温敏性凝胶模板组装的SERS基底动“gap”研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼光谱(SERS)技术发展至今已经能够实现单分子水平上的检测。大量研究表明这种信号的增强主要是由于贵金属纳米粒子之间的等离子耦合导致电磁场增大所致,所以SERS技术的发展强烈依赖于新型SERS活性基底设计与制备,特别是对SERS基底中贵金属纳米粒子的间隙即“gap”的调控。实际上,构建均一的、有效的SERS基底仍然具有挑战性,因为这一般都需要高成本的消耗和复杂的合成过程。采用一种简单的方法,合成能将SERS信号强烈放大并且更加均一有效的SERS基底显得尤为必要,从而有别于现有的合成方法:金属纳米粒子一旦被合成或组装好,纳米粒子的间隙就被固定。特别是,基底中纳米粒子间隙能够进行调控并且形成最佳的分布区间,即“热点”多并且分布范围窄。水凝胶聚异丙基丙烯酰胺(PNIPAM)因为其含有亲水的酰胺键和疏水的烷基链而显示出良好的温度敏感性已经被广泛研究。其在纯水中的临界相转变温度(LCST)一般为32℃,这样的温度在实际的实验中很容易操作。当体系温度低于LCST时,凝胶中的酰胺键结合大量的水分子而显示其膨胀状态;当体系温度高于LCST时,酰胺键与水分子之间的氢键会断裂,使得水分子排出凝胶网络结构,凝胶体积产生明显的收缩;而且这一膨胀收缩过程随温度的改变呈现良好的可逆性。在本论文研究中,我们将以PNIPAM为模板,对不同结构和形貌的贵金属纳米粒子进行组装,形成的复合物SERS基底的整个尺寸和金属纳米粒子间隙能够随温度变化而进行调控。从而实现对温敏性凝胶模板组装的SERS基底动“gap”研究。即在凝胶模板膨胀的状态下,将不同形貌的Au或者Ag纳米粒子组装到模板表面或者内部,此时贵金属纳米粒子间隙较大,形成的“热点”不明显,而此时将待测物分子与基底混合,分子能有效的进入到贵金属纳米粒子间隙或者周围;SERS检测时,提高温度,凝胶模板收缩,贵金属纳米粒子间隙大幅度减小,不仅使基底的“热点”瞬间增加,而且整个基底的“热点”均一性得到了提高,从而实现对待测分子的高灵敏度和高重现性SERS的检测。本论文工作包括以下几个部分:
     (1)理论分析温敏性的聚合物凝胶聚异丙基丙烯酰胺(PNIPAM)的自由基聚合过程及原理,为合成合适的凝胶模板提供理论依据和指导:包括温度的控制、交联剂的数量、引发剂的种类以及凝胶膨胀收缩的机理等;同时分析各种单体的Raman信号及复合物基底的SERS信号,为待测物的SERS检测提供对照,排除对后续物检测带来的可能干扰。
     (2)利用阳离子引发剂得到表面带正电荷的凝胶纳米球为模板,将L-抗坏血酸还原的Ag纳米粒子组装到凝胶模板PNIPAM纳米球表面,得到PNIPAM/Ag复合物SERS基底。提高温度,复合物的最大收缩比为18%,Ag纳米粒子间隙由30.4nm缩小至5nm以下,这一过程使基底的均一性提高,“热点”数大幅度增加,探针分子结晶紫(CV)和罗丹明6G(R6G)的SERS信号均提高了3个数量级,与用离散偶极近似法(DDA)理论模拟结果相一致。结果显示,所得的复合物基底由于温敏性凝胶模板的收缩与膨胀,使得其表面组装的贵金属纳米粒子呈现了可逆的近场耦合现象,基底获得的待测分子的SERS信号强度也是调控的。
     (3)利用相似相溶原理在贵金属Au纳米粒子表面形成PNIPAM凝胶层。以该Au纳米粒子为种子进行原位再生长,得到的较大尺寸Au颗粒对加入的银离子溶液有强的静电引力作用;再采用原位还原的方法,使得大量的Ag纳米粒子被修饰生长在凝胶多孔的网络中,从而得到了卫星式结构的Au@PNIPAM/Ag复合物SERS基底。该基底中凝胶模板由湿态收缩至干态,纳米粒子间隙减小,基底均一性提高,SERS“热点”增多。值得一提的是,单个的Au@PNIPAM/Ag复合物为近微米尺寸,可以实现拉曼光学显微镜直接可视化“找点”,使得信号的重现性提高,检测结果表明对4-ATP和杀螟硫磷的SERS检测的RSD值均小于15%。
     (4)利用阴离子引发剂得到表面带负电荷的凝胶纳米球为模板,将十六烷基三甲基溴化铵(CTAB)稳定的带正电荷、不同长径比的Au纳米棒组装到凝胶模板PNIPAM纳米球表面,得到PNIPAM/Au复合物SERS基底。基于同样的原理,提高温度,凝胶模板收缩,复合物中对应的纳米棒的的紫外吸收峰发生红移。采用不同波长的激发光照射复合物基底,结果表明随着温度的调节(至大于LCST),所得的探针分子的SERS信号均增强,但是,用785nm波长激发光测得的探针分子SERS信号增强最大。说明温度的升高不仅使“热点”增多,也使基底的纳米棒的表面等离子体与入射光产生共振,从而实现最佳匹配。研究表明该基底在785nm入射光激发下,实现了对10-9M农药福美双的高灵敏检测。该基底有望用于便携式拉曼光谱仪(入射光波长大都为785nm)现场检测蔬菜水果中农药残留。
With the development of Surface-enhanced Raman Spectroscopy (SERS) technology, signals can be detected with the sensitivity at the level of signal-molecule level. It is believed that one of the reasons is owing to the enormous electromagnetic enhancement of the plasmonic coupling effect among metal nanoparticles. So the progress of SERS technique is largely dependent on the development of preparation techniques of new SERS active substrates, especially for the controllable "gap" between metal nanoparticles of SERS substrates. In fact, challenges are still remained for fabricating of uniform and efficient SERS substrates. It is necessary to develop simple methods to fabricate SERS substrates which can provide high signal enhancement and uniform signals. Importantly, it is required to optimize the Raman enhancement factor and control the nano-gaps easily. In most cases, once metal nanoparticles assemblies were formed, the spatial distributions of metal nanoparticles building blocks within the composite substrate have been fixed. So, it is very important to develop a new method for more effective SERS substrates.
