其控制方法.机械管理开发, 2004, 4: 41~42
    4.李明章,彭玉才,李华敏,等. CAS5-20汽车齿轮箱的降噪研究.哈尔滨工业大学学报, 1991, (1): 96~101
    5.卢碧红,曲宝章,周定嵘.齿轮箱故障诊断技术及其发展.大连铁道学院学报, 1998, 19(3): 37~41
    6.潘景明,刘东方.舰用汽轮机减速箱磨损监测诊断初探.中国修船, 2000, (1): 17~18.
    7.何如,宋福堂.齿轮与齿轮箱振动噪声机理分析与控制.振动、测试与诊断, 1998, 18(3): 221~226
    8.党川.阻尼减振降噪技术原理及其应用.四川环境, 1992, 11(3): 47~50
    9. J. T. Lee. Active structural acoustics control of beams using active constrained layer damping through loss factor maximization. Journal of Sound and Vibration. 2005, 287: 481~503
    10. Niu Hongpan, Zhang Yahong, Zhang Xinong, Xie Shilin. Active Vibration Control of Beam Using Electro-magnetic Constrained Layer Damping. Chinese Journal of Aeronautics, 2007, 21: 115~124
    11.张人德,赵钧良.减振降噪阻尼材料及其应用.上海金属, 2002, 24(2): 18~23
    12. H. Optiz. Dynamic Behavior of Spur and Helical Gears. JSME Semi-International Symposiu- m Papers, Gears. Sept, 1967: 89~95
    13. Kirschner, Francis. Control of impact-excited noise on scale-model and full-scale box-girder- type bridge structures. The Journal of the Acoustical Society of America, 1973, 54(1): 277
    14. Greeves. GEAR NOISE. Noise Control and Vibration Reduction, 1974, 4(5): 163~166
    15. K. Umezawa. Vibration of power transmission helical gear with narrow face-width. ASME Paper, 1984, 84: 150~159
    16. S. V. Neriya, R. B. Bhat, T. S. Sanker. On the dynamic response of a helical geared system subjected to a static translation error in the form of deterministic and filtered white noise inputs. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110: 501~506
    17. R. J. Pinnington. Vibration power transmission of an idealized gearbox. Journal of Sound and Vibration, 1989, 128(2): 259~272
    18. E. R. Todd. Mobility analysis of structure-borne noise power flow through bearing in gear box-like structures. Noise Control Engineering Journal, 1996, 44(2): 69~77
    19.姚文席.渐开线直齿轮单级齿轮传动系统的振动.西安交通大学学报, 1990, 24(4): 39~49
    20.唐增宝,周建荣.直齿圆柱齿轮传动系统的振动分析.机械工程学报, 1992, 28(4): 86~93
    21.左言言,宫镇.齿轮箱噪声的分析与控制.中国机械工程, 1994, 5(2): 55~57
    22.李剑锋,王钧效,王寿佑,等.直齿锥齿轮轮齿瞬时啮合刚度研究机械传动, 1995, 19 (3): 28~33
    23. Wang Yanping, Zheng Muqiao. Prediction and Reduction of Structure-borne Noise in Vehicle. Journal of Institute of Technology, 1995, 4(2): 160~166
    24.张平宽,王慧霖,史玉光.薄膜阻尼在齿轮箱噪声控制中的应用.太原重型机械学院学报, 1996, 17(1): 81~85
    25.种建明.齿轮箱结构设计对齿轮箱的影响.机械传动, 1996, (1): 23~24
    26.王新晴,徐燕申.汽车齿轮箱故障振动识别技术研究.汽车技术, 1997, (3): 28~31
    27.李润方,韩西,林腾蛟,等.齿轮系统耦合振动的理论分析与实践研究.机械工程学报, 2000, 36(6): 79~81
    28.薛延华,吴新跃.一种齿轮箱振动控制方法.海军工程大学学报, 2001, 13(1): 99~103
    29.亓文果,宋孔杰,张蔚波.齿轮箱类结构振动功率流分析.山东工业大学学报, 2002, 32(1): 6~9
