基于虚拟现实的卫星装配工艺设计方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星等复杂产品的装配工艺规划是一项难度很大的工作,它需要耗费大量的人力、物力和财力,影响产品的装配质量、周期和成本。虚拟现实技术为解决上述问题提供了一种新的、低成本的快速手段。本文针对卫星装配生产中存在的问题开展虚拟装配工艺设计方法及其关键技术的研究,具有重要的理论意义和应用价值。
     阐述了虚拟装配工艺设计的主要内容和特点,分析了卫星装配工艺设计中存在的问题,明确了卫星虚拟装配工艺设计实现的目标,在此基础上,提出了卫星虚拟装配工艺设计系统的体系结构和工作流程。从功能上将系统分为CAD建模子系统、虚拟装配工艺规划子系统、文档生成与现场示教子系统以及两个接口部分,从流程上将系统分为模型数据获取阶段、支持工艺规划的虚拟操作阶段、虚拟装配顺序规划和路径规划阶段、以及装配现场应用和示教阶段。
     研究了虚拟环境下的装配建模技术。在分析虚拟装配模型表达的信息需求和满足的基本要求的基础之上,提出了基于层次约束结构的虚拟装配模型,将产品信息在虚拟环境下分为产品层、部件层、零件层、特征层、几何面层以及面片层来表达,并建立各层元素之间的约束关系。实现了CAD系统和虚拟装配系统之间的数据转换,将CAD系统的信息分解为几何信息、拓扑信息、层次结构信息和装配约束信息,通过不同途径分别提取出来转换到虚拟环境,在此基础上建立产品的装配模型。建立了根据虚拟装配模型生成的虚拟装配场景图的结构,从而方便执行虚拟环境下的装配和拆卸操作。
     研究了基于几何约束的虚拟装配操作定位技术,从而为支持虚拟环境下交互式装配工艺规划和评价奠定基础。提出了面向虚拟装配的层次式碰撞检测算法,从包容盒层、空间分割块层、几何面层、精确面片层四个层次进行递进式判断,一方面可有效提高算法的精度和效率,另一方面可直接返回发生碰撞的几何面对,从而为虚拟环境下的约束识别提供依据。提出了基于几何面约束求解的精确定位方法,从而对零件进行快速、准确的定位。提出了几何约束动态识别和管理的有效机制,通过碰撞检测、零件匹配、几何面匹配、优先关系选择等步骤提高约束识别的效率和准确性,设计了约束管理器对虚拟环境下的几何约束进行动态维护和管理,实现了基于几何约束的零件运动导航。
     研究了虚拟环境下的装配顺序规划和路径规划。针对自动装配顺序规划和交互式装配顺序规划都存在的问题,提出了一种智能装配顺序推理和交互式装配顺序规划评价相结合的方法。提出了优先约束表的概念,利用它对零件之间的优先约束关系进行有效表达。设计了与优先约束表紧密结合的基于蚁群算法的装配序列规划过程,利用它生成初始优化的装配顺序。以初始优化的装配顺序作为引导,在虚拟环境下进行交互式装配规划、仿真和评价,充分发挥装配人员的经验和知识,在实现装配工具精确定位和操作仿真的基础上,考虑工具操作空间对装配顺序的影响,不断生成新的优先约束和评价准则,从而规划出更加优化的装配顺序。不断反复和完善,直到得到满意、合理、实用的最佳装配顺序为止,最后给出了装配路径的生成和优化方法。
     研究了根据虚拟装配规划的结果生成工艺文件的方法和装配现场示教。通过对虚拟装配过程中产生的工艺信息进行有效组织和表达,建立了面向过程的装配工艺模型,转换成实际生产中要求的工序工步的形式,得到产品的工艺目录树,以此为基础进行装配工艺信息的编辑、补充和完善。采用XML技术实现了工艺文件的灵活定制、动态生成、网上浏览和打印输出,利用Web技术实现装配信息浏览和现场示教。
     设计并开发了面向卫星的虚拟装配工艺设计系统,并在中国空间技术研究院总装与环境工程部获得初步应用。
The assembly process of complicated product is a difficult work, which consumes a great deal of manpower, material and finance, and affects production quality, cost and cycle. Virtual reality technology provides a new and low-cost way to solve these problems. This paper studies VR-based assembly process design method and its key technologies oriented to satellite etc, which has important theorical and pratical values.
