手性配体在不对称催化反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性是生命活动的一个重要特征,而一对对映体通常会具有不同甚至完全相反的生理活性,因此高对映选择性地合成手性化合物具有重要的意义。目前,利用手性配体与金属催化的不对称反应是获得高光学活性化合物最直接和最高效的途径,也是最符合绿色化学理念的方法。因此将手性配体与金属组成的催化剂应用到不对称催化反应及天然产物全合成中是有机化学领域的热点和前沿。本论文在已有研究工作的基础上,进一步将配体L1、L76、L93应用到重要催化反应中,希望能够对其分子结构与催化性能的关系作进一步的探讨,从而获得优异的催化结果。
     手性硝基仲醇是重要的有机中间体,广泛应用于医药、农药等的合成。因此,我们系统研究配体L73-80与锌组成的催化剂在醛与硝基甲烷的不对称Henry反应中的催化性能。研究结果表明:配体L76与锌用于催化合成手性硝基仲醇化合物的反应时获得了较高的收率和对映选择性,以对甲基苯甲醛为底物时的反应产物ee值最高达到84%。
     手性炔丙基醇是合成众多精细化工品及天然产物的重要中间体,因此,我们将环丙烷氨基醇配体与锌组成的催化体系应用于1,3-二炔对醛的不对称加成反应中,系统研究配体结构、反应温度、反应溶剂等因素对催化结果的影响。在确定的最优反应条件下,研究了各种取代的1,3-丁二炔与醛的不对称加成反应,获得了优异的结果,大部分炔丙醇产物的ee值均大于90%,其中最高获得了95%的ee值。
     此外,我们还发展了以手性炔丙醇产物为关键中间体完成了海洋天然产物的合成。我们首先通过偶联、还原、氧化等一系列高收率的反应合成了长链烯醛,然后通过不对称炔基化的方法获得了炔醇片段,最后在碳酸钾的作用下脱去保护基得到了目标产物。该路线步骤简便,总产率较高,虽然加成产物只得到了81-82%的ee值,但经过酯化重结晶的方法ee值高达95%以
     本论文还系统地研究了配体与钯催化甲基砜与溴苯的芳基化反应。在氮气保护下,以甲苯为溶剂,Pd(OAc)2及配体L93形成的催化体系下,甲基砜与各种芳基溴可以很好地发生芳基化反应,产率在70-90%之间,同时产物的选择性也基本在10-20:1以上。该方法为今后合成砜类化合物提供了一个简便的途径。
     最后,本论文还研究了配体与钯催化的酰胺与芳基卤化物的芳基化反应,底物均得到了良好至优秀的产率(最高达到95%)。通过对碱和溶剂等反应条件的筛选,有效地控制单双芳基化反应产物的比例,最高的比例可以达到50:1。我们还证明了该催化体系可以应用于酰胺的分子内芳基化反应。
Chirality is an important characteristic of life, and enantiomers usually have different or even opposite physiological activity, thus it is extremely significant to synthesize the compounds which have very high enantioselectivity. Recent research indicates that the asymmetric reaction conducted by chiral ligand is the most direct and efficient way to obtain high optical active compounds, so the application of novel ligand in asymmetric catalysis reactionis is still necessary and may stand as hot topics in organic chemistry. In this paper, based on existing ligands of the previous work, the further application of L1、 L76、L93can hope to explore the relationship between the molecular structure and catalytic performance and achieve excellent results in Henry reaction、Alkylation、Total synthesis of marine sponge natural product and Arylation of sulfones and amides.
     Chiral nitroalcohols are important organic intermediates, which are widely used in medicine, pesticide and others. Therefore, we investigated systematically the catalytic properties of the ligands L73-80in the asymmetric Henry reaction of zinc aldehyde with nitromethane, and ligand L76is applied in catalytic asymmetric Henry reaction finally. The experimental results show that the ligands afforded corresponding nitroalcohol products in good to high yields and enantioselectivities, for the4-methylbenzaldehyde84%ee was obtained.
     Chiral propargyl alcohols are the important intermediates of many fine chemicals, and natural products, so we applied the Zinc-Amino alcohols system in the highly enantioselective addition of1,3-diynes to aldehydes and investigated the effect of different reaction conditions such as ligand structure, reaction temperature and solvent on the catalytic results. Under the optimal reaction conditions identified, we studied a variety of substituted1,3-diynes to aldehydes which gave excellent results, most products of propargyl alcohol's ee values were more than90%, in which the best95%ee was obtained.
     In addition, by using the chiral propargyl alcohol products as the key intermediate, the total asynthesis of marine sponge natural product was developed. The long-chainunsaturated aldehydes were synthesized through coupling reaction, reduction, oxidation and a series of high yield reaction firstly, then the alkynol fragment was prepared by the method of asymmetric alkynylation of above unsaturated aldehydes, finally with the help of potassium carbonate to removethe protectiving group, the target product was achieved. This route is short and the total yield is higher, although the ee of addition product is only81-82%, after recrystallization, the ee value could be increased to95%.
     Furthermore, this paper also studied systematically the palladium catalyzed arylation of methyl sulfone with bromobenzene. Under the nitrogen atmosphere, using toluene as the solvent and Pd (OAc)2as Pd source, methyl sulfone can smoothly react with bromobenzene, providing the arylated products in70-90%yield and the ratio of mono-to bis-arylation was well controlled (10-20:1) in the reactions. It provides a convient method to synthesize sulfone compounds.
     Finally, an efficient system for the direct catalytic intermolecular alpha-arylation of acetamide derivatives with aryl halides is presented, which provides the arylated amides in up to95%yield. Excellent chemoselectivities (up to50:1) in the mono-and diarylation with aryl bromides were achieved by careful selection of bases, solvents, and other conditions. We demonstrated the catalyst exhibited excellent reactivity in intramolecular arylation in the synthesis of oxindoles as well.
引文
[1]Wu, X.F.; Neumann, H. Zinc-catalyzed organic synthesis. C-C, C-N, C-O bond formation reactions. Adv. Synth. Catal.2012,354 (17),3141-3160.
    [2]Mehta, V. P.; Van der Eycken, E. V. Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev.2011,40(10),4925-4936.
    [3]Nakao, Y.; Hiyama, T. Silicon-based cross-coupling reaction:an environmentally benign version. Chem. Soc. Rev.2011,40 (10),4893-4901.
    [4]Wu, X.F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar-X and carbonnucleophiles. Chem. Soc. Rev.2011,40 (10),4986-5009.
    [5]Knochel, P.; Jones, P. Organozinc reagents:A practical approach. Oxford University Press, Oxford, 1999,100-231.