     Poly (Nisopropylacrylamide)(PNIPAM) has been extensively studied in regard to its well-known phase behavior in aqueous solutions which has the sharpest transition among the class of thermosensitive alkylacrylamide polymers. Indeed, it undergoes a reversible phase transition at a lower critical solution temperature (LCST) of about32℃in pure water from a swollen state to a shrunken state by increasing temperature due to dissociation of the hydrophobic interaction between NIPAM segments and water. Below the LCST, PNIPAM is hydrated and the chains are in an extended conformational state. Above the LCST, PNIPAM is in a collapsed conformational state due to the breaking down of the delicate hydrophilic/hydrophobic balance in the network structure. Dehydration takes place in the PNIPAM which results in the subsequent aggregation of the PNIPAM chain and leads to the shrinking of the hydrogel. In this thesis, we will use thermo-sensitive template to assemble responsive Ag or Au nanoparticles, in which the overall composite dimensions and interparticle spatial distances can respond and adapt to external temperature stimulus. Au or Ag nanoparticles with different shapes were assembled on or inside the swollen hydrogel template, where the gaps between nanoparticles were so big that "hot spots" of these substrates were not obvious. While, if the probe molecules were mixed with these substrates, they would enter the gaps between nanoparticles. Upon SERS detection, the template can shrink due to temperature increase and this will make the gaps between nanoparticles decreasing significantly. Not only the "hot spots" on the substrates will increase instantly, but also the uniform of the whole substrate can also be improved. High sensitivity and reproducibility SERS signals can thus be obtained. This thesis work includes the followings:
     (1) At first, the processes and principles of free radical polymerization for thermo-sensitive microgel polymer PNIPAM were introduced. We give the explanation for the factors affecting synthesis of the optimal microgel template, such as the temperature, the number of the cross-linking agent, kinds of initiators and the reason for the microgel swelling and shrinking et al. At the same time, the Raman spectra of all mononers and SERS spectra of the composite substrates were measured, which are served as blank control to study SERS signals of the probe molecules.
     (2) PNIPAM/Ag composite substrates were synthesized through decorating Ag nanoparticles on the PNIPAM template. PNIPAM nanosphere templates with a positive surface charge were grown using a cationic initiator (AAPH). Ascorbic acid (AA)-reduced silver colloid with negative surface charge was assembled on the surface of the template. With increase of temperature, the largest shrinking ration of the composite was achieved at18%. Dynamic gaps from30.4nm to less than5nm were obtained. These changes led to an increasing of the uniformity and "hot spots" of the substrate. The SERS enhancement for multiple of CV and R6G molecules was about1000times with the template shrinking, consistent with the results estimated by DDA theoretical computation. These novel stimuli-responsive systems offer obvious advantage:a reversible near-field coupling between the Ag nanoparticles, depending on the external temperature and leading to a control over the SERS intensities of probes adsorbed on the substrate.
     (3) Based on the principle of the dissolution in the similar material structure, Au core was covered by PNIPAM shell and then its growth can be controlled in situ. The obtained bigger size Au core would have strong electrostatic attraction to the Ag+(H2O)n (n=1-4) in aqueous solution. This would be followed by the reductive reaction and further growth of vast Ag+(H2O)n attracted into porosity of the gel network. Then, individual Au@PNIPAM/Ag composite with core-satellite structure which can generate plasmon resonance was obtained. Similar to the study in the third chapter, the gaps between metal nanoparticls can decrease because of the PNIPAM template shrinking from wet to dry state. Especially this kind of individual Au@PNIPAM/Ag composite can be found through Raman optical microscope. Uncertain effects on SERS signals resulting from variability of the configurations are minimized because these individual substrates are uniform relatively. The individual substrate can also be used for inspecting pesticide residues accurately and rapidly. The RSD of4-ATP and Sumithion SERS signals were all less than15%.
     (4) PNIPAM nanosphere templates with a negative surface charge were grown using an anionic initiator (KPS). Au nanorods stabilized by CTAB with positive surface charge with different aspect ratio (AR) values were decorated on the thermo-sensitive hydrogel template because of electrostatic attractive force. The surface plasmon bands of Au nanorods were observed an obvious red-shift with increasing temperature due to strong plasmon coupling. This clearly demonstrated that the shrinking of the template drives the decorated Au nanorods closer to each other. Moreover, when the laser was785nm, the SERS enhancement for multiple of the same molecule was the strongest among the different lasers were used. This demonstrated that not only "hot spots" were increased but also SPR of Au nanorods matched more with the laser because of the shrinking of the template. The results showed that Thiram can be detected accurately in10-9M level. It is therefore promising to apply the PNIPAM/Au nanorods substates in protable Raman instrument (the laser is generally785nm) and detect the residual pesticide on the vegetables or apples.
引文
[1]M. Fleischmann, P. J. Hendra, A. Mcquillan. Raman Spectra of Pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters,1974,26:163-166.
    [2]D. L. Jeanmaire, R. P. Vanduyne. Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode[J]. Journal of Electroanalytical Chemistry,1977,84(1):1-20.
    [3]L. L. He, T. Chen, T. P. Labuza. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy[J]. Food Chemistry,2014,148:42-46.
    [4]C. C. Lin, Y. M. Yang, P. H. Liao, et al. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection[J]. Biosensors & Bioelectronics,2014,53: 519-527.