     The contents and features of virtual assembly process design are expatiated, the existing problems in assembly process design for satellite are analysised, and the objectives of virtual assembly process design for satellite are pointed out. Then the architecture and workflow of virtual assembly process design system orieted to satellite is proposed. According to function decomposion the system can be divided into CAD modeling subsystem, virtual assembly process planning subsystem, process document generation and assembly training subsystem, and two interfaces between them. The workflow of the system includes model data obtaining phase, virtual operation phase, assembly sequence planning and path planning phase, and application and training phase.
     Product assembly modeling in virtual environment is studied. Analyzing the basic requirements of virtual assembly model, a hierarchically constraints-based virtual assembly model is proposed, which includes product layer, subassembly layer, part layer, feature layer, surface layer and polygon layer, and the constraint relationships in these layers. Data transformation from CAD to virtual reality is realized, which divides the CAD information into geomtry information, topology information, structure hiberarchy information and assembly constraint information, and transformed them into virtual environment by different ways. The virtual assembly scenegraph is erected according to virtual assembly model, which can be support interative assembly operation in virtual environment.
     Geometry constraint based virtual assembly position technology is studied. A hierarchically collision detection algorithm oriented to virtual assembly is proposed, which includes bounding box layer, space division cell layer, surface layer and polygon layer. The algorithm can improve accuracy and efficiency on one hand, on the other hand the algorithm can return colliding surface pairs for constraint recognization. Surface based constraint solving method is proposed, which can be used for rapid and accurate part positioning in virtuan environment. Dynamic constraint recognization and management method is proposed. According to collision detection, part matching, surface matching and priority selection, the accuracy and efficiency of constraint recognization can be improved. A geometry constraint manager is designed, and motion navigation based on geometry constraint is realized.
     Virtual assembly sequence planning and path planning is studied. Aimed at the limitations of automated assembly sequence planning and interative assembly sequence planning, a combined approach based on intelligent assembly sequece reasoning and interactive assembly evaluation is proposed. After the precedence constraint relationships between parts are generated and represented by defining a precedence constraint table, the ant colony optimization algorithm is applied to generate initial optimized assembly sequence. This sequence can be interactively simulated, evaluated and optimized by virtual assembly. During the assembly process new precedence constraints and evaluation rules will be recognized, and assembly tool positioning and operation space verification is realized, a more practical and optimal assembly sequence is then replaned, and once again evaluated by virtual assembly simulation. This is an iterative process until the best assembly sequence is obtained.
     The method of generating assembly process documents and assembly training are studied. A process-orieted assembly process model is erected to represent assembly process information during virtual assembly, this assembly process model can be transformed into working procedures and steps, and then the assembly process tree is obtained, based on which the user can perform assembly process editing. A method based on XML technology is applied to design, generate and output assembly process card, and web-based assembly training system is realized for assembly traning and guiding.
     An integrated virtual assembly process design system oriented to satellite is developed, and has been applied in China Academy of Space Technology.
