复合材料力学性能实验及云纹干涉法现场测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料是近二十年发展起来的一种重要的新型结构用材料。由于复合材料的种类、形式繁多,性质复杂,因此,对复合材料力学规律的研究十分艰巨而重要。云纹干涉法以其全场、实时、高灵敏度等特点,正在成为研究复合材料的重要实验手段。
     本文从对云纹干涉法理论分析入手,针对各种因素可能导致面内位移测量误差这一实际问题,设计了光栅补偿装置及光路布置系统,达到了精确,定量补偿面内位移和应变的目的,并以光的干涉理论观点给予了严格证明。
     目前,云纹干涉法基本上被限制于实验室应用之中,对于大量的工程实际问题尚不能发挥出它的潜在优势。本文研究了云纹干涉法现场复制变形光栅的工艺,并具体分析了工艺实现过程中可能遇到的各种问题的解决途径。以光矢量分析和光的干涉原理为依据,研究了变形信息的多种准确提取方法,实现了现场复制技术与实验室测量的有机结合,使得云纹干涉法的潜能在工程实际中充分地发挥出来。
     作为现场复制变形光栅技术的一个重要应用,本文研究了混杂材料ARALL和GLALL层板的表面铝合金层Ⅰ型裂纹的疲劳扩展,得到了用于评定裂纹扩展准则的COD和J积分以及它们之间的对应关系。从对裂纹尖端场的应变分析和能量分析的原则出发,阐述了裂纹稳定扩展的机理。
     作为复制变形光栅技术的另一成功应用,研究了复合材料的固化残余层间剪切应力及其与外部载荷而引起的应力的叠加效应,并与云纹干涉法实时观测的方法进行了对照。
     本文运用云纹干涉法的全场、高灵敏度的特点,研究了Kevlar49/环氧复合材料的压缩破坏的全过程,分析了几种破坏形式的产生机理。
     本文结合实验中所遇到的复合材料的具体问题,运用云纹干涉法与有限元相结合的混合方法,研究了混合位移边界和局部全位移边界两类问题,通过与单一实验方法和有限元方法的对照,分析了误差的大小及产生原因,并得到了实验方法所无法得到的结论。
     基于混合法的有效性,本文讨论了混合法求解结构刚度系数和应力状态这一有限元方法的反问题,对于几类典型问题,给出了具体的求解方案。
     以上工作所得到的结论无论是对云纹干涉法实验技术的发展还是对复合材料力学规律的认识都将具有重要的意义。
The composite materials have been becoming more and more important new materials for engineering structures in recent twenty years, but it is difficult to study the mechanical properties of the composite materials due to their varieties and complexity. Because of the distinguishing qualities of the moire interferometry method such as whole field measurement, real time observation, and high sensitivity, this method is becoming an important technique in studying composite materials.By considering the fact that many factors may lead to errors in the actual problem of measuring the in-plane displacement and strain, a grating compensation device and an lighting system are designed based on the theory of interferometry. The measured in-plane displacement and strain can be compensated accurately and quantitatively by using this device and system. A strict demonstration is also given by using the theory of light interference.At present, moire interferometry method is still limited in the laboratory and is incapable of solving many engineering problems. In this thesis, the technique of replicating deformed grating from the surface of the test body at worksite is investigated, and methods for solving all kinds of problems e-merged in the technical processes are analysed. On the basis of light-vector analysis method and the theory of light interference, several methods for extracting strain and displacement information are studied. The potential virtues of the moire interferometry method can be available by the technique of replicating at worksite and measuring in laboratory.As an important application of the technique of replicating deformed grating at worksite, the problems of the mode I crack growth in hybrid materials ARALL and GLALL under fatigue loading are studied. The crack tip strain field, crack opening displacement — COD and J-intergral are obtained. It is
    proved that COD and J-integral methods could be used as the criterion of the crack growth. The relationship between COD and J-integral is also obtained. The mechanism of the steadily growing crack of hybrid materials is analysed according to the principles of energy balance.As another successful application of replicating deformed grating, the joint effects of the interlamina shearing stresses caused by the solidification of materials and loads are studied. A comparison is also given between this method and the real time moire interferometry method.By using moire interferometry method, the whole processes of compres-sive damage of Kevlar 49/Epoxy composite materials are studied. Several types of damage are investigated. The mechanism of compressive damage is discovered.By using the hybrid method that combines moire interferometry method with the finite element method, two types of problems are studied. One is the hybrid displacement boundary value problem , the other is local full-displacement boundary value problem. By comparing with the experimental method and the finite element method respectively, the amount of the errors and the reason of the errors are analysed. In some cases, the problems , which can t be solved by using experimental method only, can be resolved by this hybrid method. Therefore, the hybrid method is useful in experiment stress analysis.On the basis of the validity of the hybrid method , the inverse problems of the finite element method are discussed. The structure stiff coefficients and stress situations could be solved by using this method. The analyses of several typical problems are presented.
