微米云纹法及其相关的超高频制栅与数字化图像处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细微观力学的发展迫切要求建立微米、亚微米尺度上的实验力学方法。本文提出并实现了在测量灵敏度、空间分辨率等方面均满足细微观力学实验测量要求的微米云纹方法以及相关的超高频精确制栅与条纹图像的数字化分析处理技术。
     本文对激光干涉法制作全息光栅的高衍射效率、超高频精确制栅技术进行了分析和研究。(1)提出了利用光栅的衍射性质来精确确定两束相干光相交角度的思路,实现了基于标准母栅的精确倍频制栅方法。(2)本文在精确倍频制栅和常规折射率介质传光制栅方法的基础上,提出了基于母栅的折射率介质传光精确倍频制栅方法,所制得的光栅频率等于空气中制栅光路的制栅频率与两倍母栅频率之和,而与激光波长以及介质的折射率无直接关系。本文对该方法进行了详细的理论分析并将其思路推广于云纹干涉法,提高了测量的灵敏度。(3)本文从理论上分析建立了采用正性光致抗蚀剂进行光刻制栅的刻槽模型,得到了决定光栅刻槽深度与衍射效率的几个主要因素;此外还提出了一种全息光栅的复制新技术。本文所制作和复制的光栅均达到了非常高的水平。
     本文将显微放大的思路应用于云纹法,提出了具有高灵敏度和高分辨率的微米云纹法。其原理是利用显微系统将高频光栅放大至能够形成几何云纹的低频水平,而其灵敏度仍取决于原始的高频光栅,空间分辨率的提高则由显微系统提供。分析比较与实验的结果均表明,微米云纹法可以满足细微观力学测量对高灵敏度和高分辨率的双重要求,均能达到微米、亚微米的水平,是填补微米——纳米层次实验力学方法空白的有效手段。实现微米云纹法的关键是如何提高条纹质量,本文提出了采用4F光学空间滤波等相应的解决措施。
     本文全面地、系统地研究了光测条纹图像数字化自动处理的条纹中心分析技术和位相分析技术。(1)在条纹中心分析技术的图像滤波、条纹中心提取与修整、条纹级数赋值与插值、处理结果显示等多方面提出了一系列实用有效的处理方法。其中在关键的图像滤波和条纹级数插值方面,本文分别提
Development of micro-mechanics requires experimental methods of high sensitivity and high spatial resolution, which should both reach or exceed micron-level. In this dissertation, a high sensitivity, high spatial resolution micron moire method and its correlative techniques of ultrahigh frequency grating fabrication and digital image processing are presented.Techniques of fabricating high diffraction efficiency and ultrahigh frequency gratings by interference of coherent lights are studied. (1) The diffraction property of gratings is adopted to adjust the angle of the two coherent lights, and a grating-fabrication method with multiplying-frequency is realized. (2) Based on multiplying-frequency and conventional refractive index medium grating-fabrication methods, a multiplying-frequency grating-fabrication method using high refractive index medium is proposed. The advantage of this method is that the grating's frequency has no direct relation with the wavelength of the laser and the refractive index of the medium, but equals the grating-fabrication frequency in the air plus twi-frequency of the mother grating. Theoretical analysis of this grating-fabrication method is discussed in detail and the idea is also applied to enhance the sensitivity of moire interferometry. (3) A theoretical model of grating grooves fabricated with positive photo-resist is established, and several factors that affect the grating's diffraction efficiency are gained. Furthermore, a new grating-replication technique is proposed. The gratings fabricated and replicated in the dissertation all have high diffraction efficiencies.Based on classical geometric moire method and microscopic principle, a high spatial resolution and high sensitivity geometric micron-moire method is presented. With a microscopic moire system, the high frequency gratings could be magnified to a low frequency level, so geometric micron-moire patterns can be formed. The sensitivity of micron moire method is determined by the high frequency of original gratings, while the resolution is determined by the
    magnification of the microscopic system. Experiments show that both the spatial resolution and the sensitivity can reach or exceed micron-level. Compared with other grating-based photo-mechanics methods, micron moire method could provide whole-field moire patterns of both high spatial resolution and high sensitivity. Additionally, some measures are used to enhance the contrast of microscopic moire patterns effectively, e.g., a 4F optical filter system.Fringe center technique and phase analysis technique, the two most important digital processing techniques for automatic fringe patterns analysis, are studied thoroughly. (1) A series of methods are presented in image filtering, fringe center detection, fringe order determination and interpolation, results display, and so on. Especially, a neighborhood-average filtering method with altering-windows is proposed to pre-process the fringe patterns, and a subsection-curve interpolation algorithm is used to ensure the derivative of the fringe order to be continuous. (2) Based on the characteristic of fringe edges, some effective modifications to conventional median-filtering method are proposed. The most important step of phase analysis processing is phase unwrapping, so a bi-directional linear scanning method is proposed. This method can avoid propagating errors, which always exists in traditional path-dependent methods. Furthermore, a tile Cellular Automata phase unwrapping algorithm, a promising path-independent method, is studied.An interface-advanced, powerful and effective software-system of automatic fringe patterns analysis using digital processing techniques is established. The software includes both fringe center technique and phase analysis technique.