    [6]Wei, H.-X.; Jasoni, R. L.; Shao, H. et al. Anti-selective and regioselective aldol addition of ketones with aldehydes using MgI2 as promoter. Tetrahedron 2004,60 (51),11829-11835.
    [7]Northrup, A. B.; MacMillan, D. W. C. The first direct and enantioselective cross-aldol reaction of aldehydes. J. Am. Chem. Soc.2002,124 (24),6798-6799.
    [8]Maya, V.; Raj, M.; Singh, V. K. Highly enantioselective organocatalytic direct aldol reaction in an aqueous medium. Org. Lett.2007,9(13),2593-2595.
    [9]Jin, W.; Li, X.; Wan, B. A Highly diastereo-and enantioselective copper (I)-catalyzed henry reaction ssing a bis(sulfonamide)-diamine ligand. J. Org. Chem.2011,76 (2),484-491.
    [10]Xu, L.-W.; Xia, C.-G.; Li, L. Transition metal salt-catalyzed direct three-component mannich reactions of aldehydes, ketones, and carbamates:efficient synthesis of N-protected β-aryl-β-amino ketone compounds. J. Org. Chem.2004,69 (24),8482-8484.
    [11]Kobayashi, S.; Kiyohara, H.; Yamaguchi, M. Catalytic silicon-mediated carbon-carbon bond-forming reactions of unactivated amides. J. Am. Chem. Soc.2011,133 (4),708-711.
    [12]Reddy, K. R.; Kumar, N. S. Cellulose-supported copper (0) catalyst for aza-Michael addition. Synlett 2006, (14),2246-2250.
    [13]Irie, K.; Watanabe, K. Aldol condensations with metal (Ⅱ) complex catalysts. Bull. Chem. Soc. Jpn. 1980,53(5),1366-1371.
    [14]Nakagawa, M.; Nakao, H.; Watanabe, K. Steric effects of chiral ligands in a new type of aldol condensations catalyzed by zinc (II) complexes of a-amino acid esters. Chem. Lett.1985, (3),391-394.
    [15]Trost, B. M.; Ito, H. A direct catalytic enantioselective aldol reaction via a novel catalyst design. J. Am. Chem. Soc.2000,122 (48),12003-12004.
    [16]Trost, B. M.; Ito, H.; Silcoff, E. R. Asymmetric aldol reaction via a dinuclear zinc catalyst:a-Hydroxy ketones as donors. J. Am. Chem. Soc.2001,123 (14),3367-3368.
    [17]Trost, B. M.; Silcoff, E. R.; Ito, H. Direct asymmetric aldol reactions of acetone using bimetallic zinc catalysts. Org. Lett.2001,3(16),2497-2500.
    [18]Trost, B. M.; Fettes, A.; Shireman, B. T. Direct catalytic asymmetric aldol additions of methyl ynones spontaneous reversal in the sense of enantioinduction. J. Am. Chem. Soc.2004,126 (9),2660-2661.
    [19]Trost, B. M.; Shin, S.; Sclafani, J. A. Direct asymmetric zinc-aldol reaction of methyl vinyl ketone and its synthetic applications. J. Am. Chem. Soc.2005,127 (24),8602-8603.
    [20]Yoshikawa, N.; Kumagai, N.; Matsunaga, S. et al. Direct catalytic asymmetric aldol reaction: synthesis of either syn- or anti-α,β-dihydroxy ketones. J. Am. Chem. Soc.2001,123 (10),2466-2467.
    [21]Kumagai, N.; Matsunaga, S.; Yoshikawa, N. et al. Direct catalytic enantio- and diastereoselective aldol reaction ssing a Zn-Zn-Linked-BINOL complex:a practical synthesis of syn-1,2-diols. Org. Lett. 2001,3(10),1539-1542.
    [22]Harada, S.; Kumagai, N.; Kinoshita, T. Direct catalytic asymmetric Michael reaction of Hydroxyketones:asymmetric Zn catalysis with a Et2Zn/Linked-BINOL complex. J. Am. Chem. Soc. 2003,125 (9),2582-2590.
    [23]Li, H.; Da, C.-S.; Xiao, Y.-H.; et al. Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral BINOL-derived zincate catalyst. J. Org. Chem.2008,73 (18),7398-7401.
    [24]Kofoed, J.; Reymond, J.-L.; Darbre, T. Prebiotic carbohydrate synthesis:zinc-proline catalyzes direct aqueous aldol reactions of a-hydroxy aldehydes and ketones. Org. Biomol. Chem.2005,3(10), 1850-1855.
    [25]Penhoat, M.; Barbry, D.; Rolando, C. Direct asymmetric aldol reaction co-catalyzed by L-proline and group 12 elements Lewis acids in the presence of water. Tetrahedron Lett.2011,52 (1),159-162.
    [26]Paradowska, J.; Stodulski, M.; Mlynarski, J. Direct catalytic asymmetric aldol reactions assisted by zinc complex in the presence of water. Adv. Synth. Catal.2007,349 (7),1041-1046.
    [27]Paradowska, J.; Pasternak, M.; Gut, B.; et al. Direct asymmetric aldol reactions inspired by two types of natural aldolases:water-compatible organocatalysts and Zn Ⅱ complexes. J. Org. Chem.2012, 77(1),173-187.
    [28]Chen, G.; Fu, X.; Li, C.; et al. Highly efficient direct a larger-scale aldol reactions catalyzed by a flexible prolinamide based-metal Lewis acid bifunctional catalyst in the presence of water. J. Organomet. Chem.2012,702,19-26.
    [29]Pasternak, M.; Paradowska, J.; Rogozinska, M.; et al. Direct asymmetric a-hydroxymethylation of ketones in homogeneous aqueous solvents. Tetrahedron Lett.2010,51(31),4088-4090.
    [30]Mlynarski, J.; Jankowska, J. Asymmetric Mukaiyama-aldol reaction in aqueous media promoted by zinc-based chiral Lewis acids. Adv. Synth. Catal.2005,347 (4),521-525.
    [31]Jankowska, J.; Mlynarski, J. Zn (pybox)-complex-catalyzed asymmetric aqueous Mukaiyama-aldol reactions. J. Org. Chem.2006,71 (4),1317-1321.
    [32]Jankowska, J.; Paradowska, J.; Rakiel, B. Iron (Ⅱ) and Zinc (Ⅱ) complexes with designed pybox ligand for asymmetric aqueous mukaiyama-aldol reactions. J. Org. Chem.2007,72 (6),2228-2231.