    [5]J. H. Wang, W. M. Zhou, J. Zhang, et al. High-fidelity replica molding for large-area PMMA 3D nanostructures with high performance surface-enhanced Raman scattering and hydrophobicity[J]. Microelectronic Engineering,2014,115: 2-5.
    [6]I. Al-Ogaidi, H. L. Gou, A. K. A. Al-Kazaz, et al. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection[J]. Analytica Chimica Acta,2014,811:76-80.
    [7]L. P. Xia, Z. Yang, S. Y. Yin, et al. Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres[J]. Frontiers of Physics,2014,9(1):64-68.
    [8]E. del Puerto, C. Domingo, J. V. G. Ramos, et al. Adsorption Study and Detection of the High Performance Organic Pigments Quinacridone and 2,9-Dimethylquinacridone on Ag Nanoparticles By Surface-Enhanced Optical Spectroscopy[J]. Langmuir,2014,30(3):753-761.
    [9]A. K. Herrmann, P. Formanek, L. Borchardt, et al. Multimetallic Aerogels by Template-Free Self-Assembly of Au, Ag, Pt, and Pd Nanoparticles[J]. Chemistry of Materials,2014,26(2):1074-1083.
    [10]B. D. Piorek, C. Andreou, M. Moskoyits, et al. Discrete Free-Surface Millifluidics for Rapid Capture and Analysis of Airborne Molecules Using Surface-Enhanced Raman Spectroscopy[J]. Analytical Chemistry,2014,86(2): 1061-1066.
    [11]Z. Yu, L. Chen, Y. Wang, et al. A SERS-active enzymatic product used for the quantification of disease-related molecules [J]. Journal of Raman Spectroscopy, 2014,45(1):75-81.
    [12]H. Chon, S. Lee, S. Y. Yoon, et al. SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction[J]. Chemical Communications,2014,50(9):1058-1060.
    [13]E. C. Leru, P. G Etchegoin. Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects[D].Elsevier:Oxford,2009, p 5-8.
    [14]C. V. Raman, K. S. Krishman. A new type of secondary radiation [J]. Nature, 1928,121:501-502.
    [15]C. V. Raman. A change of wavelength in light scattering[J]. nature physical science,1928,121:619.
    [16]J. Corset, J. Aubard. Foreword to the special issue on surface-enhanced Raman scattering:New trends and applications[J]. Journal of Raman Spectroscopy,1998,29(8):649-650.
    [17]K. B. Crozier, W. Q. Zhu, D. X. Wang, et al. Plasmonics for Surface hnhanced Raman Scattering:Nanoantennas for Single Molecules[J]. Ieee Journal of Selected Topics in Quantum Electronics,2014,20(3).
    [18]W. Xie, P. H. Qiu, C. B. Mao. Bio-imaging, detection and analysis by using nanostructures as SERS substrates[J]. Journal of Materials Chemistry,2011, 21(14):5190-5202.
    [19]J. Y. Huang, W. Wang, C. J. Murphy, et al. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(3):906-911.
    [20]N. Mishra, G V. P. Kumar. Near-Field Optical Analysis of Plasmonic Nano-Probes for Top-Illumination Tip-Enhanced Raman Scattering[J]. Plasmonics,2012,7(2):359-367.
    [21]S. Lefrant, J. P. Buisson, J. Y. Mevellec, et al. Non-linear and resonance effects in carbon nanotube structures [J]. Optical Materials,2011,33(9): 1410-1414.
    [22]C. Steuwe, C. F. Kaminski, J. J. Baumberg, et al. Surface Enhanced Coherent Anti-Stokes Raman Scattering on Nanostructured Gold Surfaces[J]. Nano Letters, 2011,11(12):5339-5343.
    [23]T. W. Koo, S. Chan, A. A. Berlin. Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering[J]. Optics Letters, 2005,30(9):1024-1026.
    [24]P. A. Faria, X. X. Chen, J. R. Lombardi, et al. A surface-enhanced Raman and ab initio study of spectra of lumazine molecules[J]. Langmuir,2000,16(8): 3984-3992.
    [25]L. Y. Bi, Y. Y. Rao, Q. Tao, et al. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection[J]. Biosensors & Bioelectronics,2013,43:193-199.
    [26]F. X. Liu, X. H. Ye, C. J. Tang, et al. Silver macro-texture substrates fabricated by plasma selective etching for surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy,2013,44(3):393-400.
    [27]H. K. Yuan, A. M. Fales, C. G. Khoury, et al. Spectral characterization and intracellular detection of Surface-Enhanced Raman Scattering (SERS)-encoded plasmonic gold nanostars[J]. Journal of Raman Spectroscopy,2013,44(2): 234-239.
    [28]J. Chen, G W. Qin, J. S. Wang, et al. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms [J]. Biosensors & Bioelectronics,2013,44:191-197.
    [29]R. M. Liu, M. J. Feng, D. Q. Zhang, et al. A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate [J]. Applied Surface Science,2013,270:495-502.
    [30]R. M. Liu, D. Q. Zhang, C. B. Cai, et al. NIR-SERS studies of DNA and DNA bases attached on polyvinyl alcohol (PVA) protected silver grass-like nanostructures[J]. Vibrational Spectroscopy,2013,67:71-79.
    [31]L. P. Xia, Z. Yang, S. Y. Yin, et al. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array[J]. Optics Express,2013,21(9):11349-11355.
    [32]X. K. Kong, Q. W. Chen, Z. Y. Sun. Enhanced SERS of the complex substrate using Au supported on graphene with pyridine and R6G as the probe molecules[J]. Chemical Physics Letters,2013,564:54-59.
    [33]A. D. McFarland, M. A. Young, J. A. Dieringer, et al. Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J]. Journal of Physical Chemistry B,2005,109(22):11279-11285.
    [34]A. Otto. On the significance of Shalaev's "hot spots'in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold[J]. Journal of Raman Spectroscopy,2006,37(9):937-947.