引文
1 J. P. Womack, D. T. Jones, D. Roos. The Machine That Changed The World [M]. USA: Macmillan, 1990:27~32
    2 Г.A.克里沃夫. 前苏联飞机制造技术. 北京航空工艺研究所, 1999:5~8
    3 朱名铨, 张树生等. 虚拟制造系统与实现. 西北工业大学出版社, 2001:139~158
    4 陈定方, 罗亚波. 虚拟设计. 机械工业出版社, 2002:89~124
    5 殷晨波、易红、钟秉林. 装配 CAD/CAPP 集成方法与系统实现. 制造业自动化.1999, 9(3):35~37
    6 王辉. 计算机辅助装配工艺设计技术研究. 西北工业大学硕士学位论文, 2003:1~12
    7 严耀琪. 基于虚拟技术的计算机辅助装配工艺设计系统研究与实现. 北京邮电大学硕士学位论文, 2006:20~36
    8 苏强. 计算机辅助装配顺序规划研究综述. 机械科学与技术. 2000,18(6): 1006~1009
    9 邱述斌. 机电产品计算机辅助装配工艺设计技术的研究. 清华大学硕士学位论文, 1993:1~14
    10 李培根, 张国军. 关于 CAPP 的实践与思考. 中国工程科学, 2005,3: 60~62
    11 曹磊. 虚拟装配系统设计.南京理工大学硕士学位论文,2003:1~32
    12 陆晓. 通用类机械产品虚拟装配系统关键技术研究. 南京理工大学硕士学位论文,2005: 25~29
    13 张林煊. 并行工程环境下面向装配的产品设计研究. 清华大学博士学位论文,1998:18~42
    14 王辉, 顾寄南, 张林煊. 基于规则的装配顺序规划方法研究. 计算机辅助设计与制造. 2002,8(2):55~58
    15 储林波. 面向虚拟装配的装配工艺规划技术研究. 哈尔滨工业大学博士学位论文, 2000:4~10
    16 A Bourjault, A Lhote. Modeling An Assembly Process. IEEE International Conference on Automation of Manufacturing Industry. 1986,20(2): 183~198
    17 T L De Fazio, D E Whitney. Simplied Generation of All Mechanical Assembly Sequences. IEEE Journal of Robotics and Automation. 1987,3(6): 640~658
    18 D F Baldwin, T E Abell, De Fazio, et al. An Integrated Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products. IEEE Transactions on Robotics and Automation. 1991,7(1): 78~94
    19 Homen de Mello L S, Sanderson A C. A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences. IEEE transactions on Robotics and Automation. 1991,7(2): 228~240
    20 R H Wilson, J C Latombe. Geometric Reasoning about Mechanical Assembly. Artificial Intelligence. 1994,71(2): 371~396
    21 Zhi-Kui Ling, Tiam-Hock Eng, et al. Feature-based Assembly Modeling and Sequence Generation. Computers & Industrial Engineering. 1999,36: 17~33
    22 H K Tonshoff, E Menzel, H S Park. A Knowledge-based System for Automated Assembly Planning. Annals of the CIRP. 1992,41(1): 19~24
    23 Kai-Hsiung Chang, W. G. Wee. A Knowledge-based Planning System for Mechanical Assembly Using Robots. IEEE Expert. 1988,3(1): 18~30
    24 A. Delchambre. Computer-aided Assembly Planning. CHAPMAN & HALL, 1989:12~19
    25 X. F. Zha, S. Y. E. Lim and S. C. Fok. Integrated Knowledge-based Assembly Sequence Planning. International Journal of Advanced Manufacturing Technology. 1998,14(1): 50~64
    26 A. Swarminathan and K. S. Barber. An Experience-based Assembly Sequence Planner for Mechanical Assemblies. IEEE Transactions on Robotics and Automation. 1996,12(2): 252~267
    27 L A Zadeh. Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the ACM, 1994,37(3): 77~84
    28 D S Hong, H S Cho. Neural-network based Computational Scheme for Generating Optimized Robotic Assembly Sequences. Engineering Applications of Artificial Intelligence. 1995,8(2): 129~145
    29 Saeid M, et al. Multi-criteria Assembly Sequencing. Computers Industrial Engineering. 1997,32(4): 743~751
    30 BONEVILL, PERRARDC, HENRIOUDJM. A Genetic Algorithm to Generate and Evaluate Assembly Plans. IEEE Symposium on Emerging Technology and Factory Automation. 1995, (2): 231~239
    31 S F Chen, Y Liu. An Adaptive Genetic Assembly Planner. International Journal of Computer Integrated Manufacturing. 2001,14(5): 489~500