    [33]Calter, M. A.; Orr, R. K. The direct aldol reaction using bifunctional catalysts. Tetrahedron Lett 2003,44(30),5699-5701.
    [34]Zhou, L.; Doyle, M. P. Stereoselective synthesis of highly functionalized α-diazo-β-ketoalkanoates via catalytic one-pot mukaiyama-aldol reactions. Org. Lett.2010,12 (4),796-799.
    [35]Trost, B. M.; Michaelis, D. J.; Truica, M. I. Dinuclear Zinc-ProPhenol-catalyzed enantioselective a-Hydroxyacetate aldol reaction with activated ester equivalents. Org. Lett.2013,15 (17),4516-4519.
    [36]Trost, B. M.; Miege, F. Development of ProPhenol ligands for the diastereo- and enantioselective synthesis of β-hydroxy-a-amino esters.J. Am. Chem. Soc.2014,136 (8),3016-3019.
    [37]Kumagai, N.; Matsunaga, S.; Shibasaki, M. Enantioselective 1,4-addition of unmodified ketone catalyzed by a bimetallic Zn-Zn-Linked-BINOL complex. Org. Lett.2001,3 (26),4251-4254.
    [38]Harada, S.; Kumagai, N.; Kinoshita, T.; et al. Direct catalytic asymmetric Michael reaction of hydroxyketones:asymmetric Zn catalysis with a Et2Zn/Linked-BINOL complex. J. Am. Chem. Soc. 2003,125 (9),2582-2590.
    [39]Trost, B. M.; Hitce, J. Direct asymmetric Michael addition to nitroalkenes:vinylogous nucleophilicity under dinuclear zinc catalysis. J. Am. Chem. Soc.2009,131 (13),4572-4573.
    [40]Lu, S.-F.; Du, D.-M.; Xu, J.; et al. Asymmetric Michael addition of nitroalkanes to nitroalkenes catalyzed by C2-symmetric tridentate bis(oxazoline) and bis(thiazoline) zinc complexes. J. Am. Chem. Soc.2006,128 (23),7418-7419.
    [41]Ray, S. K.; Singh, P. K.; Singh, V. K. Enantioselective Michael addition of malonates to 2-enoylpyridine N-Oxides catalyzed by chiral bisoxazoline-Zn (II) complex. Org. Lett.2011,13 (21), 5812-5815.
    [42]Guan, X.-Y.; Yang, L.-P.; Hu, W. Cooperative catalysis in multicomponent reactions:highly enantioselective synthesis of y-hydroxyketones with a quaternary carbon stereocenter. Angew. Chem., Int. Ed.2010,49 (12),2190-2192.
    [43]Ji, X.; Tong, H.-B.; Yuan, Y. Facile and efficient Michael addition of indole to nitroolefins catalyzed by Zn(OAc)2.2H2O. Synth. Commun.2011,41 (3),372-379.
    [44]Attanasi, O. A.; Favi, G.; Filippone, P.; et al. Improved synthesis of pyrroles and indoles via Lewis acid-catalyzed Mukaiyama-Michael-type addition/heterocyclization of enol silyl derivatives on 1,2-diaza-1,3-butadienes. Role of the catalyst in the reaction mechanism. Adv. Synth. Catal.2007,349 (6), 907-915.
    [45]Tan, F.; Lu, L.-Q.; Yang, Q.-Q.; et al. Enantioselective cascade Michael addition/cyclization reactions of 3-nitro-2H-chromenes with 3-isothiocyanato oxindoles:efficient synthesis of functionalized polycyclic spirooxindoles. Chem.-Eur. J.2014,20 (12),3415-3420.
    [46]Erdik, E. Transition metal catalyzed reactions of organozinc reagents. Tetrahedron 1992,48 (44), 9577-9648.
    [47]Ribeiro, C. M. R.; Cordeiro de Farias, F. M. Chiral ligands in the asymmetric Reformatsky reaction. Mini-Rev. Org. Chem.2006,3 (1),1-10.
    [48]Cozzi, P. G. Reformatsky reactions meet catalysis and stereoselectivity. Angew. Chem., Int. Ed. 2007,46(15),2568-2571.
    [49]Fernandez-Ibanez, M. A.; Macia, B.; Alonso, D. A.; et al. Recent advances in the catalytic enantioselective reformatsky reaction. Eur. J. Org. Chem.2013, (31),7028-7034.
    [50]Ito, Y.; Terashima, S. A highly stereoselective synthesis of aldols employing the Reformatskii reaction of 3-(2-bromopropionyl)-2-oxazolidone derivatives with various aldehydes. Tetrahedron Lett. 1987,28 (52),6629-6632.
    [51]Ito, Y.; Terashima, S. A highly stereoselective synthesis of a key intermediate of 1β-methylcarbapenems employing the Reformatsky reaction of 3-(2-bromopropionyl)-2-oxazolidone derivatives. Tetrahedron Lett.1987,28 (52),6625-6628.
    [52]Cozzi, P. G. A catalytic, Me2Zn-mediated, enantioselective Reformatskii reaction with ketones. Angew. Chem., Int. Ed.2006,45 (18),2951-2954.
    [53]Cozzi, P. G.; Mignogna, A.; Zoli, L. Practical chloromanganese-Salen-catalyzed enantioselective Reformatsky reaction with ketones. Synthesis 2007, (17),2746-2750.
    [54]Cozzi, P. G. A catalytic enantioselective imino-Reformatsky reaction. Adv. Synth. Catal.2006, 348 (15),2075-2079.
    [55]Fernandez-Ibanez, M. A.; Macia, B.; Minnaard, A. J.; et al. Catalytic enantioselective Reformatsky reaction with aldehydes. Angew. Chem., Int. Ed.2008,47 (7),1317-1319.
    [56]Fernandez-Ibanez, M. A.; Macia, B.; Minnaard, A. J.; et al. Catalytic enantioselective Reformatsky reaction with ketones. Chem. Commun.2008, (22),2571-2573.
    [57]Fernandez-Ibanez, M. A.; Macia, B.; Minnaard, A. J.; et al. Catalytic enantioselective Reformatsky reaction with ortho-substituted diarylketones. Org. Lett.2008,10 (18),4041-4044.
    [58]Tanaka, T.; Hayashi, M. Catalytic enantioselective reformatsky reaction of alkyl iodoacetate with aldehydes catalyzed by chiral schiff base. Chem. Lett.2008,37 (12),1298-1299.
    [59]Cozzi, P. G.; Benfatti, F.; Capdevila, M. G.; et al. Me2Zn mediated, tert-butylhydroperoxide promoted, catalytic enantioselective Reformatsky reaction with aldehydes. Chem. Commun.2008, (28), 3317-3318.