引文
[1] Tsai, S. W., Mechanics of Composite Material, Part Ⅱ, Theoretical Aspects. Air Force Materials Laboratory Tech. Rept. AFML—TR—66—149, November, 1966.
    [2] Lempriere, B. M., Poisson's Ratio in Orthotropic Materials, AIAA J., Nov., 1968.
    [3] Dickerson, E. O., Dimartino, B., Off-Axis Strength and Testing of Filamentary Materials for Aircraft Application, in Advanced Fibrous Reinforced Composites.
    [4] Reuter, R. C., Concise Property Transformation Relations for an Anisotropic Lamina, J. Composite Mat., April, 1971, pp270—272.
    [5] Jones, R. M., Stiffness of Orthotropic Materials and Laminated Fiber Reinforced Composites, AIAA J., Jan., 1974, pp112—114.
    [6] Tsai, S. W., and Pagano, N. J., Invariant Properties of Composite Materials in Tsai, S. W. (eds.), Composite Materials Workshoop, Technonic Publishing Co., Westport, Conn., 1968, pp233—253.
    [7] Pagano, N. J., and Chou, P. C., The Importance Signs of Shear Stress and Shear Strain in Composites, J. Comp. Mat., Jan., 1969, pp166—173.
    [8] Jones, R. M., Buckling of Stiffened Multilayered Circular Cylindrical Shells with Different Orthotropic Moduli in Tension and Compression, AIAA J., May, 1971, pp917—923.
    [9] Tsai, S. W., Strength Theories of Filamentary Structures, in Schwartz, R. T. and Schwartz, H. S., Fundamental Aspects of Fiber Reinforced Plastic Composites, Wiley Interscience, New York, 1968, pp3—11.
    [10] Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, London, 1950.
    [11] Tsai, S. W., Wu, E. M., A Gerneral Theory of Strength for Anisotropic Materials, J. Composite Materials, Jan., 1971, pp58—80.
    [12] Chamis, C. C. and Sendeckyj, G. P., Critique on Theories Predicting
    ??Thermoelastic Properties of Fibrous Composites ,J. Comp. Mat. ,July, 1968,pp332 —358.
    [13] Paul, B. , Prediction of Elastic Constants of Multiphase Materials, Trans. Metallurgical Society of AIME .February,1960,pp36 —41.
    [14] Halpin ,J. C and Tsai,S. W. .Effects of Enviromental Factors on Composite Materials.AFML—TR67 — 423, June, 1969.
    [15] Kelly, A. and Davies ,G. J. ,The Principles of the Fibre Reinforcement of Metals,Met. Rev. ,1965,pp1— 77.
    [16] Schuerch,H. ,Compressive Strength of Boron-Metal Composites ,NASA NASA CR —202,April,1965.
    [17] Sadowsky, M. A. , Pu, S. L. and Hussain M. A. , Buckling of Mi- crofibers ,J. Appl. Mech. .December, 1967,pp1011 —1016.
    [18] Aboudi,J. ,Micromechanical Analysis of Composites by the Method of Cells ,J. Applied Mech.Rew. July, 1989.
    [19] Pagano,N. J. and Pipes,R. B. ,the Influence of Stacking Sequence on Laminate Strength,J. Composite Mat. ,1971.
    [20] Pagano,N. J. and Pipes,R. B. ,Some Observations on the Interlaminar Strength of Composite Laminates ,Int. Mech. Sci. ,1973.
    [21] Pagano,N. J. .Stress Field in Composite Laminates, Inter. J. Solids Structures, 1978, pp385 —400.
    [22] Pagano.N.J. , Free Edge Stress Field in Composite Laminates ,Int. J. Solids Stru. ,1978.
    [23] Seide,P. ,An Improved Approximate Theory for Bending of Laminated Plates,Mechanics Today,1980,vol. 5,pp451 —460.