    32 Q Guan, J H Liu, Y F Zhong. A Concurrent Hierarchical Evolution Approach to Assembly Process Planning. International Journal of Production Research. 2002,40(14): 3357~3374
    33 姚郡, 宁汝新, 王新永. 基于虚拟现实的装配工艺规划研究. 机械工程学报. 2002,38(8): 130~134
    34 管强, 刘继红, 钟毅芳. 虚拟环境下面向装配设计系统的研究. 计算机辅助设计与图形学学报. 2001,13(6): 514~520
    35 牛新文, 丁汉, 熊有伦. 计算机辅助装配顺序规划研究综述. 中国机械工程. 2001,12(12): 1440~1443
    36 S. C-Y. Lu, M. Shpitalni, Rajit Gadh. Virtual and Augmented Reality Technologies for Product Realization. Annals of the CIRP, 1999,48(2): 1~25
    37 王永金, 孙克豪. 虚拟装配技术研究概述. 机械. 2004, 31(4): 1~3
    38 刘宏增, 黄靖远. 虚拟设计. 机械工业出版社, 1999: 108~127
    39 Gan J. Virtual Reality in Assembly. http://www.mansci.uwaterloo.ca/~jgan/ vrproj.html
    40 R Gupta. Survey on the Use of Virtual Environments in Design and Manufacturing. Proceedings of ASME Design Engineering Conference and Computers in Engineering Conference, 1996:1134-1148
    41 万华根, 高曙明, 彭群生. VDVAS:一个集成的虚拟设计与虚拟装配系统. 中国图象图形学报. 2002, (1): 27~35
    42 Qiang Guan, J. H. Liu. An Intelligent Virtual Disassembly System based on Assembly Constraints. Proceedings of The Fourth International Symposium on Tools and Methods of Cometitive Engineering, April 22-25, Wuhan, P. R. China, 2002:697~704
    43 张林煊. 并行工程环境下面向装配的产品设计研究. 清华大学博士学位论文, 1998:21~46
    44 张林煊. 虚拟装配技术研究与应用. 博士后研究报告, 清华大学, 2000
    45 曾理, 张林煊, 肖田元. 一个虚拟装配支持系统的实现. 系统仿真学报. 2002,9(9):1149~1153
    46 姚郡, 薄晓军, 宁汝新. 虚拟装配技术研究. 中国机械工程学会年会,机械工业出版社, 2002
    47 隋爱娜, 吴威, 赵沁平. 虚拟装配与虚拟原型机的理论与技术分析. 系统仿真学报. 2000,12(4):368~388
    48 杨润堂, 武殿梁, 范秀敏, 严隽琪. 基于约束的虚拟装配技术. 计算机集成制造系统. 2006,12(3):413~420
    49 H I Connacher, S Jayaram. Virtual Assembly Design Environment. Proceedings of the Computers in Engineering Conference and the Engineering Database Symposium. 1995: 875~885
    50 Sankar Jayaram, Hugn I Connacher, et al. Virtual Assembly Using Virtual Reality Techniques. Computer Aided Design.1997, 29(8): 575~584
    51 Sankar Jayaram, Uma Jayaram, Yong Wang, Tirumali H., Lyons K., Hart P. VADE: A Virtual Assembly Design Environment. IEEE Computer Graphics and Applications. 1999,19(6): 44~50
    52 H. J. Bullinger, M. Richter, K. A. Seidel. Virtual Assembly Planning. Human Factors and Ergonomics In Manufacturing. John Wiley & Sons Inc, 2000: 331~341
    53 Richard G. Dewar, Ian D. Carpenter, James M. Ritcher, et al. Assembly Planning in a Virtual Environment. Proceeding of Portland International Conference on Management and Technology. Portland: 1997,664~667
    54 Heriont-Watt University. The Use of Virtual Reality to Elicit Knowledge for Assembly Planning. http://www.hw.ac.uk/mecWWW/reaserch/vmg/ r_vap.htm, 2004-10-25
    55 J M Ritchie, R G Dewar, J E L Simmons. The Generation and Practical Use of Plans for Manual Assembly Using Immersive Virtual Reality. Proc Inst Mech Engrs Part B, 1999, 23: 461~474
    56 F M Ng, J M Ritchie, J E L Simmons, R.G.Dewar. Design Cable Harness Assemblies in Virtual Environments. Journal of Materials Processing Technology. 2000,107: 37~43
    57 J E L Simmons and J M Ritchie. Human in the Loop: The Use of Immersive Virtual Reality to Aid Cable Harness Design. Proceedings of the 1st CIRP (UK) Seminar on Digital Enterprise Technology, University of Durham, 2002: 109~112