    [60]Shimada, T.; Yoshioka, M.; Konno, T.; et al. First highly stereoselective synthesis of anti-a-trifluoromethyl-β-amino acid derivatives. Chem. Commun.2006, (34),3628-3630.
    [61]Lin, N.; Chen, M.-M.; Luo, R.-S.; et al. Indolinylmethanol catalyzed enantioselective Reformatsky reaction with ketones. Tetrahedron Asymmetry 2010,21 (23),2816-2824.
    [62]Wolf, C.; Moskowitz, M. Catalyzed enantioselective Reformatsky reaction. J. Org. Chem.2011,76 (15),6372-6376.
    [63]Jia, Y.-X.; Zhu, S.-F.; Yang, Y.; et al. Asymmetric Friedel-Crafts alkylations of indoles with nitroalkenes catalyzed by Zn (II)-bisoxazoline complexes. J. Org. Chem.2006,71 (1),75-80.
    [64]Lu, S.-F.; Du, D.-M.; Xu, J. Enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes catalyzed by bifunctional tridentate bis(oxazoline)-Zn (II) complex. Org. Lett.2006,8(10),2115-2118.
    [65]Liu, H.; Xu, J.; Du, D.-M. Asymmetric Friedel-Crafts alkylation of methoxyfuran with nitroalkenes catalyzed by diphenylamine-tethered bis(oxazoline)-Zn (Ⅱ) complexes. Org. Lett.2007,9 (23),4725-4728.
    [66]Liu, H.; Lu, S.-F.; Xu, J.; et al. Asymmetric Friedel-Crafts alkylation of electron-rich N-heterocycles with nitroalkenes catalyzed by diphenylamine-tethered bis(oxazoline) and bis(thiazoline) Zn (II) complexes. Chem.-Asian J.2008,3 (7),1111-1121.
    [67]Yuan, Z.-L.; Lei, Z.-Y.; Shi, M. BINAM and H8-BINAM-based chiral imines and Zn(OTf)2-catalyzed enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes. Tetrahedron Asymmetry 2008,19(11),1339-1346.
    [68]Trost, B. M.; Mueller, C. Asymmetric Friedel-Crafts alkylation of pyrroles with nitroalkenes using a dinuclear zinc catalyst. J. Am. Chem. Soc.2008,130 (8),2438-2439.
    [69]He, F.; Wu, H.; Chen, J.; et al. Unexpectedly high activity of Zn(OTf)2.6H2O in catalytic Friedel-Crafts acylation reaction. Synth. Commun.2008,38 (2),255-264.
    [70]Meshram, H. M.; Kumar, D. A.; Reddy, B. C. Simple and efficient Friedel-Crafts alkylation of 1H-indole with electron-deficient alkenes promoted by zinc acetate. Helv. Chim. Acta 2009,92 (5), 1002-1006.
    [71]Singh, P. K.; Singh, V. K. Enantioselective Friedel-Crafts alkylation of pyrroles catalyzed by PYBOX-DIPH-Zn (Ⅱ) complexes. Org. Lett.2010,12 (1),80-83.
    [72]Huang, Y.; Suzuki, S.; Liu, G.; et al. Asymmetric synthesis of chiral trifluoromethylated heliotridane via highly catalytic asymmetric Friedel-Crafts alkylation with β-trifluoromethylated acrylates and pyrroles. New J. Chem.2011,35(11),2614-2621.
    [73]Wang, B.-L.; Li, N.-K.; Zhang, J.-X.; et al. Dinuclear zinc catalyzed asymmetric Friedel-Crafts amidoalkylation of indoles with aryl aldimines. Org. Biomol. Chem.2011,9 (8),2614-2617.
    [74]Slam, M. S.; Al Majid, A. M. A.; Al-Othman, Z. A.; et al. Highly enantioselective Friedel-Crafts alkylation of indole with electron deficient trans-β-nitroalkenes using Zn(II)-oxazoline-imidazoline catalysts. Tetrahedron Asymmetry 2014,25 (3),245-251.
    [75]Tan, L.; Chen, C.-y.; Tillyer, R. D.; et al. A novel, highly enantioselective ketone alkynylation reaction mediated by chiral zinc aminoalkoxides. Angew. Chem., Int. Ed.1999,38(5),711-713.
    [76]Trost, B. M.; Sieber, J. D.; Qian, W.; et al. Asymmetric total synthesis of soraphen A:A flexible alkyne strategy. Angew. Chem., Int. Ed.2009,48(30),5478-5481.
    [77]Trost, B. M.; Bartlett, M. J. Transition-Metal-Catalyzed synthesis of aspergillide B:an alkyne addition strategy. Org. Lett.2012,14(5),1322-1325.
    [78]Niwa, S.; Soai, K. Catalytic asymmetric synthesisof optically active alkynyl alcohols by enantioselective alkynylation of aldehydes and by enantioselective alkylation of alkynyl aldehydes. J. Chem. Soc, Perkin Trans.1.1990, (4),937-943.
    [79]Li, Z.; Upadhyay, V.; DeCamp, A. E.; et al. Enantioselective alkynylation of aromatic aldehydes catalyzed by readily available chiral amino alcohol-based ligands. Synthesis 1999,1453-1458.
    [80]Frantz, D. E.; Faessler, R.; Carreira, E. M. Facile enantioselectives synthesis of propargylic alcohols by direct addition ofterminal alkynes to aldehydes. J.Am.Chem.Soc.2000,122(8),1806-1807.
    [81]Boyall, D.; Lopez, F.; Sasaki, H.; et al. Enantioselective addition of 2-methyl-3-butyn-2-ol to aldehydes:preparation of 3-hydroxy-l-butynes. Org. Lett.2000,2(26),4233-4236.
    [82]Sasaki, H.; Boyall, D.; Carreira, E. M. Facile, asymmetric addition of acetylene to aldehydes:in situ generation of reactive zinc acetylide. Helv. Chim. Acta.2001,84(4),964-971.
    [83]Anand, N. K.; Carreira, E. M. A Simple, Mild, catalytic, enantioselective addition of terminal acetylenes to aldehydes. J. Am. Chem. Soc.2001,123(39),9687-9688.
    [84]Lu, G; Li, X.; Zhou, Z.; et al. Enantioselective alkynylation of aromatic aldehydes catalyzed by new chiral amino alcohol-based ligands. Tetrahedron:Asymmetry 2001,12(15),2147-2152.
    [85]Ruan, J.; Lu, G.; Xu, L.; et al. Catalytic asymmetric alkynylation and arylation of aldehydes by an H8-binaphthyl-based amino alcohol ligand.Adv. Synth. Catal.2008,350(1),76-84.