引文
[1] Budiansky B, Hutchinson J W and Lambropoulos J C. Continuum theory of dilatant transformation toughening in ceramics. Int J Solids Structures, 1983, 19(4): 337~355
    [2] Stump D M, Budiansky B. Crack-growth resistance in transformationtoughened ceramics. Int J Solids Structures, 1989, 25(6): 635~646
    [3] 黄克智,孙庆平,余寿文.具有体膨胀和剪切效应的结构陶瓷相变塑性细观本构模型:Ⅰ非比例加载历史.力学学报,1991,23(3):299~307
    [4] 杨卫.细观力学和细观损伤力学.力学进展,1992,22(1):1~9
    [5] Sun Q P, Zhao Z J, Chen W Z, et al. Experimental study of stress-induced localized transformation plastic zones in tetragonal ziroconia polycrystalline ceramics. J Am Ceramics, 1994, 77(5): 1352~1356
    [6] 亢一澜.界面力学若干问题的实验研究.力学与实践,1999,21(3):9~15
    [7] 孙庆平.固体相变过程中的宏细观力学问题及其研究进展.力学进展,1995,25(3):303~317
    [8] 杨卫.电致失效力学.力学进展,1996,26(3):338~352
    [9] 余寿文.复杂微力—电系统的细微尺度力学.力学进展,1995,25(2):249~259
    [10] 郑哲敏,周恒,张涵信,等.21世纪初的力学发展趋势.力学与实践,1996,18(1):1~8
    [11] 杨卫.宏微观断裂力学.北京:国防工业出版社,1995.1~12
    [12] Han B. Interferometric methods with enhanced sensitivity by optical/digital fringe multiplication. Applied Optics, 1993, 32(25): 4713~4718
    [13] 戴福隆,卿新林.云纹干涉条纹倍增方法研究.力学学报,1993,25(2):193~199
    [14] He X, Zou D, Liu S, et al. Phase-shifting analysis in moire interferometry and its application in electronic packaging. Optical Engineering, 1998, 37(5): 1410~1419
    [15] Fang J, Ni S Y, Yang H W, et al. Experimental investigation into plastic damage of microvoids with interaction. Acta Mechanica Sinica, 1997, 13(3): 280~288
    [16] 石玲.细观光测力学研究中的高频全息光栅及精细网格技术:[博士学位论文].北京:清华大学工程力学系,1994
    [17] 谢惠民,戴福隆,王欢,等.纳米级变形的扫描隧道显微镜测量研究.力学学报,1997,29(3):332~335
    [18] Dally J W, Read D T. Electron beam moire. Experimental Mechanics, 1993, 33(4): 270~277
    [19] Read D T, Dally J W. Electron beam moire study of fracture of a glass fiber reinforced plastic composite. J of Appl Mech, Tran of ASME, 1994, 61(2): 402~409
    [20] Read D T, Dally J W. Theory of electron beam moire. J Res Natl Inst Stand Technol, 1996, 101(1): 47~61
    [21] 梁铨廷.物理光学.北京:机械工业出版社,1986.194~203
    [22] Cao M, Miyake Y, Tamura S, et al. Lasing action in GaInAs/GaInAsP quantum-wire structure. Trans Inst Electron Inform Commun Eng E, 1990, 73(1): 63~70
    [23] Ismail K E, Bagwell P F, Orlando T P, et al. Quantum phenomena in fieldeffect-controlled semiconductor nanostructures. Proc IEEE, 1991, 79: 1106-1116
    [24] Schattenburg M L, Canizares C R, Dewey D, et al. Transmission grating spectroscopy and the advanced X-ray astrophysics facility. Optical Engineering, 1991, 30(10): 1590~1600
    [25] Ceglio N M, Kauffman R L, Hawryluk A M, et al. Time-resolved x-ray transmission grating spectrometer for studying laser-produced plasmas. Applied Optics, 1983, 22(2): 318~327
    [26] Gaylord T K, Moharam M G. Analysis and applications of optical diffraction by gratings. Proc IEEE, 1985, 73(5): 894-897
    [27] Parks V J. Geometric moire. In: Kobayashi A S, eds. Handbook on Experimental Mechanics. Englewood Cliffs: Prentice-Hall Inc, 1987.282-313
    [28] Post D, Han B, Ifju P. High sensitivity moire. New York: Springer-Verlag, 1994. 85-134