    58 F M Ng, J M Ritchie, J E L Simmons. The Design and Planning of Cable哈尔滨工业大学工学博士学位论文 Harness Assemblies. Proc IMechE, Part B, 2001, 215(1): 1401~1406
    59 P O’B Holt, J M Ritchie, P N Day, J E L Simmons, et al. Immersive Virtual Reality In Cable and Pipe Routing: Design Metaphors and Cognitive Ergonomics. Journal of Computing and Information Science in Engineering, 2004, 4(9): 161~170
    60 B Jung, M Hoffhenke, I Wachsmuth. Virtual Assembly With Construction Kits. Proceedings of 1997 ASME Design Engineering Technical Conference, Sacramento, September 14-17, 1997
    61 S Kopp, I Wachsmuth. Model-based Animation of Co-verbal Gesture. Proceeding of Computer Animation, Geneva, Switzerland, 2002
    62 University of Bielefeld. VirtuelleWerkstatt. http://www.techfak.uni-bielefeld.de/ags/wbski/werkstatt/werkstatt_en.html, 2004-7-5
    63 G Chryssolouris, D Mavrikios, D Fragos, et al. A Virtual Reality-based Experimentation Environment for the Verification of Human-related Factors in Assembly Processes. Robotics and Computer Integrated Manufacturing. 2000, 16: 267~276
    64 J R Li, L P Khoo, S B Tor. Desktop Virtual Reality for Maintenance Training: An Object Oriented Prototype System(V-REALISM). Computers in Industry. 2003, 52: 109~125
    65 Venkat N. Rajan, Kadiresan Sivasubramanian, Jeffrey E. Fernandez. Accessibility and Ergonomic Analysis of Assembly Product and Jig Designs. International Journal of Industrial Ergonomics. 1999, 23: 473~487
    66 Q H Wang, J R Li. A Desktop VR Prototype for Industrial Training Applications. Virtual Reality. 2004(7): 187~197
    67 VRAC. VEGAS: A Virtual Environment for General Assembly Simulation. http://www.vrac.iastate.edu/jmvance/Assembly.html, 2003-1-9
    68 付宜利, 田立中, 董正卫, 谢龙. 装配关系的有向图表达方法研究. 计算机集成制造系统. 2003, 9(2): 149~153
    69 D. M. Homen, S. Lee. Computer-aided Mechanical Assembly Planning. Norwell, MA: Kluwer, 1991
    70 K. Lee, D. C. Gossard. A Hierarchical Data Structure for Representing Assemblies: Part I. Computer-Aided Design. 1985, 17(1): 15~19
    71 张刚, 殷国富, 邓克文, 李火生. 面向装配的特征层次建模方法研究. 计算机集成制造系统. 2005,11(7): 916~920
    72 A. Banerjee, P. Banerjee. A Behaviour Scene Graph for Rule Enforcement in Iinteractive Virtual Assembly Sequence Planning. Computer in Industry. 2003,42: 147~157
    73 刘振宇, 谭建荣, 张树有. 面向虚拟装配的产品层次式信息表达研究. 计算机辅助设计与图形学学报. 2002,13(3): 1~6
    74 杨锟, 刘继红. 面向虚拟装配的装配建模技术. 机械科学与技术. 2001,20(2): 305~308
    75 Q. H. Wang, J. R. Li. A Desktop VR Prototype for Industrial Training Applications. Virtual Reality. 2004, 7: 187~197.
    76 万华根. 基于虚拟现实的 CAD 技术研究. 浙江大学博士学位论文,1999
    77 W. Ma, Y. Zhong, S-K. Tsoa, et al. A Hierarchically Structured and Constraint-based Data Model for Intuitive and Precise Solid Modeling in a Virtual Reality Environment. Computer-Aided Design. 2004,36:903~928
    78 刘检华, 宁汝新. CAD 系统与虚拟装配系统间的信息集成技术研究. 计算机集成制造系统. 2004,10(12): 60~64
    79 朱文华, 范秀敏, 马登哲. 从 CAD 系统到集成虚拟装配环境的数据转换研究. 计算机集成制造系统. 2005, 11(8): 1115~1119
    80 R. Anantha, G. A. Kramer, R. H. Crawford. Assembly Modeling by Geometric Constraint Satisfaction. Computer-Aided Design. 1996, 28(9): 707~722
    81 J. C. Owen. Algebraic Solution for Geometry from Dimensional Constraints. In ACM Symp., Found of Solid Modeling, ACM Press, Austin Tx, 1991: 397~407.