    [24] Surana,K.S. and Sorem.R.M. .Curved Shell Elements Based on Hierarchical P-Appoximation in the Thickness Direction for Lincar Static Analysis of Laminated Composite , Int. J. Num. Mech. Eng. ,1990, vol. 29,ppl393-1420.
    [25] Surana,K. S. and Sorem. R. M. .Curved Shell Elements for Elastostatics with P-Version in the Thickness Direction, Computers and Struct., 1990,vol .36.pp701-719.
    [26] Koganti.M. R. .Analysis of Thick Laminated Anisotropic Composite Plates by the Finite Element Method .Composite Struc. ,1990, vol. 15.
     pp185 —214.
    [27] Lee,K.H.et al. ,An Improved Zig-Zag Model for Bending of Laminated Composite Plates .Composite Struc. ,1990, vol. 15,ppl37 —148.
    [28] Chomk wah ,V. and Arula,X. J. R. ,A High-Order Theory for Laminated Composite Plates Using Lagrange Multiplier Thechnique, Computers and Struc. , 1991. vol. 37,pp845-862.
    [29] Pian,T.H.H. ,Derivation of Element Stiffness Matrices by Assumed Stress Distributions,AIAA.J. , 1963,pp 1333 —1336.
    [30] Pian,T. H. H. and Tong , P. , Rationalization in Derivation Element Stiffness Matrix by Assumed Stress Approach,in Proc 2nd. Conf. on Matrix Methods in Structural Mechanics ,1966,pp441 —469.
    [31] Herrman,L.R. ,A Bending Analysis for Plates ,in Proc 1st. Conf. on Matrix Methods in Structural Mechanics ,1965,pp557 —604.
    [32] Herrman. L. R. , Finite Element Bending Analysis for Plates, J. Eng. Mech. Div. Vol. 98,pp13 —26.
    [33] Pagano,N. J. and Soni,S. R. ,Global-Local Laminated Variational Model,Int. J. Solids Structures ,1983,Vol. 19,pp207 —228.
    [34] Jing ,H.S.and Liao,M.L. ,Partial-Hybrid Stress Element for the Analysis of Thick Laminated Composite Plates ,Int. J. Numerical Methods in Eng. ,1989,Vol. 28,pp2813 —2827.
    [35] Whitney ,J. M. ,Daniel,I. M. and Pipes,R. B. Experimental Mechanics of Fiber Reinforced Composite Materials ,Soc Exper. Stress Analysis, Brookfield Center,Conn. ,1982.
    [36] Greszczuk. L. B. ,Theoretical and Experimental Studies on Properties and Behavior of Filamentary Composites ,Soc of Plastics Industry,21st Annu.Conf. .Washington ,D. C. ,1966.
    [37] Daniel,I. M. and Durelli,A.J. ,Shrinkage Stresses around Rigid Inclusions ,Exp. Mech. ,2(1962),pp240-244.
    [38] Marloff ,R. H. and Daniel,I. M. ,Three-Dimensional Photoelastic Analysis of a Fiber-Reinforced Composite Model,Exp. Mech. ,9(1969) ,ppl56-162.
    [39] Daniel,I. M. etl. ,Photoelastic Studies of Internal Stress Distributions of Unidirectional Composites ,AMMRC—TR — 80—56,1980.
    [40] Bert,C.W. Experimental Characterization of Composites ,In Structural and Analysis , Part Ⅱ , Vol. 8, Composite Materials , Academic Press, New York, 1974.
    [41] Daniel,I. M. ,Photoelastic Investigation of Composites ,in Mechanics of Composites , Vol. 2, Composite Materials , Acadamic Press, New York, 1974.
    [42] Daniel,I. M. ,Optical Methods for Testing Composite Materials,in Failure Modes of Composite Materials with Organic Matrices and Their Consequences on Design,AGARD—CP —163,1975.
    [43] Voloshin,A. S. ,and Burger,C P. ,Photo-Othotropic Elasticity through a Digital Image Analysis of Low Level Birefringence, Proc 7th Int. Conf.Exp. Stress Anal. ,Haifa,Israel,Aug. 1982,pp483 —494.
    [44] Daniel Post,Moire Interferometry for Damage Analysis of Composites , Proc . Soc. Exp. Stress Anal. , Spring Conf , Cleveland, Ohio, 1983, pp337-343.
    [45] Rowlamds R. E. etl,Stress Analysis of Anisotropic Laminated Plates ,A- IAA J. , 12(1974),pp903-908.
    [46] Daniel,I. M. et al,Wave Propagation in Transversely Impacted Composite Laminates ,Exp. Mech. , 19(1979) ,pp6 —16.