    [29] Boone P M. Holographic determination of in-plane deformation. Optics and Laser Technology, 1970, 2(2): 94-98
    [30] Briers J D. The interpretation of holographic interferometry. Optical and Quantum Electronics, 1976, 8(6): 469-501
    [31] Wu X P, Chiang F P. Sandwich holo-speckle interferometry for 3D displacement determination. Optical Engineering, 1986, 25(6): 736-737
    [32] Guo Y, Ifju P. A practical moire interferometry system for testing machine applications. Experimental Mechanics, 1991, 15(1): 29-31
    [33] Maeda T, Baburaj V, Koga T. Dynamic studies of angle-plylaminates including flexure-torsion coupling using laser holography. Optics and Lasers in Engineering, 1998,30(2): 191-198
    [34] Lucia A C, Zanetta P M, Facchini M. Electronic speckle pattern interferometry applied to the study and conservation of paintings. Optics and Lasers in Engineering, 1997, 26(2/3): 221-233
    [35] Sheridon N K. Production of blazed holograms. Appl Phys Lett, 1968,12(7): 316-318
    [36] Bartolini R A. Characteristics of relief phase holograms recorded in photoresists. Applied Optics, 1974, 13(1): 129-139
    [37] Iwata F, Tsujiuchi J. Characteristics of a photoresist hologram and its replica. Applied Optics, 1974, 13(6): 1327-1336
    [38] Kurtz R L, Owen R B. Holographic recording materials - a review. Optical Engineering, 1975, 14(5): 393-401
    [39] Lee W H, Streifer W. Diffraction efficiency of evanescent - wave holograms. J Opt Soc Am, 1978, 68(6): 795-801
    [40] Stevens R F, Hutley M C. Interference techniques for generating diffracting optical components. In: Proc Soc Photo-Opt Instrum Eng. London, 1979, 163: 84~91
    [41] Post D. Moire interferometry. In: Kobayashi A S, eds. Handbook on Experimental Mechanics. Englewood Cliffs: Prentice-Hall Inc, 1987. 314~387
    [42] Hutley M C. Diffraction gratings. New York: Academic Press, 1982. 1~312
    [43] 刘宝琛,伍小平.细观力学实验技术综述.实验力学,1992,7(1):1~10
    [44] 戴福隆,方萃长,刘先龙,等.现代光测力学.北京:科学出版社,1990.1~238
    [45] 罗传藻.云纹干涉法的计算机图像处理系统的研究:[硕士学位论文].天津:天津大学力学系,1991
    [46] Macy W W. Two-dimensional fringe pattern analysis. Applied Optics, 1983, 22(23): 3898~3901
    [47] Reid G. Automatic fringe pattern analysis: a review. Optics and Lasers in Engineering, 1986/7, 7(1): 37~68
    [48] 何小元,衡伟,徐铸.数字散斑条纹处理的频域法和空域法.实验力学,1995,10(4):302~308
    [49] Ramesh K, Mangal S K. Data acquisition techniques in digital photoelasticity: a review. Optics and Lasers in Engineering, 1998, 30(1): 53~76
    [50] Crennell K. Introductory digital image processing. In: Robinson D W, G T Reid, eds. Interferogram analysis. London: IOP Publishing, 1993. 1~22
    [51] 王阳元.集成电路工艺基础.北京:高等教育出版社,1991.1~83
    [52] Shi L, Dai F L. Application of refractive medium in optical micromechanics. Acta Mechanica Sinica, 1994, 4(10): 360~366
    [53] 张云详,石玲,戴福隆.折射率介质在制栅和云纹干涉法中的应用.光学学报,1995,15(6):767~770
    [54] Yen A, Anderson E H, Ghanbari R A. Achromatic holographic configuration for 100-nm period lithography. Applied Optics, 1992 31 (22): 4540~4545