    30.孙振明,徐敏强,王日新.齿轮箱振动信号降噪方法的研究.风机技术, 2002, (1): 53~55
    31.李小华.影响齿轮箱噪声的因素及其控制方法.机械管理开发, 2004, (4): 41~42
    32.高象波,劭晓岩,赵锦.白噪声激励下动力机器基础的动力响应.电力建设, 1995, 9(5): 18~20
    33.朱海平.两类约力学系统在白噪声激励下的平稳响应.数学物理学报, 1997, 17(4): 412~417
    34.李连进,张维屏.降低齿轮箱噪声的一种途径.东北工学院学报, 1989, 10(4): 439~444
    35. G. Huang, B. Roth. Dimension synthesis of closed-loop linkages to match force and position specifications. Transactions of the ASME, 1993, 115(6): 194~198
    36.宋建新,徐顺利,杨建玺,谢建辉.齿轮和变速箱的现代设计方法.拖拉机和农用运输车, 1995, 5: 14~19
    37.杨文硕,满志强.齿轮减速箱体的结构力学分析.哈尔滨科学技术大学学报, 1995, 19(3): 94~98
    38.邹文胜,左正兴,廖日东,安宇.大功率、高效柴油机箱体强度分析研究.兵工学报, 1997, (4): 59~62
    39.钟文生,刘恒瑜.高速动力车承载式铸铝合金齿轮箱体结构设计与强度分析.内燃机车, 1997, (4): 29~31
    40.杨成云,林腾蛟,李润方,杭华江.中心传动齿轮箱体有限元分析及结构优化设计.重型机械, 2001, (2): 42~45
    41.杨超,刘常宝,韩晓锋,林涛.抽油机减速器壳体的有限元分析.大庆石油学院报, 2001, 25(4): 82~86
    42.虎恩典,张波,陈天宁,陈花玲.数控车床尾架箱体的自由模态分析.宁夏工程术, 2002, 1(1): 65~68
    43.朱锡,胡忠平,石勇.预报基座结构噪声的有限元方法研究.海军工程大学学报, 2003, 15(6): 33~36
    44.吴国洋,龙思远,等. LX150摩托车曲轴箱体的有限元分析与结构改造.重庆大学学报, 2004, 27(8): 11~14
    45. H. Zheng, G. S. H. Pau, Y. Y. Wang. A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Structure,2006, 44: 886~896
    46.张锦江,杨智春.具有多阶频率与振型约的结构动力学优化设计.强度与环境, 2007, 34(1): 11~16
    47.刘波,郑忠才,等. 7YPJ型农用三轮汽车齿轮箱体有限元静力分析.山东建筑大学学报, 2007, 22(5): 434~437
    48.粱醒培,王豪,等.大型齿轮箱结构分析与结构优化.机械设计与制造, 2008, (1): 31~33
    49.郭凤骏,杨德庆.考虑振级落差要求的齿轮箱基座优化设计.船舶工程, 2008, 30(4): 40~43
    50.王永梅,王希贵.齿轮变速箱线性减振优化分析研究.哈尔滨轴承, 2008, 29(2): 56~58
    51.郑荣,姚利锋.某型扫雷舰主机基座阻尼结构优化研究.船舶, 2008, (2): 39~44
    52. G. E. P. Box, K. B. Wilson. On the experimental attainment of optimal conditions. JRSS, Series B, 1951: 1~45
    53. G. E. P. Box, J. S. Hunter. Multifactor experimental design for exploring response surface. Annals of Mathematical Statistics, 1957, 28: 195~241
    54. R. H. Myers, D. C. Montgomery. Response Surface Methodology. New York, Wiley and Sons, 1995: 16~401
    55. R. H. Myers, D. C. Montgomery, et al. Response Surface Methodology: a retrospective and literature survey. Journal of Quality Technology, 2004, 36(1): 53~77
    56. S. H. Lee, B. M. Kwak. Response surface augmented moment method for efficient reliability analysis. Struct. Saf., 2006, 28: 261~72
    57.马宝胜.响应面方法在多种实际优化问题中的应用[硕士论文].北京:北京工业大学, 2007: 13~22
    58. S. E. Fang, R. Perera. A response surface methodology based damage identification technique. Smart Materials and Structures. 2009, 18: 1~14
    59. S. W. Doebling, F. M. Hemez, et al. A metamodel-based approach to model validation for nonlinear finite element simulations. Proc SPIE Int Soc Opt Eng (Los Angeles, CA). 2002: 671~678.