    82 R. Light and D. Gossard. Modification of Geometric Models through Variational Geometry. Computer-Aided Design. 1992, 14(4): 209~214
    83 武殿梁, 杨润党, 马登哲, 范秀敏. 集成虚拟装配环境中的多约束导航技术研究. 机械工程学报. 2004, 40(11): 47~52
    84 R. G. Dewar, et al. Assembly Planning in A Virtual Environment. Proceedings of Portland International Conference on Management and Technology (PICMET’97), Portland, 1997: 664~667
    85 Luis Marcelino, Norman Murray .A Constraint Manager to Support VirtualMaintainability. Computers & Graphics. 2003, 27:19~27
    86 种勇民. 直观的准确的虚拟造型. 西北工业大学博士学位论文, 2000
    87 刘振宇, 谭建荣等. 基于语义识别的虚拟装配运动引导技术研究. 软件学报. 2000,5: 84~88
    88 刘检华, 宁汝新等. 面向虚拟装配的零部件精确定位技术研究. 计算集集成制造系统, 2005, 11(4): 498~502.
    89 X B Yuan, S X Yang. Virtual Assembly with Biologically Inspired Intelligence. IEEE Transactions on Systems, Man, and Cybermetics – Part C: Applications and Reviews. 2003, 33 (2): 159~167
    90 万华根. 基于虚拟现实的 CAD 技术研究. 浙江大学博士学位论文,1999
    91 Z P Yin, H Ding, Y L Xiong. A Virtual Prototyping Approach to Generation and Evaluation of Mechanical Assembly Sequences. Proc Instn Mech Engrs Part B, 2004, 218: 87~102
    92 刘检华, 宁汝新. 虚拟装配工艺设计实现技术研究. 机械工程学报. 2004, 40(6): 138~143
    93 R G Dewar. Assembly Plans from Virtual Environment. PhD Thesis, Heriot-Watt University, Edinburgh, UK, 1998
    94 董天阳, 童若锋, 张伶, 董金祥. 基于知识的智能装配规划系统. 计算机集成制造系统. 2005, 11(12): 1692~1697
    95 C Allen, K Z Karam, C P Le, et al. Application of Virtual Reality Devices to the Quantatitive Assessment of Manual Assembly Forces in A Factory Environment. Proceedings of the 1995 IEEE 21st International Conference On Indstruial Electronics, Control and Instrumentation (IECON), 1995: 1048~1053
    96 George Chryssolouris, Dimitris Mavrikios, et al. A Virtual Reality-based Experimentation Environment for the Verification of Human-related Factors in Assembly Processes. Robotics and Compter Integrated Manufacturing. 2000, 16: 267~276
    97 Uma Jayaram, Sankar Jayaram, Imtiyaz Shaikh, Young Jun Kim, Craig Palmer. Introducing Quantitative Analysis Methods into Virtual Environments for Real-time and Continuous Ergonomic Evaluations. Computers in Industry. 2006,57: 283~296
    98 Venkat N. Rajan, Kadiresan Sivasubramanian, Jeffrey E. Fernandez.Accessibility and Ergonomic Analysis of Assembly Product and Jig Designs. International Journal of Industrial Ergonomics. 1999, 23: 473~487
    99 A C Boud, D J Haniff, et al. Virtual Reality and Augmented Reality as a Training Tool for Assembly Tasks. Proceedings of IEEE International Conference on Information Visualization, London, 1999: 32~36
    100 A Banerjee, P Banerjee, N Ye. Assembly Planning Effectiveness Using Virtual Reality. Presence, 1999, 8(2): 204~217
    101 徐福祥. 卫星工程. 宇航出版社, 2002:214~237
    102 周鸿伟, 王维平, 汪浩. 虚拟样机开发中基于 STEP 的产品模型技术研究. 系统仿真学报. 2002,14(6): 686~689
    103 Scott Reed Angster. VEDAM: Virtual Environment for Design and Manufacturing. PhD thesis of Washington State University, 1996:32~37
    104 Huagen Wan, Shuming Gao, Qunsheng Peng. An Approach to Solid Modeling in a Semi-immersive Virtual Environment. Computer & Graphics. 2000,24:191~202
    105 WorldToolKit Reference Manual, Release 9. Engineering Animation Inc., 1999