    [35]L. M. Tong, T. Zhu, Z. F. Liu. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering:from self-assembled arrays to individual gold nanoparticles[J]. Chemical Society Reviews,2011,40(3):1296-1304.
    [36]J. Chowdhury, K. M. Mukherjee, T. N. Misra. A pH dependent surface-enhanced Raman scattering study of hypoxanthine[J]. Journal of Raman Spectroscopy,2000,31(5):427-431.
    [37]M. Dressel, G. Gruner. Electrodynamics of solids:optical properties of electrons in matter[D].English ed.; Cambridge University Press:Cambridge 2002, p135.
    [38]K. L. Kelly, E. Coronado, L. L. Zhao, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment[J]. Journal of Physical Chemistry B,2003,107(3):668-677.
    [39]J. M. Li, C. Wei, W. F. Ma, et al. Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core-shell nanospheres[J]. Journal of Materials Chemistry 2012,22(24):12100-12106.
    [40]J. M. Li, W. F. Ma, C. Wei, et al. Detecting Trace Melamine in Solution by SERS Using Ag Nanoparticle Coated Poly(styrene-co-acrylic acid) Nanospheres as Novel Active Substrates[J]. Langmuir,2011,27(23):14539-14544.
    [41]T. X. Tan, C. G Tian, Z. Y. Ren, et al. LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy [J]. Physical Chemistry Chemical Physics, 2013,15(48):21034-21042.
    [42]M. V. Rigo, J. Seo, W. J. Kim, et al. Plasmon coupling of R6G-linked gold nanoparticle assemblies for surface-enhanced Raman spectroscopy [J]. Vibrational Spectroscopy,2011,57(2):315-318.
    [43]A. M. Gabudean, D. Biro, S. Astilean. Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods[J]. Journal of Molecular Structure,2011,993(1-3):420-424.
    [44]T. Itoh, T. Uwada, T. Asahi, et al. Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering[J]. Canadian Journal of Analytical Sciences and Spectroscopy,2007,52(3):130-141.
    [45]C. L. Haynes, R. P. Van Duyne. Plasmon-sampled surface-enhanced Raman excitation spectroscopy [J]. Journal of Physical Chemistry B,2003,107(30): 7426-7433.
    [46]W. F. Ma, Y. Zhang, L. L. Li, et al. Tailor-Made Magnetic Fe3O4@mTiO(2) Microspheres with a Tunable Mesoporous Anatase Shell for Highly Selective and Effective Enrichment of Phosphopeptides[J]. Acs Nano,2012,6(4):3179-3188.
    [47]X. Zhou, F. Zhou, H. L. Liu, et al. Assembly of polymer-gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection[J]. Analyst,2013,138(19):5832-5838.
    [48]Y. Fang. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering (vol 321, pg 388,2008)[J]. Science,2008, 322(5909):1790-1790.
    [49]Q. Zhou, Y. Yang, J. E. Ni, et al. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate[J]. Nano Research,2010,3(6):423-428.
    [50]G K. Liu, B. Ren, R. A. Gu, et al. Effect of the intrinsic properties of metals on the adsorption behavior of molecules-competitive and cooperative adsorption of benzene and other species on Pt and Rh surfaces[J]. Journal of Physical Chemistry C,2007,111(8):3417-3426.
    [51]G K. Liu, B. Ren, D. Y. Wu, et al. Effect of intrinsic properties of metals on the adsorption behavior of molecules:Benzene adsorption on Pt group metals[J]. Journal of Physical Chemistry B,2006,110(35):17498-17506.
    [52]S. W. Joo. Surface-enhanced Raman scattering of 4,4'-bipyridine on gold nanoparticle surfaces[J]. Vibrational Spectroscopy,2004,34(2):269-272.
    [53]A. Kudelski, J. Bukowska. Charge-transfer contribution to surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering of dyes at silver and gold electrodes[J]. Chemical Physics Letters,1996,253(3-4):246-250.
    [54]J. C. Ingram, J. E. Pemberton. Comparison of Charge-Transfer Enhancement in the Surface Enhanced Raman-Scattering of Pyridine on Copper and Silver Electrodes[J]. Langmuir,1992,8(8):2034-2039.
    [55]A. Kudelski, J. Bukowska, K. Jackowska. Relative Sers Enhancement Factors for Pyridine Adsorbed on a Silver Electrode-the Chemical Effect in Sers as a Product of Charge-Transfer and Active-Site Mechanisms[J]. Journal of Raman Spectroscopy,1994,25(2):153-158.
    [56]Y. Wang, W. Ji, Z. Yu, et al. Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid[J]. Physical Chemistry Chemical Physics,2014,16(7):3153-3161.
    [57]M. A. Mahmoud, D. O'Neil, M. A. El-Sayed. Hollow and Solid Metallic Nanoparticles in Sensing and in Nanocatalysis[J]. Chemistry of Materials,2014, 26(1):44-58.
    [58]M. A. Mahmoud. Surface-Enhanced Raman Spectroscopy of Double-Shell Hollow Nanoparticles:Electromagnetic and Chemical Enhancements[J]. Langmuir,2013,29(21):6253-6261.
    [59]C. G. Khoury, S. J. Norton, T. Vo-Dinh. Plasmonics of 3-D Nanoshell Dimers Using Multipole Expansion and Finite Element Method[J]. Acs Nano,2009,3(9): 2776-2788.
    [60]K. L. Wustholz, A. I. Henry, J. M. McMahon, et al. Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy [J]. Journal of the American Chemical Society,2010, 132(31):10903-10910.
    [61]M. Couture, Y. Z. Liang, H. P. P. Richard, et al. Tuning the 3D plasmon field of nanohole arrays[J]. Nanoscale,2013,5(24):12399-12408.
    [62]Y. Yokota, K. Ueno, H. Misawa. Highly Controlled Surface-Enhanced Raman Scattering Chips Using Nanoengineered Gold Blocks[J]. Small,2011, 7(2):252-258.