    [86]Kang, S.-W.; Ko, D.-H.; Kim, K. H.; et al. Highly enantioselective additions of diethylzinc to aldehydes using 2-triflamido-methyl-2'-hydroxy-1,1'-binaphthyl. Org. Lett.2003,5(23),4517-4519.
    [87]Jiang, B.; Chen, Z.; Xiong, W. Highly enantioselective alkynylation of aldehydes catalyzed by a readily available chiral amino alcohol-based ligand. Chem. Commun.2002, (14),1524-1525.
    [88]Xu, Z.; Wang, R.; Xu, J.; et al. Highly enantioselective addition of phenylacetylene to aldehydes catalyzed by αβ-sulfonamide alcohol-titanium complex. Angew. Chem., Int. Ed.2003,42(46),5747-5749.
    [89]Xu, Z.; Lin, L.; Xu, J.; et al. Asymmetric addition of phenylacetylene to aldehydes catalyzed by β-sulfonamide alcohol-titanium complex. Adv. Synth. Catal.2006,348(4-5),506-514.
    [90]Xu, Z.; Chen, C.; Xu, J.; et al. Highly enantioselective addition of phenylacetylene to aldehydes catalyzed by a camphorsulfonamide ligand. Org. Lett.2004,6(8),1193-1195.
    [91]Dahmen, S. Enantioselective alkynylation of aldehydes catalyzed by [2.2] paracyclophane-based ligands. Org. Lett.2004,6(13),2113-2116.
    [92]Fang, T.; Du, D.-M.; Lu, S.-F.; et al. Synthesis of C3-symmetric tris(β-hydroxy amide) ligands and their Ti(IV) complex-catalyzed enantioselective alkynylation of aldehydes. Org. Lett.2005,7(11),2081-2084.
    [93]Hui, X.-P.; Yin, C.; Chen, Z.-C.; et al. Synthesis of new C2-symmetric bis(β-hydroxyamide) ligands and their applications in the enantioselective addition of alkynylzinc to aldehydes. Tetrahedron 2008,64(11),2553-2558.
    [94]Trost, B. M.; Weiss, A. H.; Jacobi von Wangelin, A. Dinuclear Zn-catalyzed asymmetric alkynylation of unsaturated aldehydes. J. Am. Chem. Soc.2006,128(1),8-9.
    [95]Li, Z.-B.; Liu, T.-D.; Pu, L. Chiral macrocycle-catalyzed highly enantioselective phenylacetylene addition to aliphatic and vinyl aldehydes. J. Org. Chem.2007,72(12),4340-4343.
    [96]Xu, Z.; Mao, J.; Zhang, Y. Highly enantioselective alkynylation of aldehydes catalyzed by a new oxazolidine-titanium complex. Org. Biomol. Chem.2008,6(7),1288-1292.
    [97]Blay, G.; Fernandez, I.; Marco-Aleixandre, A.; et al. Mandelamide-Zinc-Catalyzed enantioselective alkyne addition to heteroaromatic aldehydes.J. Org. Chem.2006,71(17),6674-6677.
    [98]Blay, G.; Cardona, L.; Fernandez, I.; et al. Catalytic enantioselective addition of terminal alkynes to aromatic aldehydes using zinc-hydroxyamide complexes. Org. Biomol. Chem.2009,7(20),4301-4308.
    [99]Niu, J.-L.; Wang, M.-C.; Lu, L.j.; et al. Enantioselective addition of alkynylzinc to arylaldehydes catalyzed by azetidino amino alcohols bearing an additional stereogenic center. Tetrahedron Asymmetry 2009,20(22),2616-2621.
    [100]Wu, P.-Y.; Wu, H.-L.; Shen, Y.-Y.; et al. Asymmetric synthesis of propargylic alcohols catalyzed by(-)-MITH. Tetrahedron:Asymmetry 2009,20(16),1837-1841.
    [101]Qiu, L.; Wang, Q.; Lin, L.; et al. Highly enantioselective addition of terminal alkynes to aldehydes catalyzed by a new chiral β-sulfonamide alcohol/Ti(OiPr)4/Et2Zn/R3N catalyst system. Chirality 2009,21(2),316-323.
    [102]Kojima, N.; Nishijima, S.; Tsuge, K.; et al. Asymmetric alkynylation of aldehydes with propiolates without high reagent loading and any additives. Org. Biomol. Chem.2011,9(12),4425-4428.
    [103]Trost, B. M.; Quintard, A. Asymmetric catalytic alkynylation of acetaldehyde:application to the synthesis of (+)-Tetrahydropyrenophorol. Angew. Chem., Int. Ed.2012,51 (27),6704-6708.
    [104]Reber, S.; Thomas, T. F.; Carreira, E. M. Enantioselective total synthesis of (R)-strongylodiols A and B. Tetrahedron 1998,59 (35),6813-6817.
    [105]Trost, B. M.; Chan, V. S.; Yamamoto, D. Enantioselective ProPhenol-catalyzed addition of 1,3-diynes to aldehydes to generate synthetically versatile building blocks and diyne natural products. J. Am. Chem. Soc.2010,132 (14),5186-5192.
    [106]Turlington, M.; Du, Y.; Ostrum, S. G.; et al. From Highly enantioselective catalytic reaction of 1, 3-diynes with aldehydes to facile asymmetric synthesis of polycyclic compounds. J. Am. Chem. Soc. 2011,133(30),11780-11794.
    [107]Graham, E. R.; Tykwinski, R. R. Chiral propargyl alcohols via the enantioselective addition of terminal di- and triynes to aldehydes. J. Org. Chem.2011,76 (16),6574-6583.
    [108]Trost, B. M.; Yeh, V. S. C. A dinuclear Zn catalyst for the asymmetric nitroaldol (Henry) reaction. Angew. Chem., Int. Ed.2002,41 (5),861-863.
    [109]Zhong, Y.-W.; Tian, P.; Lin, G.-Q. New β-amino alcohols with a bicycle [3.3.0]octane scaffold in an asymmetric Henry reaction. Tetrahedron Asymmetry 2004,15 (5),771-776.
    [110]Palomo, C.; Oiarbide, M.; Laso, A. Enantioselective Henry reactions under dual Lewis acid/amine catalysis using chiral amino alcohol ligands. Angew. Chem., Int. Ed.2005,44 (25),3881-3884.
    [111]Colak, M.; Aral, T.; Hosgoeren, H.; et al. Synthesis of novel chiral Schiff-base ligands and their application in asymmetric nitro aldol (Henry) reaction. Tetrahedron Asymmetry 2007,18 (9),1129-1133.