    106 T. Kotoku, K. Takamune, K. Tanie. A Virtual Environment Display with Constraint Feeling based on Position/Force Control Switching. IEEE International Workshop on Robot and Human Communication. 1994: 255~260
    107 M. Ishii, M. Sato. A 3D Interface Device with Force Feedback: a Virtual Pace for Pick-and-place Tasks. IEEE Virtual Reality Annual International Symposium. 1993: 331~335
    108 Shuyou Zhang, Zhenyu Liu, Jianrong Tan. Research of Guidance Technology for Assembly Modeling in Virtual Environment. Chinese Journal of Mechanical Engineering. 2001,14(2): 139~143
    109 Gomes de Sa A, Zachmann G. Virtual Reality as A Tool for Verification of Assembly and Manintenance Processes. Computers and Graphics. 2002,23(3): 389~403
    110 G. Chryssolouris, D. Mavrikios, D. Fragos et al. A Virtual Reality-based Experimentation Environment for the Verification of Human-relatedFactors in Assembly Processes. Robotics and Computer-Integrated Manufactring. 2003,16(4): 267~276
    111 M. Fa, T. Fernando, P. M. Dew. Direct 3D Manipulation Techniques or Interactive Constraint-based Solid Modeling. Proceedings of Eurographics, Oxford, Blackwell Publishers, 1993:237~248
    112 高瞻. 虚拟环境中产品装配定位求解及应用研究. 浙江大学硕士学位论文, 2001.
    113 Y. M. Zhong, M. W. Wolfgang, W. Y. Ma. Incorporating Constraints into a Virtual Reality Environment for Intuitive and Precise Solid Modeling. Proceedings of the Sixth International Conference on Information Visualisation, Hangzhou China, 2002: 389~398
    114 S. Gottschalk, M. C. Lin and D. Manocha. OBB-Tree: A Hierarchical Structure for Rapid Interference Detection. In Proc. of ACM Siggraph’96, 1996: 171~180
    115 G Zachmann. Real-time and Exact Collision Detection for Interactive Virtual Prototyping. Proceedings of DETC’97, 1997: 1~10
    116 刘检华, 宁汝新. 基于虚拟装配的碰撞检测算法研究与实现. 系统仿真学报. 2004, 16(8): 1775~1778
    117 张建民, 吴彦鹏, 张连斗, 朱均. 基于组件及多感知机制的快速碰撞检测方法. 中国机械工程. 2004, 25(3): 255~258
    118 郑轶, 宁汝新, 刘检华, 姚珺. 虚拟环境下快速碰撞检测方法的研究. 系统仿真学报. 2005, 17(9): 2167~2170
    119 李庆华, 李湖珍. 虚拟装配中基于相对于位置的碰撞干涉检测. 计算机应用. 2006, 26(1): 103~106
    120 杨润党, 武殿梁, 范秀敏, 严隽琪. 基于约束的虚拟装配运动导航技术. 农业机械学报. 2006, 37(3): 113~118
    121 武殿梁, 杨润党, 马登哲, 范秀敏. 集成虚拟装配环境钟的多约束导航技术研究. 机械工程学报. 2004, 40(11): 47~52
    122 Shuyou Zhang, Zhan Gao, Jianrong Tan, Zhenyu Liu. Research of Movement Navigation based on Assembly Constraint Recognition in Virtual Environment. Chinese Journal of Mechanical Engineering. 2001,14(2): 49~53
    123 Xinwen Niu, Han Ding, Youlun Xiong. A Hierarchical Approach toGenerating Precedence Graphs for Assembly Planning. Internation Journal of Machine Toos and Manufacture. 2003,43(5): 1473~1486
    124 F Failli, G Dini. Ant Colony Systems in Assembly Planning: A New Approach to Sequence Generation and Optimization. Proceedings of the
    2nd CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, 2002: 227~232
    125 赵文彬, 孙志毅, 李虹. 一种求解 TSP 问题的相遇蚁群算法.计算机工程. 2004, 30(12): 136~139
    126 A Colorni, M Dorigo, V Maniezzo, M Trubian. Ant System for Job-shop Scheduling. Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL), 1994, 34: 39~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700