    [63]J. Chen, L. B. Yang. Synthesis and SERS Performance of a Recyclable SERS Substrate Based on Ag NPs Coated TiO2 NT Arrays[J]. Integrated Ferroelectrics, 2013,147(1):17-23.
    [64]M. R. Jones, K. D. Osberg, R. J. Macfarlane, et al. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures[J]. Chemical Reviews, 2011,111(6):3736-3827.
    [65]J. F. Li, Y. F. Huang, Y. Ding, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464(7287):392-395.
    [66]P. Mulvaney, M. Giersig, A. Henglein. Electrochemistry of Multilayer Colloids-Preparation and Absorption-Spectrum of Gold-Coated Silver Particles[J]. Journal of Physical Chemistry,1993,97(27):7061-7064.
    [67]J. H. Hodak, A. Henglein, M. Giersig, et al. Laser-induced inter-diffusion in AuAg core-shell nanoparticles[J]. Journal of Physical Chemistry B,2000, 104(49):11708-11718.
    [68]M. R. Langille, M. L. Personick, C. A. Mirkin. Plasmon-Mediated Syntheses of Metallic Nanostructures[J]. Angewandte Chemie-International Edition,2013, 52(52):13910-13940.
    [69]C. Xue, C. A. Mirkin. pH-switchable silver nanoprism growth pathways[J]. Angewandte Chemie-International Edition,2007,46(12):2036-2038.
    [70]M. R. Langille, J. A. Zhang, C. A. Mirkin. Plasmon-Mediated Synthesis of Heterometallic Nanorods and Icosahedra[J]. Angewandte Chemie-International Edition,2011,50(15):3543-3547.
    [71]C. Xue, J. E. Millstone, S. Y. Li, et al. Plasmon-driven synthesis of triangular core-shell nanoprisms from gold seeds[J]. Angewandte Chemie-International Edition,2007,46(44):8436-8439.
    [72]S. J. Oldenburg, R. D. Averitt, S. L. Westcott, et al. Nanoengineering of optical resonances[J]. Chemical Physics Letters,1998,288(2-4):243-247.
    [73]Z. C. Xu, Y. L. Hou, S. H. Sun. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties[J]. Journal of the American Chemical Society,2007,129(28):8698-8701.
    [74]Y. J. Ye, J. Chen, Q. Q. Ding, et al. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants [J]. Nanoscale, 2013,5(13):5887-5895.
    [75]Q. Q. Ding, H. L. Liu, L. B. Yang, et al. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates[J]. Journal of Materials Chemistry,2012,22(37):19932-19939.
    [76]Q. Q. Ding, Y. M. Ma, Y. J. Ye, et al. A simple method to prepare the magnetic Ni@Au core-shell nanostructure for the cycle surface enhanced Raman scattering substrates[J]. Journal of Raman Spectroscopy,2013,44(7):987-993.
    [77]K. D. Osberg, A. L. Schmucker, A. J. Senesi, et al. One-Dimensional Nanorod Arrays:Independent Control of Composition, Length, and Interparticle Spacing with Nanometer Precision[J]. Nano Letters,2011,11(2):820-824.
    [78]H. L. Liu, Y. D. Sun, Z. Jin, et al. Capillarity-constructed reversible hot spots for molecular trapping inside silver nanorod arrays light up ultrahigh SERS enhancement[J]. Chemical Science,2013,4(9):3490-3496.
    [79]L. D. Qin, S. Park, L. Huang, et al. On-wire lithography[J]. Science,2005, 309(5731):113-115.
    [80]A. Sundaramurthy, P. J. Schuck, N. R. Conley, et al. Toward nanometer-scale optical photolithography:Utilizing the near-field of bowtie optical nanoantennas[J]. Nano Letters,2006,6(3):355-360.
    [81]J. S. Shumaker-Parry, H. Rochholz, M. Kreiter. Fabrication of crescent-shaped optical antennas[J]. Advanced Materials,2005,17(17): 2131-2134.
    [82]C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature,1996, 382(6592):607-609.
    [83]Z. T. Li, Z. N. Zhu, W. J. Liu, et al. Reversible Plasmonic Circular Dichroism of Au Nanorod and DNA Assemblies[J]. Journal of the American Chemical Society,2012,134(7):3322-3325.
    [84]F. A. Aldaye, H. F. Sleiman. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles [J]. Angewandte Chemie-International Edition,2006,45(14):2204-2209.
    [85]J. D. Le, Y. Pinto, N. C. Seeman, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface[J]. Nano Letters,2004,4(12): 2343-2347.
    [86]C. L. Chen, P. J. Zhang, N. L. Rosi. A new peptide-based method for the design and synthesis of nanoparticle superstructures:Construction of highly ordered gold nanoparticle double helices[J]. Journal of the American Chemical Society,2008,130(41):13555-13558.
    [87]L. C. Brousseau, J. P. Novak, S. M. Marinakos, et al. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers[J]. Advanced Materials,1999,11(6):447-450.
    [88]G. A. DeVries, M. Brunnbauer, Y. Hu, et al. Divalent metal nanoparticles[J]. Science,2007,315(5810):358-361.
    [89]S. Fullam, D. Cottell, H. Rensmo, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires[J]. Advanced Materials, 2000,12(19):1430-1432.
    [90]S. Srivastava, B. L. Frankamp, V. M. Rotello. Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers[J]. Chemistry of Materials,2005,17(3):487-490.
    [91]E. R. Zubarev, J. Xu, A. Sayyad, et al. Amphiphilic gold nanoparticles with V-shaped arms[J]. Journal of the American Chemical Society,2006,128(15): 4958-4959.
    [92]J. H. Fang, C. N. Wang, M. Cao, et al. Preparation and properties of multi-functional Fe3O4@PNIPAM-AAM@Au composites[J]. Materials Letters, 2013,96:89-92.