    [112]Bulut, A.; Aslan, A.; Dogan, O. Catalytic asymmetric nitroaldol (Henry) reaction with a Zinc-Fam catalyst.J. Org. Chem.2008,73 (18),7373-7375.
    [113]Liu, S.; Wolf, C. Asymmetric nitroaldol reaction catalyzed by a C2-symmetric bisoxazolidine ligand. Org. Lett.2008,10 (9),1831-1834.
    [114]Kim, H.-Y.; Oh, K.-S. Brucine-derived amino alcohol catalyzed asymmetric Henry reaction:an orthogonal enantioselectivity approach. Org. Lett.2009,11 (24),5682-5685.
    [115]Bernardi, L.; Zhuang, W.; Jorgensen, K. A. An easy approach to optically active α-amino phosphonic acid derivatives by chiral Zn(Ⅱ)-catalyzed enantioselective amination of phosphonates.J. Am. Chem. Soc.2005,127 (16),5772-5773.
    [116]Matsunaga, S.; Kumagai, N.; Harada, S.; et al. Anti-Selective Direct catalytic asymmetric Mannich-type reaction of hydroxyketone providing β-amino alcohols. J. Am. Chem. Soc.2003,125 (16), 4712-4713.
    [117]Matsunaga, S.; Yoshida, T.; Morimoto, H.; et al. Direct catalytic asymmetric Mannich-type reaction of hydroxyketone using a Et2Zn/Linked-BINOL complex:synthesis of either anti- or syn-β-amino alcohols.J. Am. Chem. Soc.2004,126 (28),8777-8785.
    [118]Yoshida, T.; Morimoto, H.; Kumagai, N.; et al. Non-C2-symmetric, chirally economical, and readily tunable linked-binols:Design and application in a direct catalytic asymmetric Mannich-type reaction. Angew. Chem., Int. Ed.2005,44 (22),3470-3474.
    [119]Du, H.; Long, J.; Hu, J.; et al.3,3'-Br2-BINOL-Zn Complex:A highly efficient catalyst for the enantioselective hetero-Diels-Alder reaction. Org. Lett.2002,4 (24),4349-4352.
    [120]Bian, Q.-H.; Liu, J.; Yin, M. M.; et al. Synthesis of novel bisoxazoline ligands for the enantioselective Diels-Alder reaction. Chin.Chem.Lett.2006,17(8),1033-1036.
    [121]Zhong, J.; Guo, H.; Wang, M.; et al. Asymmetric diethylzinc addition and phenyl transfer to aldehydes using chiral cis-cyclopropane-based amino alcohols. Tetrahedron:Asymmetry 2007,18(6), 734-741.
    [122]Zhong, J.; Wang, M.; Guo, H.; et al. Design and synthesis of 1,4-amino alcohol ligands with a chiral cyclopropane backbone for asymmetric diethylzinc addition to aromatic aldehydes. Synlett 2006, (11),1667-1670.
    [123]Zheng, B.; Hou, S.; Li, Z.; et al. Enantioselective synthesis of quaternary stereogenic centers through catalytic asymmetric addition of dimethylzinc to α-ketoesters with chiral cis-cyclopropane-based amide alcohol as ligand. Tetrahedron Asymmetry 2009,20 (18),2125-2129.
    [124]Zhong, J.-C.; Hou, S.-C.; Bian, Q.-H.; et al. Highly enantioselective zinc/amino alcohol-catalyzed alkynylation of aldehydes. Chem.-Eur. J.2009,15(13),3069-3071.
    [125]Na, R.; Wang, B.; Liu, H.; et al. Synthesis and application of novel dithiane alcohol ligand based on chiral cyclopropane-backbone for asymmetric ethylation of aromatic aldehydes. Lett. Org. Chem. 2012,9 (9),622-627.
    [126]Li, Z.-Y.; Wang, M.; Bian, Q.-H.; et al.Highly enantioselective addition of trimethylsilylacetylene to aldehydes catalyzed by a Zinc-amino-alcohol complex. Chem.-Eur. J.2011,17 (21),5782-5786.
    [127]Trost, B. M.; Yeh, V. S. C. A dinuclear Zn catalyst for the asymmetric nitroaldol (Henry) reaction. Angew. Chem., Int. Ed.2002,41 (5),861-863.
    [128]Liu, S.; Wolf, C. Asymmetric nitroaldol reaction catalyzed by a C2-symmetric bisoxazolidine ligand. Org. Lett.2008,10 (9),1831-1834.
    [129]Shun, A. L. K. S.; Tykwinski, R. R. Synthesis of naturally occurring polyynes. Angew. Chem., Int. Ed.2006,45 (7),1034-1057.
    [130]Gunasekera, S. P.; Faircloth, G. T. New acetylenic alcohols from the sponge Cribrochalina vasculum. J. Org. Chem.1990,55 (25),6223-6225.
    [131]Ohtani, T.; Kikuchi, K.; Kamezawa, M.; et al. Chemoenzymic synthesis of (+)-(4E,15E)-docosa-4,15-dien-1-yn-3-ol, a component of the marine sponge cribrochalina vasculum. J. Chem. Soc., Perkin Trans.11996, (10),961-962.
    [132]Hallock, Y. F.; Cardellina, J. H., II; Balaschak, M. S.; et al. Antitumor activity and stereochemistry of acetylenic alcohols from the sponge Cribrochalina vasculum. J. Nat. Prod.1995,58 (12),1801-1807.
    [133]Morishita, K.; Kamezawa, M.; Ohtani, T.; et al. Chemoenzymic synthesis of (+)-docosa-4,15-dien-1-yn-3-ol, a component of the marine sponge Cribrochalina vasculum, confirmation of the structure and absolute configuration of the acetylenic alcohol, by lipase-catalyzed biotransformations. J. Chem. Soc., Perkin Trans.1 1999, (4),513-518.
    [134]Brown, C. A.; Ahuja, V. K. Catalytic hydrogenation, VI. the reaction of sodium borohydride with nickel salts in ethanol solution. P-2 nickel, A highly convenient, new, selective hydrogenation catalyst with great sensitivity to substrate structure. J. Org. Chem.1973,38(12),2226-2230.
    [135]Mori, N.; Kuwahara Y. Synthesis of (2R,3R)-epoxyneral, a sex pheromone of the acarid mite, Caloglyphus sp. (Astigmata:Acaridae). Tetrahedron Lett 1995,36(9),1477-1478.