    [47] Daniel,I. M. ,Biaxial Testing of Graphite/Epoxy Laminates with Cracks , in Test Methods and Design Allowables for Fibrous Composites , ASTM STP734,1981,pp109 —128.
    [48] Guess, T. R. ,and Gerstle,F. P. .Deformation and Fracture of Resin Matrix Composites in Combined Stress States , J. Compos. Mater. ,7 (1977),pp448 —464.
    [49] Yeow,Y.T. ,Morris ,D. H-and Brinson.H. F. ,The Fracture Behavior of Graphite/Epoxy Laminates ,Exp. Mech. , 19(1979) ,pp1 — 8.
    [50] Daniel, I. M. , Mixed Mode Failure of Composite Laminates with Cracks ,Proc. 5th Int. Conf. Exp. Stress Anal. .Montreal .Canada. June 1984,pp320-327.
    [51] Henneke,E. G. Nondestructive Evaluation of Damage on Composite Materials ,Proc 1983 Fall Meeting ,Soc. Exp. Stress Anal. , Salt lake City ,Utah, 1983.
    [52] Reifsnider, Kenneth L., Some Foundamental Aspects of the Fatigue and Fracture Response of Composite Materials, Proc. 14th Annu. Meeting Soc. Eng. Sci., Lehigh University, Bethlehem, Pa., 1977.
    [53] Sendeckyj, G. P., Maddux, G. E. and Tracy, N. A., Comparison of Holographic, Radiographic, and Ultrasonic Techniques for Damage Detection in Composite Materials, ICCM/2 Proc. 2nd Int. Conf. Compos. Mater., Toronto, Canada, 1978, pp1037—1056.
    [54] Schramm, Scott W. and Daniel, Isaac M., Nondestructive Evaluation of Metal—Matrix Composites, AF/DARPA Rev. Prog. Quantitative NDE, La Jolla, Calif., 1982.
    [55] Rotem, Assa, The Discrimination of Micro-Fracture Mode of Fibrous Composite Material by Acoustic Emission Technique, Fibre Sci. Technol.,10(1977), pp101—121.
    [56] Wood, J. D., Detection of Delamination Onset in a Composite Laminate Using Moire Interferometry,Compos. Technol. Rev., 7, No. 4(winter 1985)pp121—128.
    [57] Dally, J. W. and Riley, W. F., Experimental Stress Analysis, 1st ed., McGraw-Hill, New York, 1965.
    [58] Post, D., Optical Interference for Deformation Measurements —Classical, Holographic and Moire Interferometry,in Mechanics of Nondestructive Testing, Plenum Press, New York, 1980.
    [59] Post, D., Moire Interferometryat VAP and Su, Exp, Mech., June 1983, pp. 203—210.
    [60] Weissman, E. M. and Post. D., Moire lnterferometry near the Theoretical Limit, Appl. Opt., 21, No. 9, May 1, 1982, pp1621—1623.
    [61] Post, D., Developments in Moire Interferometry, Opt. Eng., 21, No. 3, May 1982, pp458—467.
    [62] Basehore, M. L. and Post, D., Displacement fields (U,W)Obtained Simultaneously by Moire Interferometry, Appl. Opt., 21, No. 14, July 15, 1982, pp2558—2562.
    [63] 任晓辉,钟国成,戴福隆,三维位移场(U、V、W)实时观测的云纹干涉法,力学学报,第23卷,第5期,1991,9,pp589—595。
    [64] 戴福隆,任晓辉,钟国成,离面位移场测量的相加云纹干涉法,第五届实验 力学会议,1989,11,pp1022。
    [65] Weissman, E. M., Post, D. and Asundi, A., Whole-Field Strain Determination by Moire Shearing Interferometry, J. Strain Anal., 19 No. 2 (1984). pp77—80.
    [66] 刘欣,“单光束云纹干涉法”,清华大学硕士学位论文,1991。
    [67] Dai, F. L., One-Beam shearing Interferometry for measuring Slope and Curvature of Bent Plates, Proc. Inter. Conf., Exp. Mech., Beijing, China, 1985, pp418—424.
    [68] Post, D., Moire Interferometry in White Light, Appl. Opt., 18, No. 24, Dec. 15, 1979, pp4163—4167.