    [55] David C, Kaulich B, Medenwaldt R, et al. Low-distortion electron-beam lithography for fabrication of high-resolution germanium and tantalum zone plates. J Vac Sci Technol B, 1995, 13(6): 2762~2766
    [56] 李勇,尤政,周兆英.纳米级加工测控技术及其应用.仪器仪表学报(增刊),1995,16(1):8~13
    [57] Shedd G, Russell O E. Present and prospective trends in nano technology. Nanotechnology, 1990, 1(1): 68~74
    [58] 白春礼.扫描探针显微术在纳米科技中的应用.仪器仪表学报(增刊),1995,16(1):103~105
    [59] Durelli A J, Daniel I M. A nondestructive three-dimensional strain analysis method. J Appl Mech, 1961, 28(1): 83~96
    [60] Durelli A J, Chen T L. Displacement and finite-strain fields in a sphere subjected to large deformation. Int J Non Lin Mech, 1973, 8(1): 17~30
    [61] Theocaris P S. The moire method in thermal fields. Experimental Mechanics, 1964, 4(6): 223-231
    [62] Parks V J. Strain measurement using grids. Optical Engineering, 1982, 21(4): 633~639
    [63] Chiang F P, Bailangadi M. A method for direct determination of small curvatures. J Appl Mech, 1975, 42(1): 29~31
    [64] Foster C G. A note on curvature and twist measurement using the lightenberg-moire method. Strain, 1980, 16(2): 82~83
    [65] Durelli A J, Parks V J, Feng H C. Experimental method of large strain analysis. Int J Non Lin Mech, 1967, 2(4): 387~396
    [66] Durelli A J, Chen T L, Parks V J. Velocity fields in a sphere subjected to large deformations. J Appl Mech, 1974, 41(4): 860~866
    [67] Subramanian G. A note on moire gratings by a stacked card method. Strain, 1983, 19(4): 185~186
    [68] Sevenhuijsen P J, Sirkis J S, Bremand F. Current trends in obtaining deformation data from grids. Experimental Technique, 1993, 17(3): 22~27
    [69] 傅承诵,王桂珍.高聚合物及其复合材料细观力学的扫描电镜——精密网格法.见:第七届全国实验力学学术会议论文集.北京:北京大学出版社,1992.600~603
    [70] 姚可夫.裂纹尖端塑性变形的微观和细观观察:[博士学位论文].北京:清华大学工程力学系,1989
    [71] 杨宏伟.细观光测力学中的超细网格法及频域分析技术:[博士学位论文].北京:清华大学工程力学系,1995
    [72] Weller R, Shepherd B M. Displacement measurement by mechanical interferometry. Proc SESA, 1948, 6(1): 8~13
    [73] Oplinger D W. Application of moire methods to evaluation of structural performance of composite materials. Optical engineering, 1982, 21 (4): 626~632
    [74] 谢惠民,戴福隆,吴学安.测量高温主蒸汽管道蠕变的云纹法研究.力学学报,1994,26(6):744~751
    [75] 邹大庆.云纹干涉法高温实验技术研究与应用:[博士学位论文].北京:清华大学工程力学系,1996
    [76] Chona R, Khanna S K, Kmiec K J. Application of high resolution geometric moire method to fracture problems. Experimental Technique, 1995, 19(6): 10~13
    [77] Burch J M, Forno C. A high sensitivity moire method grid technique for studying deformation in large objects. Optical Engineering, 1975, 14(2): 178~185
    [78] Robinson D W. High resolution moire contouring by a hybrid technique combining light and electron optics. Optics and Laser Technology, 1981, 13(3): 145-149
    [79] Walker C A. A historical review of moire interferometry. Experimental Mechanics, 1994, 34(4): 281~299
    [80] Perry K E Jr, McKeivie J. Measurement of energy release rates for delaminations in composite materials. Experimental Mechanics, 1996, 36(1): 55-63