    [136]Nacro, K.; Baltas M.; Escudier, J-M; et al. Enhanced diastereoselectivity in the addition of ester enolate to optically active a, P-epoxyaldehydes obtained from nerol and geraniol. Tetrahedron 1996, 52(27),9047-9056.
    [137]Cho, G. Y.; Bolm, C. Palladium-catalyzed α-arylation of sulfoximines. Org. Lett.2005,7 (7), 1351-1354.
    [138]Abd-El-Aziz, A. S.; De Denus, C. R. A convenient synthesis of some arylated phenylsulfonylacetonitriles and ethyl cyanoacetates using organoiron complexes. J. Chem. Soc., Perkin Trans.1 1993, (2),293-298.
    [139]You, J.; Verkade, J. G. P(i-BuNCH2CH2)3N:An efficient ligand for the direct α-Arylation of nitriles with aryl bromides. J. Org. Chem.2003,68 (21),8003-8007.
    [140]Kim, S. H.; Lee, H. S.; Kim, K. H.; et al. An expedient synthesis of poly-substituted 1-arylisoquinolines from 8-keto nitriles via indium-mediated Barbier reaction protocol. Tetrahedron Lett. 2009,50 (47),6476-6479.
    [141]Suzuki, H.; Qui, Y.; Inoue, J.; et al. Synthesis of a-arylated phenylsulfonylacetonitriles. A useful precursor for substituted a-arylalkanoic acid and their derivatives. Chem. Lett.1987, (5),887-890.
    [142]Makosza, M.-l.; Lemek, T.; Kwast, A.; et al. Elucidation of the vicarious nucleophilic substitution of hydrogen mechanism via studies of competition between substitution of hydrogen, deuterium, and fluorine. J. Org. Chem.2002,67 (2),394-400.
    [143]You, J.; Verkade, J. G. A general method for the direct a-arylation of nitriles with aryl chlorides. Angew. Chem., Int. Ed.2003,42 (41),5051-5053.
    [144]Palucki, M.; Buchwald, S. L. Palladium-catalyzed a-arylation of ketones. J. Am. Chem. Soc.1997, 119(45),11108-11109.
    [145]Hamann, B. C.; Hartwig, J. F. Palladium-catalyzed direct a-arylation of ketones. Rate acceleration by sterically hindered chelating ligands and reductive elimination from a transition metal enolate Complex. J. Am. Chem. Soc.1997,119 (50),12382-12383.
    [146]Satoh, T.; Kawamura, Y.; Miura, M.; et al. Palladium-catalyzed regioselective mono-and diarylation reactions of 2-phenylphenols and naphthols with aryl halides. Angew. Chem., Int. Ed.1997, 36(16),1740-1742.
    [147]Culkin, D. A.; Hartwig, J. F. Palladium-catalyzed a-arylation of carbonyl compounds and nitriles. Acc. Chem. Res.2003,36 (4),234-245.
    [148]Bellina, F.; Rossi, R. Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C-H bonds and some of their synthetic equivalents with aryl halides and pseudohalides. Chem. Rev.2010,110 (2),1082-1146.
    [149]Johansson, C. C. C.; Colacot, T. J. Metal-catalyzed a-arylation of carbonyl and related molecules: novel trends in C-C bond formation by C-H bond functionalization. Angew. Chem., Int. Ed.2010,49 (4), 676-707.
    [150]Novak, P.; Martin, R. Pd-catalyzed α-arylεtion of carbonyl and related compounds:recent developments and perspectives. Curr. Org. Chem.2011,15 (18),3233-3262.
    [151]Magano, J.; Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of Pharmaceuticals. Chem. Rev.2011,111 (3),2177-2250.
    [152]Kashin, A. N.; Mitin, A. V.; Beletskaya, I. P.; et al. Palladium-catalyzed arylation of sulfonyl CH-acids. Tetrahedron Lett.2002,43 (14),2539-2542.
    [153]Renaud, P.; Bourquard, T.; Carrupt, P.-A.; et al. Origin of the stereoselectivity in (ethoxycarbonyl)-, cyano-, and phenyl-substituted (arylsulfinyl)methyl radicals. Helv. Chim. Acta 1998, 81(6),1048-1063.
    [154]Niwa, T.; Yorimitsu, H.; Oshima, K. Palladium-catalyzed benzylic direct arylation of benzyl sulfones with aryl halides. Tetrahedron 2009,65 (10),1971-1976.
    [155]Zhou, G.; Ting, P. C.; Aslanian, R. G. Palladium-catalyzed Negishi a-arylation of alkylsulfones. Tetrahedron Lett.2010,51 (6),939-941.
    [156]Haag, B. A.; Zhang, Z.-G.; Li, J.-S.; et al. Fischer Indole synthesis with oganozinc reagents. Angew. Chem., Int. Ed.2010,49 (49),9513-9516.
    [157]Kaburagi, Y.; Tokuyama, H.; Fukuyama, T. Total synthesis of (-)-Strychnine. J. Am. Chem. Soc. 2004,126(33),10246-10247.
    [158]Mu, S.-Z.; Wang, J.-S.; Yang, X.-S.; et al. Alkaloids from daphniphyllum oldhami. J. Nat. Prod. 2008,71 (4),564-569.
    [159]Southwick, P. L. Direct aromatic carboxymethylation. Synthesis 1970, (12),628-635.
    [160]Tobisu, M.; Chatani, N. A catalytic approach for the functionalization of C(sp3)-H bonds. Angew. Chem., Int. Ed.2006,45(11),1683-1684.
    [161]Jazzar, R.; Hitce, J.; Renaudat, A.; et al. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H Activation. Chem.-Eur. J.2010,16(9),2654-2672.
    [162]Wasa, M.; Engle, K. M.; Yu, J.-Q. Cross-coupling of C(sp3)-H bonds with organometallic reagents via Pd(Ⅱ)/Pd(0) catalysis. Isr. J. Chem.2010,50 (5-6),605-616.
    [163]Baudoin, O. Transition metal-catalyzed arylation of unactivated C(.sp3)-H bonds. Chem. Soc. Rev. 2011,40 (10),4902-4911.
    [164]Bergman, R. G. Organometallic chemistry:C-H activation. Nature 2007,446 (7134),391-393.
    [165]Xiao, T.-X.; Liu, L.; Jiang, J.-L.; et al. Palladium -catalyzed cross coupling reactions:a brief introduction to the Nobel prize in chemistry 2010. Chinese J. Nature 2010,32 (6),332-337.
    [166]Daugulis, O.; Do, H.-Q.; Shabashov, D. Palladium-and Copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res.2009,42 (8),1074-1086.
    [167]Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev.2010,110 (2),1147-1169.