    [69] 钟国成,白光云纹干涉法,第七届全国实验力学会议,1992,10。
    [70] Baschore, M. L. and Post, D., High-Frequency, High-Reflectance Transferable Moire Gratings, Exp. Tech., 8, No. 5, 1984, pp29—31.
    [71] 袁杰,“可动光源云纹干涉法制栅技术”,北京理工大学博士论文,1990。
    [72] Wadsworth, N., Marchant, M. and Billing, B., Real Time Observation of In-Plane Displacements of Opaque Surfaces, Opt. Laser Technol., 5, No. 3(June 1973), pp119—123.
    [73] Marchant, M. and Bishop, S. M., An Interference Technique for the Measurement of Inplane Displacements of Opaque Surfaces, J. Strain Anal., 9, No. 1(1974), pp36—43.
    [74] Mckelvie, J. and Walker, C. A., A Practical Moire-Fringe Technique, Exp. Mech., 18, No. 8(1978), pp316—320.
    [75] Rowlands, R. E. and Vallem, J. H., On Replication for Moire Fringe Multiplication. Exp. Mech., 20, No. 5(1980), pp167.
    [76] Mckelvie, J., Pritty, D. and Walker, C. A., An Automatic Fringe Analysis Interferometer for Rapid Moire Stress Analysis,4th Eur. Electro-Opt. Conf. SPlE., Proc. Vol. 164, Oct. 1978.
    [77] Walker, C. A., Mckelvie, J. and McDonach A., Experimental Study of Inelastic Strain Patterns in a Modal of a Tube-Plate Ligament Using Interferometric Moire Technique, Exp. Mech., 23, No. 1 (Mar. 1983), pp21—29.
    [78] McDonach, A. et al, Improved Moire Interferometry and Applications in Fracture Mechanics, Residual Stress and Damaged Composites, Exp. Tech., 23, No. 2, (June 1983), pp20—24.
    [79] Post, D. and Baracat, W. A., High-Sensitivity Moire Interferometry-A Simplified Approach, Exp. Mech., 21, No. 3(1981), pp100—104.
    [80] 亢一澜,天津大学博士论文,1993。
    [81] 宋焕成,张佐光,《混杂纤维复合材料》,北京航空航天大学出版社,1989。
    [82] 宋焕成,徐波,“玻璃纤维/Kevlar49纤维复合材料及其夹芯混杂的弯曲/冲击性能研究”,复合材料学报,6(1989),pp1—6。
    [83] 张佐光,宋焕成,“混杂复合材料的冲击特性”,航空学报,10,5(1989),A267—A273。
    [84] 郑瑞琪,李宏运,胡宏军,“芳纶纤维—铝合金混杂复合材料的层间残余应力”,第七届全国复合材料会议,H35—1~H35—7。
    [85] 刘丹梅等,“玻璃纤维增强铝合金复合层板GLALL的疲劳纹扩展行为”,第七届全国复合材料会议,F15—1~F15—6。
    [86] Jang, B. Z., Impact Resistance and Energy Absorption Mechanism in Hybrid Composites, Composite Sci. and Tech., 34, 4(1989), pp305—355.
    [87] Kretsis, G. A., Review of the Tensile, Compressive, Flexure and Shear Properties of Hybrid Fibre-Reiforced Plastics, Composites, 18, 1(1987), pp13—23.
    [88] Fernando, G., Dickson, R. F., Fatigue Behaviour of Hybrid Composites;Part Ⅰ, Carbon/Kevlar Hybrids, J. Mat. Sci., 23, 10(1988), pp3732—3743.
    [89] Adam, T. and Fernando, G., Fatigue Life Prediction for Hybrid Composites, Int. J. Fatigue, 11, 4(1989), pp233—237.
    [90] Hver, M. W., Hearkovich, C. T. and Post, D., Thermal Deformations of Graphosite Epoxy, in 1982 Advances in Aerospace Strutures and Materials, ASME, New York, 1982, pp107—114.
    [91] Daniel, I. M. and Liber, Theodore, Lamination ResiduaI Stresses in Fiber Composites, NASA—CR—134826, 1975.
    [92] Dai, F. L. and Post, D., Residual Strain Analysis of Composite Materials by Moire Interferomtry Method, 7th Int. Conf. in China, 1989.
    [93] Weitsman, Yechiel, Residual Thermal Stresses Due to cooldown of Epoxy-Reisin Composites, J. Appl. Mech., 46(1979), pp563—567.
    [94] Wolff ,E. G. ,Stiffness-Thermal Expansion Relationships in High Modulus Carbon Fibers ,J. Compos. Mat. ,Vol. 21—Jan. , 1987,pp81 — 97.