    [81] Moore A J, Tyrer J R. Phase-stepped ESPI and moire interferometry for measuring stress-intensity factor and J integral. Experimental Mechanics,1995, 35(4): 306-314
    [82] Wang Y Y, Chiang F P. Experimental-study of 3-dimensional residual-stresses in rails by moire interferometry and dissecting methods. Optics and Lasers in Engineering, 1997, 27(1): 89-100
    [83] Han B, Guo Y, Lim C K, et al. Verification of numerical models used in microelectronics packaging design by interferometric displacement measurement methods. Journal of Electronic Packaging, Transactions of the ASME, 1996, 118(3): 157-163
    [84] Tong F C, Gray T G F. Fatigue crack closure study based on whole-field displacements. International Journal of Fatigue, 1996, 18(8): 593-601
    [85] Han B, Guo Y. Determination of an effective coefficient of thermal expansion of electronic packaging components: a whole-filed approach.IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1996, 19(2): 240-247
    [86] Han B. Micromechanical thermal deformation analysis of unidirectional Boron/Aluminum metal-matrix composite. Optics and Lasers in Engineering, 1996, 24(5/6): 455-466
    [87] Dai F L, Shi L, Wen X M. Thermal deformation measurement and stress analysis of FQFP assembly during power cycling. Tsinghua Science and Technology, 1998, 3(2): 971-977
    [88] Han B. Higher sensitivity moire interferometry for micromechanics studies. Optical Engineering, 1992, 31(7): 1517-1526
    [89] Stoilov G, Dragostinov T. Phase-stepping interferometry: five-frame algorithm with an arbitrary step. Optics and Lasers in Engineering, 1997,28(1): 61-69
    [90] Czarnek R. Super high sensitivity moire interferometry with optical multiplication. Optics and Lasers in Engineering, 1998, 13(2): 87-98
    [91] Perry K E Jr. Delamination and damage studies of composite materials using phase-shifting interferometry. Optics and Lasers in Engineering, 1996, 24(5/6): 467~484
    [92] Han B, Post D. Immersion interferometer for microscopic moire interferometry. Experimental Mechanics, 1992, 32(1): 38~41
    [93] Yatagai T, Nakadate S, Idesawa M, et al. Automatic fringe analysis using digital image processing techniques. Optical Engineering, 1982, 21 (3): 432~435
    [94] Yatagai T. Automatic fringe analysis techniques in Japan. Optics and Lasers in Engineering, 1991, 15(2): 79~91
    [95] Yatagai T. Internsity based analysis methods. In: Robinson D W, G T Reid, eds. Interferogram analysis. London: IOP Publishing, 1993. 73~93
    [96] Ennos A E, Robinson D W, Williams D C. Automatic fringe analysis in holographic interferometry. Optica Acta, 1985, 32(2): 135~145
    [97] Robinson D W, Williams, D C. Digital phase stepping speckle interferometry. Optics Communications, 1986, 57(1): 26~30
    [98] Spik A, Robinson D W. Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor. Optics and Lasers in Engineering, 1991, 14(1): 25~37
    [99] 周亚东,宋文慧.光测图象条纹提取的一种新方法.实验力学,1989,4(1):74~78
    [100] 何玉明,谭玉山.全息干涉条纹图的计算机自动处理与识别.实验力学,1990,5(3):268~274
    [101] 张恩东,续伯钦.光干涉条纹图的中心线提取算法.实验力学,1992,7(2):216~220