    [168]Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Direct C-H Transformation via Iron Catalysis. Chem. Rev.2011, 111(3),1293-1314.
    [169]Yu, J.-Q.; Gin, R.; Chen, X. a-Chelation-directed C-H functicnalizations using Pd(Ⅱ) and Cu(Ⅱ) catalysts:regioselectivity, stereoselectivity and catalytic turnover. Org. Biomol. Chem.2006,4 (22), 4041-4047.
    [170]McGlacken, G. P.; Bateman, L. M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev.2009,38 (8),2447-2464.
    [171]Ackermann, L. Metal-catalyzed direct alkylations of (hetero) arenes via C-H bond cleavages with unactivated alkyl halides. Chem. Commun.2010,46 (27),4866-4877.
    [172]Scheuermann, C. J. Beyond traditional cross couplings:the scope of the cross dehydrogenative coupling reaction. Chem.-Asian J.2010,5 (3),436-451.
    [173]Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem. Rev.2011,111 (3),1315-1345.
    [174]Wencel-Delord, J.; Droege, T.; Liu, F.; et al. Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev.2011,40 (9),4740-4761.
    [175]Yeung, C. S.; Dong, V. M. Catalytic dehydrogenative cross-coupling:forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev.2011,111 (3),1215-1292.
    [176]Barluenga, J.; Valdes, C. Tosylhydrazones:new uses for classic reagents in palladium-catalyzed cross-coupling and metal-free reactions. Angew. Chem., Int. Ed.2011,50 (33),7486-7500.
    [177]Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition metal-catalyzed direct arylation of (hetero) arenes by C-H bond cleavage. Angew. Chem., Int. Ed.2009,48 (52),9792-9826.
    [178]Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; et al. Palladium-catalyzed cross-coupling:a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem., Int. Ed.2012,51 (21),5062-5085.
    [179]Shao, Z.; Zhang, H. N-Tosylhydrazones, versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Chem. Soc. Rev.2012,41 (2),560-572.
    [180]Shen, H. C. Selected applications of transition metal-catalyzed carbon-carbon cross-coupling reactions in the pharmaceutical industry. Appl. Transition Met. Catal. Drug Discovery Dev.2012,25-95.
    [181]McGlacken, G. P.; Bateman, L. M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev.2009,38 (8),2447-2464.
    [182]Kakiuchi, F.; Kochi, T. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen bond cleavage. Synthesis 2008, (19),3013-3039.
    [183]Hama, T.; Culkin, D. A.; Hartwig, J. F. Palladium-catalyzed intermolecular a-arylation of zinc amide enolates under mild conditions. J. Am. Chem. Soc.2006,128 (15),4976-4985.
    [184]Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. Palladium-catalyzed inter-and intramolecular α-arylation of amides. Application of intramolecular amide arylation to the Synthesis of oxindoles. J. Org. Chem.1998,63 (19),6546-6553.
    [185]Hama, T.; Liu, X.; Culkin, D. A.; et al. Palladium-catalyzed a-arylation of esters and amides under more neutral conditions. J. Am. Chem. Soc.2003,125 (37),11176-11177.
    [186]Poller, R. C.; Silver, D. Organozinc and other organometallic compounds derived from N,N-diethylbromoacetamide. J. Organomet. Chem.1978,157 (3),247-253.
    [187]House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; et al. Chemistry of carbanions. ⅩⅩⅢ. Use of metal complexes to control the aldol condensation. J. Amer. Chem. Soc.1973,95 (10),3310-3324.
    [188]Bertrand, J.; Gorrichon, L.; Maroni, P.; et al. Carbon-13 NMR and IR spectral evidence for mixed enolates formed by exchange reactions between lithium enolates and divalent metal salts. Tetrahedron Lett.1982,25(18),1901-1904.
    [189]Fu, G. C. The Development of versatile methods for Palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as Ligands. Acc. Chem. Res.2008,41 (11), 1555-1564.
    [190]Oare, D. A.; Henderson, M. A.; Sanner, M. A.; et al. Acyclic stereoselection.46. Stereochemistry of the Michael addition of N,N-disubstituted amide and thioamide enolates to α,β-unsaturated ketones. J. Org. Chem.1990,55(1),132-157.
    [191]Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; et al. Copper(Ⅱ)-catalyzed meta-selective direct arylation of α-aryl carbonyl compounds. Angew. Chem., Int. Ed.2011,50 (2),463-466.
    [192]Chen, Z.-W.; Jiang, H.-F.; Pan, X.-Y.; et al. Practical synthesis of amides from alkynyl bromides, amines, and water. Tetrahedron 2011,67 (33),5920-5927.
    [193]Chiba, S.; Zhang, L.; Sanjaya, S.; et al. Pd(Ⅱ)-catalyzed synthesis of indoles from α-aryloxime O-pentafluorobenzoates via intramolecular aromatic C-H amination. Tetrahedron 2010,66 (30),5692-5700.
    [194]Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and preparation of new palladium precatalysts for C-C and C-N cross-coupling reactions. Chem. Sci. 2013,4 (3),916-920.
    [195]Humphrey, J. M.; Chamberlin, A. R. Chemical synthesis of natural product peptides:coupling methods for the Incorporation of noncoded amino acids into peptides. Chem. Rev.1997,97 (6),2243-2266.
    [196]Carey, J. S.; Laffan, D.; Thomson, C.; et al. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem.2006,4(12),2337-2347.
    [197]Nicolaou, K. C.; Hao, J.; Reddy, M. V.; et al. Chemistry and biology of diazonamide A:second total synthesis and biological investigations. J. Am. Chem. Soc.2004,126 (40),12897-12906.
    [198]Marti, C.; Carreira, E. M. Construction of spiro[pyrrolidine-3,3'-oxindoles]-recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem.2003, (12),2209-2219.
    [199]Trost, B. M.; Brennan, M. K. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis 2009, (18),3003-3025.
    [201]Reddy, V. J.; Douglas, C. J. Highly Enantioselective Intramolecular Cyanoamidation:(+)-Horsfiline, (-)-Coerulescine, and (-)-Esermethole. Org. Lett.2010,12 (5),952-955.
    [202]Qian, Z.-Q.; Zhou, F.; Du, T.-P.; et al. Asymmetric construction of quaternary stereocenters by direct organocatalytic amination of 3-substituted oxindoles. Chem. Commun.2009, (44),6753-6755.
    [203]Beyer, A.; Buendia, J.; Bolm, C. Transition-metal-free synthesis of oxindoles by potassium tert-butoxide-promoted intramolecular a-arylation. Org. Lett.2012,14 (15),3948-3951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700