    [93]M. Mueller, M. Tebbe, D. V. Andreeva, et al. Large-Area Organization of pNIPAM-Coated Nanostars as SERS Platforms for Polycyclic Aromatic Hydrocarbons Sensing in Gas Phase[J]. Langmuir,2012,28(24):9168-9173.
    [94]R. Contreras-Caceres, S. Carregal-Romero, R. Alvarez-Puebla, et al. Nanocomposites based on a gold core and pNIPAM shell:Nanoreactors and molecular traps for SERS[J]. Abstracts of Papers of the American Chemical Society,2009,238.
    [95]R. A. Alvarez-Puebla, R. Contreras-Caceres, I. Pastoriza-Santos, et al. Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis[J]. Angewandte Chemie-International Edition,2009, 48(1):138-143.
    [96]R. Contreras-Caceres, I. Pastoriza-Santos, R. A. Alvarez-Puebla, et al. Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface-Enhanced Raman Scattering Detection[J]. Chemistry-a European Journal, 2010,16(31):9462-9467.
    [97]R. Contreras-Caceres, S. Abade-Cela, P. Guardia-Giros, et al. Multifunctional Microgel Magnetic/Optical Traps for SERS Ultradetection[J]. Langmuir,2011, 27(8):4520-4525.
    [98]H. Gehan, L. Fillaud, M. M. Chehimi, et al. Thermo-induced Electromagnetic Coupling in Gold/Polymer Hybrid Plasmonic Structures Probed by Surface-Enhanced Raman Scattering[J]. Acs Nano,2010,4(11):6491-6500.
    [99]T. Wu, Q. Q. Zhang, J. M. Hu, et al. Composite silica nanospheres covalently anchored with gold nanoparticles at the outer periphery of thermoresponsive polymer brushes[J]. Journal of Materials Chemistry,2012,22(11):5155-5163.
    [100]C. Fernandez-Lopez, C. Perez-Balado, J. Perez-Juste, et al. A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes[J]. Soft Matter,2012,8(15):4165-4170.
    [101]W. H. Tsai, F. J. Boerio, S. J. Clarson, et al. Characterization of Adsorbed 2-Vinylpyridine Styrene Diblock Copolymers on Silver Surfaces Using Surface-Enhanced Raman-Scattering[J]. Macromolecules,1991,24(9): 2538-2545.
    [102]P. P. Hong, F. J. Boerio, M. Tirrell, et al. An Investigation of the Adsorption of Polystyrene Poly(2-Vinylpyridine) Diblock Copolymers onto Silver Substrates Using Surface-Enhanced Raman-Scattering[J]. Macromolecules,1993,26(15): 3953-3959.
    [103]Y. N. Kim, J. M. Kum, H. M. Lee, et al. Patterning of gold nano-octahedra using electron irradiation combined with thermal treatment and post-cleaning process[J]. Journal of Nanoparticle Research,2012,14(4).
    [104]Z. C. Liu, T. X. Chang, H. Y. Huang, et al. Gold nanoparticle arrays assembled on the reconstructed surface of block copolymer thin films[J]. Rsc Advances,2013,3(43):20464-20470.
    [105]N. Murshid, V. Kitaev. Role of poly(vinylpyrrolidone) (PVP) and other sterically protecting polymers in selective stabilization of{111} and {100} facets in pentagonally twinned silver nanoparticles [J]. Chemical Communications, 2014,50(10):1247-1249.
    [106]P. Piotrowski, B. Wrzosek, A. Krolikowska, et al. A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles[J]. Analyst,2014,139(5):1101-1111.
    [107]K. Akamatsu, M. Shimada, T. Tsuruoka, et al. Synthesis of pH-Responsive Nanocomposite Microgels with Size-Controlled Gold Nanoparticles from Ion-Doped, Lightly Cross-Linked Poly(vinylpyridine)[J]. Langmuir,2010,26(2): 1254-1259.
    [108]X. Y. Liu, C. Zhang, J. M. Yang, et al. Silver nanoparticles loading pH responsive hybrid microgels:pH tunable plasmonic coupling demonstrated by surface enhanced Raman scattering[J]. Rsc Advances,2013,3(10):3384-3390.
    [109]V. Kozlovskaya, E. Kharlampieva, B. P. Khanal, et al. Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials[J]. Chemistry of Materials,2008,20(24):7474-7485.
    [110]R. Contreras-Caceres, C. Dawson, P. Formanek, et al. Polymers as Templates for Au and Au@Ag Bimetallic Nanorods:UV-Vis and Surface Enhanced Raman Spectroscopy[J]. Chemistry of Materials,2013,25(2):158-169.
    [111]X. Wang, M. H. Li, L. Y. Meng, et al. Probing the Location of Hot Spots by Surface-Enhanced Raman Spectroscopy:Toward Uniform Substrates[J]. Acs Nano,2014,8(1):528-536.
    [112]M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, et al. Molecular plasmonics for nanoscale spectroscopy [J]. Chemical Society Reviews,2014,43(4): 1230-1247.
    [1]R. H. Pelton, P. Chibante. Preparation of Aqueous Lattices with N-Isopropylacrylamide[J]. Colloids and Surfaces,1986,20(3):247-256.
    [2]K. C. Tam, S. Ragaram, R. H. Pelton. Interaction of Surfactants with Poly(N-Isopropylacrylamide) Microgel Latexes[J]. Langmuir,1994,10(2): 418-422.
    [3]M. A. Lifson, D. B. Roy, B. L. Miller. Enhancing the Detection Limit of Nanoscale Biosensors via Topographically Selective Functionalization[J]. Analytical Chemistry,2014,86(2):1016-1022.
    [4]Z. B. Hu, X. M. Zhang, Y. Li. Synthesis and Application of Modulated Polymer Gels[J]. Science,1995,269(5223):525-527.