    [102] Muller R K, Saackle L R. Complete automatic analysis of photoelastic fringes. Experimental Mechanics, 1979, 19(7): 245~251
    [103] 何小元.干涉条纹识别的自适应视觉基元匹配法.实验力学,1995,10(4):384~389
    [104] 胡长华.数字彩色编码方法及其在光测力学中的应用研究:[博士学位 论文].天津:天津大学力学与工程测试系,1996
    [105] 金观昌.计算机辅助光学测量.北京:清华大学出版社,1997:70~76
    [106] 黄友谦.曲线曲面的数值表示和逼近.上海:上海科学技术出版社,1984:26~185
    [107] 黄友谦,李岳生.数值逼近.北京:高等教育出版社,1987.1~157
    [108] 李岳生.样条与插值.上海:上海科学技术出版社,1983.1~238
    [109] 熊振翔.插值多项式与插值样条.北京:国防工业出版社,1995:75~421
    [110] 于起峰.光测条纹图处理中免除噪声的正则化条纹法.实验力学,1999,14(3):294~301
    [111] Yu Q F, Liu X, Sun X. Double-image and single-image phase shifting methods for phase measurement. Optik, 1998, 109(2): 89~93
    [112] 何小元,邹大庆,刘胜,等.相移显微云纹干涉技术用于微电子器件的微小变形测量.见:戴福隆,编.现代力学测试技术.广州:华南理工大学出版社,1998.207-212
    [113] Creath K. Phase measurement interferometry techniques. Progress in Optics, 1988, ⅩⅩⅣ: 349~393
    [114] Vikhagen E, Lokberg O J. Detection of defects in composite materials by television holography and image processing. Materials Evaluation, 1990, 48(2): 244~248
    [115] Owner-Peterson M. Phase-map unwrapping: a comparison of some traditional methods and a presentation of a new approach. In: Proceeding of SPIE—The International Society for Optical Engineering Industrial Application of Holographic and Speckle Measuring Techniques. Bellingham: ISOE, 1991. 73~82
    [116] Robinson D W. Phase unwrapping methods. In: Robinson D W, G T Reid, eds. Interferogram analysis. London: IOP Publishing, 1993. 194~229
    [117] Ghiglia D C, Mastin G A, Romero L A. Cellular-automata method for phase unwrapping. J Opt Soc Am A, 1987, 4(1): 267~280
    [118] Gu J. Phase iteration and spacing iteration algorithms for speckle fringe pattern processing. Optics and Lasers in Engineering, 1998, 29(2/3): 145~158
    [119] Chang H Y, Chen C W, Lee C K, et al. The Tapestry Cellular Automata phase unwrapping algorithm for interferogram analysis. Optics and Lasers in Engineering, 1998, 30(6): 487~502
    [120] 孙扬远,黄冠华.感光材料基础.杭州:浙江大学出版社,1990.235~258
    [121] 中国科学院化学研究所《光致抗蚀剂组》.光致抗蚀剂——光刻胶.北京:科学出版社,1977.1~177
    [122] 顾振军,孙猛.抗蚀剂极其微细加工技术.上海:上海交通大学出版社,1989.1~151
    [123] 史密斯,全息记录材料(马春荣译),北京:科学出版社,1984.1-300
    [124] Mark C A. Absorption and exposure in positive photoresist. Applied Optics, 1988, 27(23): 4913~4919
    [125] 谢惠民.高温振幅型光栅和位相型光栅的研制与应用:[博士学位论文].北京:清华大学工程力学系,1992
    [126] 赵凯华.光学.北京:北京大学出版社,1983.1~202
    [127] 戴福隆,谢惠民,王朝阳,等.亚微米级电子束云纹光栅的研制与应用.见:戴福隆,编.现代力学测试技术.广州:华南理工大学出版社,1998.282-285
    [128] 黄智.图像处理与识别实用程序库.天津:天津科学技术出版社,1989.65~116
    [129] 王绚法.C语言图像处理程序设计.合肥:中国科学技术大学出版社,1994.253~314
    [130] 李介谷,施鹏飞,刘重庆,等.图像处理技术.上海:上海交通大学出版社,1990.99~130
    [131] 陆润民.计算机绘图原理及应用.北京:清华大学出版社,1996.30~212
    [132] 卢传贤.实用计算机图形学.成都:西南交通大学出版社,1996.73~237
    [133] Creath K. Temporal phase measurement methods. In: Robinson D W, G T Reid, eds. Interferogram analysis. London: IOP Publishing, 1993. 95~140
    [134] 戴福隆,刘杰,温秀梅,等.微犁硅晶体传感器残余变形的云纹干涉法测试.见:戴福隆,编.现代力学测试技术.广州:华南理工大学 出版社,1998.237-241
    [135] 戴福隆,王国韬,董本涵.航空发动机叶片材料高温蠕变规律研究.见:戴福隆,编.现代力学测试技术.广州:华南理工大学出版社,1998.286-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700