    [95] Griffin,O. H. ,Three Dimenional Thermal Stresses in Angle -Ply Composite Laminates ,J. Comp.Mat. ,Vol. 22—Jan 1988,pp53 — 70.
    [96] Wetherhold ,R. C and Boss ,C S. ,Transverse Thermal Expansion Coefficients for Composite Laminates,J. Compos. Mat. ,Vol- 22—Sep. 1988, pp812 —817.
    [97] Technical Note,Thermal Post-buckling of Thin Simply Supported Or-thotropic Square Plates ,Comp. Struc ,1989,ppl49 —154.
    [98] Griffis.C A. etl. .Degradation in Strength of Laminated Composites Subjected to Intense Heating and Mechanical Loading ,J. Comps. Mat. , Vol. 20—May 1986,pp216 —235.
    [99] Takao,Y. ,The Effect of Variable Fiber Aspect Ratio on the Stiffness and Thermal Expansion Coefficients of a Short Fiber Composite, J. Comp. Mat. ,Vol. 21 —Feb. 1987,ppl40.
    [100] Jeronimidis ,G. and Parkyn,A.T. ,Residual Stresses in Carbon Fiber- Thermoplastic Matrix Laminates,J. Compo. Mat. , Vol. 22,May 1988, pp401 —415
    [101] Hahn,H. T. .Residual Stresses in Polymer Matrix Composite Lami- nates ,J. Comp. Mat. , Vol. 10(Oct. 1976) ,pp266 —277.
    [102] Hashin,Z. .Analysis of Thermoviscoelastic Behavior of Unidirectional Fiber Composites ,Compos ,Sci. Tech. ,1987.
    [103] Aboudi,J. and Sadkin,Y. ,Viscoelastic Behavior of Thermo-rheologically Complex Reisin Matrix Composites .Compos. Sic. Tech. Tech . , 1989.
    [104] Rosen, B. W. ,in Fiber Composite Materials , Am. Soc Metals seminar, Chap. 3,1965.
    [105] Schuerch,H. ,A1AA J. ,Vol. 4(1966) ,pp102.
    [106] Lager,J.R.and June,R. ,J. Compos. Mat. .Vol. 3(1969) ,pp48.
    [107] Kulkarni,S. V. ,Rice,J. S. and Rosen, B. W. ,NASA-CR-112334,1973.
    [108] Ewins,P. D. and Ham. A. G. , A1AA/ASME/SAE 15th SSDM Conf. , Las Vegas. , 1974.
    [109] Segalman.D. J. .Woyak ,D. B. and Rowlands ,R. E. .Smooth Spline-like Finite-element Differentiation of Full-Field Experimental Data Over
     Arbitrary Geometry,Exp. Mech., 19(1979), pp429—439.
    [110] Kobayashi, A. S., Hybrid Experimental-numerical Stress Analysis, Exp, Mech, 23(1983), pp338—347.
    [111] Weathers, J. M., Foster, W. A., Integration of Laser-Speckle and Finite-element Techniques of Stress Analysis, Exp. Mech. 25(1985), pp60—65.
    [112] Chambless, D., Suhling, J., A New Hybrid Photoelastic-Finite Elemen Technique for Stress Analysis, Proc. 1986 SEM Spring Conf. on Exp. Mech., 1986, pp991—998.
    [113] Berghaus, D. G. Combining Photoelasticity and Finite- Element Methods for Stress Analysis Using Least Squares, Proc. 1989 SEM Spring Conf. on Exp. Mech., Cambridge, 1989.
    [114] Morton, J., Post, D., A Localized Hybrid Method of Stress Analysis: A Combination of Moire Interferometry and FEM, Exp. Mech., Vol. 30 (June 1990), pp195—200.
    [115] Tsai, M. Y. and Morton, J., New Developments in the Localized Hybrid Method of Stress Analysis, Exp. Mech., (Dec. 1991), pp298—305.
    [116] 戴福隆等,《现代光测力学》,科学出版社,1990。
    [117] Ewalds, H. L. and Wanhill, R. J. H., 《断裂力学》,朱永昌等译,北京航空航天大学出版社,1988。
    [118] 王勖成,邵敏,《有限单元法基本原理与数值方法》,清华大学出版社,1988。
    [119] Jones,R.M.,《复合材料力学》,朱颐龄等译,上海科学技术出版社,1981。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700