    [5]X. L. Yang, Y. L. Luo, F. Xu, et al. Thermosensitive mPEG-b-PA-g-PNIPAM Comb Block Copolymer Micelles:Effect of Hydrophilic Chain Length and Camptothecin Release Behavior[J]. Pharmaceutical Research,2014,31(2): 291-304.
    [6]B. Peng, X. H. Yuan, M. Y. Zhu, et al. An "active" and self-switchable nanoreactor[J]. Polymer Chemistry,2014,5(2):562-566.
    [7]W. Ha, Y. Kang, S. L. Peng, et al. Vesicular gold assemblies based on host-guest inclusion and its controllable release of doxorubicin[J]. Nanotechnology,2013, 24(49).
    [8]C. S. Thomas, L. Z. Xu, B. D. Olsen. Effect of Small Molecule Osmolytes on the Self-Assembly and Functionality of Globular Protein-Polymer Diblock Copolymers[J]. Biomacromolecules,2013,14(9):3064-3072.
    [9]G. F. Zhou, Y. B. Zhao, J. D. Hu, et al. A new drug-loading technique with high efficaciency and sustained-releasing ability via the Pickering emulsion interfacial assembly of temperature/pH-sensitive nanogels[J]. Reactive & Functional Polymers,2013,73(11):1537-1543.
    [10]K. Kubota, K. Hamano, N. Kuwahara, et al. Characterization of Poly(N-Isopropylmethacrylamide) in Water[J]. Polymer Journal,1990,22(12): 1051-1057.
    [11]S. Q. Zhou, C. Wu. Laser-Light Scattering Study of a Very Dilute Water/Sodium Bis(2-Ethylhexyl)Sulfosuccinate/N-Hexane Microemulsion Stabilized by Poly(N-Isopropylacrylamide)[J]. Macromolecules,1995,28(15): 5225-5229.
    [12]Y. Tamai, H. Tanaka, K. Nakanishi. Molecular dynamics study of water in hydrogels[J]. Molecular Simulation,1996,16(4-6):359-374.
    [13]X. Dong, X. Y. Liu, L. S. Zha. Synthesis, Properties and Applications of Gold or Silver Nanoparticles Loaded Intelligent Hybrid Microgels[J]. Progress in Chemistry,2013,25(12):2038-2052.
    [14]S. E. J. Bell, S. J. Spence. Disposable, stable media for reproducible surface-enhanced Raman spectroscopy[J]. Analyst,2001,126(1):1-3.
    [15]C. Y. Jiang, Y. Qian, Q. A. Gao, et al. In Situ controllable preparation of gold nanorods in thermo-responsive hydrogels and their application in surface enhanced Raman scattering[J]. Journal of Materials Chemistry,2010,20(39): 8711-8716.
    [16]F. Tanaka, T. Koga, H. Kojima, et al. Temperature-and Tension-Induced Coil-Globule Transition of Poly(N-isopropylacrylamide) Chains in Water and Mixed Solvent of Water/Methanol[J]. Macromolecules,2009,42(4):1321-1330.
    [17]F. Tanaka, T. Koga, H. Kojima, et al. Hydration and phase separation of temperature-sensitive water-soluble polymers [J]. Chinese Journal of Polymer Science,2011,29(1):13-21.
    [18]Y. Okada, F. Tanaka. Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions [J]. Macromolecules, 2005,38(10):4465-4471.
    [19]C. Wu, S. Q. Zhou. Light scattering study of spherical poly(N-isopropylacrylamide) microgels[J]. Journal of Macromolecular Science-Physics,1997, B36(3):345-355.
    [20]Y. Tamai, H. Tanaka, K. Nakanishi. Molecular dynamics study of polymer-water interaction in hydrogels.2. Hydrogen-bond dynamics[J]. Macromolecules,1996,29(21):6761-6769.
    [21]F. M. Winnik, A. R. Davidson, G. K. Hamer, et al. Amphiphilic Poly(N-Isopropylacrylamides) Prepared by Using a Lipophilic Radical Initiator-Synthesis and Solution Properties in Water[J]. Macromolecules,1992,25(7): 1876-1880.
    [22]薛松.有机结构分析[D].中国科学技术大学出版社:合肥,2004,p22-23.
    [23]X. B. Hu, T. Wang, L. J. Xiong, et al. Preferential Adsorption of Poly(ethylene glycol) on Hectorite Clay and Effects on Poly(N-isopropylacrylamide)/Hectorite Nanocomposite Hydrogels [J]. Langmuir, 2010,26(6):4233-4238.
    [24]H. J. Lai, Z. W. Wang, P. Y. Wu. Structural evolution in a biphasic system: poly(N-isopropylacrylamide) transfer from water to hydrophobic ionic liquid[J]. Rsc Advances,2012,2(31):11850-11857.
    [25]D. Dupin, S. Fujii, S. P. Armes, et al. Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization[J]. Langmuir,2006,22(7):3381-3387.
    [26]R. Contreras-Caceres, C. Dawson, P. Formanek, et al. Polymers as Templates for Au and Au@Ag Bimetallic Nanorods:UV-Vis and Surface Enhanced Raman Spectroscopy[J]. Chemistry of Materials,2013,25(2):158-169.
    [27]Y. F. Jiao, Y. F. Sun, B. S. Chang, et al. Redox- and Temperature-Controlled Drug Release from Hollow Mesoporous Silica Nanoparticles[J]. Chemistry-a European Journal,2013,19(45):15410-15420.
    [28]N. Toncheva, C. Tsvetanov, S. Rangelov, et al. Hydroxyl end-functionalized poly(2-isopropyl oxazoline)s used as nano-sized colloidal templates for preparation of hollow polymeric nanocapsules[J]. Polymer,2013,54(19): 5166-5173.
    [29]X. Z. Jiang, G. Y. Zhang, R. Narain, et al. Covalently stabilized temperature and pH responsive four-layer nanoparticles fabricated from surface 'clickable' shell cross-linked micelles[J]. Soft Matter,2009,5(7):1530-1538.