    60. W. J. Roux, N. Stander, R. T. Haftka. Response surface approximations for structural optimization. International Journal for Numerical Method in Engineering. 1998, 42: 517~534
    61. W. Shyy, P. K. Tucher, R. Vaidyanathan. Response Surface and Neural Network Techniques for Rocket Engine Injector Optimization. AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference, 1999, 99~2455
    62. C. Kim, S. Y. Wang, K. K. Choi. Efficient response surface modeling using MLSM and sensitivity. Proc. of 4th World Congress of Structural and Multidisciplinary Optimization, LiaoNing Electronic Press, 2001: 1~6
    63. T. Jansson, L. Nilsson, M. Redhe. Using surrogate models and response surfaces in structural optimization– with application to crashworthiness design and sheet metal forming. Structural and Multidisciplinary Optimization, 2003, 25: 129~140
    64.王晓锋,席光,王尚锦.响应面方法在叶片扩压器优化设计中的应用研究.工程热物理学报, 2003, 24(3): 391~394
    65.赵瑞安,吴方.非线性最优化理论和方法.浙江科学技术出版社, 1992: 123~272
    66.谢政,李建平,汤泽滢.非线性最优化.国防科技大学出版社, 2003: 295~314
    67. G. Kreisselmeier, R. Steinhauser. System control design by optimization a vector performance index. Proc. of IFAC Symposium on Computer Aided Design of control systems, Zurich, Switzerland, 1979, 113~117
    68. G. Kreisselmeier, R. Steinhauser. Application of vector performance optimization to a robust control loop design for a fighter aircraft. Int. J. of Control, 1983, 37: 251~284
    69.王希诚,钱令希.多层次联合的结构优化设计.计算结构力学及其应用, 1988, 5(3): 69~73
    70. R. J. Yang, C. J. Chen. Stress-based topology optimization. Struct. Multidisc. Optim., 1996, 12(3): 98~105
    71.隋允康.建模·变换·优化——结构综合方法新进展.大连:大连理工大学出版社, 1996: 96~99
    72.隋允康,于新. K-S函数与模函数法的统一.大连理工大学学报, 1998, 38(5): 502~505
    73.刘棣华.粘弹阻尼减振降噪应用技术.北京:宇航出版社, 1990: 57~65
    74.公害防止技术和法规编委会.公害防止技术振动篇.化学工业出版社, 1991: 58~59
    75.庄茁,等. ABAQUS/Standard有限元软件入门指南.清华大学出版社, 1998: 1~9
    76.宋岩新,杨庆,唐小微,万少石. ABAQUS后处理二次开发在海底管线稳定性分析中的应用.中国海洋平台, 2008, 23(4): 18~22
    77. W. J. Chun,宋吉广. Python核心编程(第二版).北京:人民邮电出版社, 2008
    78.张轩.基于响应面方法的二维连续体形状优化理论及程序开发[硕士论文].北京:北京工业大学, 2005: 25~26
    79. T. F. Coleman, Y. Li. A reflective newton method for minimizing aquadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, 1996, 6(4): 1040~1058
    80.王佐民.噪声与振动测量.科学出版社, 2009: 138~141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700