    [30]S. Nayak, D. J. Gan, M. J. Serpe, et al. Hollow thermoresponsive microgels[J]. Small,2005,1(4):416-421.
    [31]H. Senff, W. Richtering. Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres[J]. Journal of Chemical Physics,1999,111(4):1705-1711.
    [32]X. Z. Jiang, Z. S. Ge, J. Xu, et al. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability [J]. Biomacromolecules,2007,8(10): 3184-3192.
    [33]L. B. Sagle, Y. J. Zhang, V. A. Litosh, et al. Investigating the Hydrogen-Bonding Model of Urea Denaturation[J]. Journal of the American Chemical Society,2009,131(26):9304-9310.
    [34]Z. Y. Meng, J. K. Cho, S. Debord, et al. Crystallization behavior of soft, attractive microgels[J]. Journal of Physical Chemistry B,2007,111(25): 6992-6997.
    [35]A. K. Lele, M. M. Hirve, M. V. Badiger, et al. Predictions of bound water content in poly(N-isopropylacrylamide) gel[J]. Macromolecules,1997,30(1): 157-159.
    [36]X. B. Hu, Z. Tong, L. A. Lyon. Control of Poly(N-isopropylacrylamide) Microgel Network Structure by Precipitation Polymerization near the Lower Critical Solution Temperature[J]. Langmuir,2011,27(7):4142-4148.
    [37]X. B. Hu, Z. Tong, L. A. Lyon. Multicompartment Core/Shell MicrogelsfJ]. Journal of the American Chemical Society,2010,132(33):11470-11472.
    [38]Y. P. Wu, F. Zhou, L. B. Yang, et al. A shrinking strategy for creating dynamic SERS hot spots on the surface of thermosensitive polymer nanospheres[J]. Chemical Communications,2013,49(44):5025-5027.
    [39]J. A. Pang, H. Yang, J. Ma, et al. Solvation Behaviors of N-Isopropylacrylamide in Water/Methanol Mixtures Revealed by Molecular Dynamics Simulations[J]. Journal of Physical Chemistry B,2010,114(26): 8652-8658.
    [40]R. Contreras-Caceres, I. Pastoriza-Santos, R. A. Alvarez-Puebla, et al. Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface-Enhanced Raman Scattering Detection[J]. Chemistry-a European Journal, 2010,16(31):9462-9467.
    [41]Y. M. Ma, Q. Q. Ding, L. B. Yang, et al. Ag nanoparticles as multifunctional SERS substrate for the adsorption, degradation and detection of dye molecules[J]. Applied Surface Science,2013,265:346-351.
    [42]李小灵.基于新型SERS基底的功能化自组装膜研究[D].博士,吉林大学,2004,p32.
    [43]J. L. Gong, J. H. Jiang, H. F. Yang, et al. Novel dye-embedded core-shell nanoparticles as surface-enhanced Raman scattering tags for immunoassay[J]. Analytica Chimica Acta,2006,564(2):151-157.
    [44]J. L. Gong, J. H. Jiang, Y. Liang, et al. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology [J]. Journal of Colloid and Interface Science, 2006,298(2):752-756.
    [45]Z. Jovanovic, A. Radosavljevic, J. Stojkovska, et al. Silver/Poly(N-vinyl-2-pyrrolidone) Hydrogel Nanocomposites Obtained by Electrochemical Synthesis of Silver Nanoparticles Inside the Polymer Hydrogel Aimed for Biomedical Applications[J]. Polymer Composites,2014,35(2): 217-226.
    [46]Y. C. Tsao, S. Rej, C. Y. Chiu, et al. Aqueous Phase Synthesis of Au-Ag Core-Shell Nanocrystals with Tunable Shapes and Their Optical and Catalytic Properties[J]. Journal of the American Chemical Society,2014,136(1):396-404.
    [47]N. Kalhor, S. A. Boden, H. Mizuta. Sub-10 nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices[J]. Microelectronic Engineering,2014,114:70-77.
    [1]X. Wang, M. H. Li, L. Y. Meng, et al. Probing the Location of Hot Spots by Surface-Enhanced Raman Spectroscopy:Toward Uniform Substrates[J]. Acs Nano,2014,8(1):528-536.
    [2]Z. Guo, J. Hwang, B. Zhao, et al. Ultrasensitive trace analysis for 2,4,6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots [J]. Analyst,2014,139(4):807-812.
    [3]J. F. Li, Y. F. Huang, Y. Ding, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464(7287):392-395.
    [4]K. B. Kim, J. H. Han, H. Choi, et al. Dynamic Preconcentration of Gold Nanoparticles for Surface-Enhanced Raman Scattering in a Microfluidic System[J]. Small,2012,8(3):378-383.
    [5]J. Mertens, A. L. Eiden, D. O. Sigle, et al. Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene[J]. Nano Letters,2013, 13(11):5033-5038.
    [6]T. Siegfried, Y. Ekinci, O. J. F. Martin, et al. Gap Plasmons and Near-Field Enhancement in Closely Packed Sub-10 nm Gap Resonators[J]. Nano Letters,2013,13(11):5449-5453.
    [7]D. K. Lim, K. S. Jeon, H. M. Kim, et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection[J]. Nature Materials,2010,9(1):60-67.
    [8]J. A. Fan, Y. He, K. Bao, et al. DNA-Enabled Self-Assembly of Plasmonic Nanoclusters[J]. Nano Letters,2011,11(11):4859-4864.
    [9]J. Zeng, J. L. Huang, W. Lu, et al. Necklace-like noble-metal hollow nanoparticle chains:Synthesis and tunable optical properties [J]. Advanced Materials,2007,19(16):2172-2175.
    [10]Y. Yang, S. Matsubara, M. Nogami, et al. One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties [J]. Nanotechnology,2006,17(11):2821-2827.
    [11]M. P. Cecchini, V. A. Turek, J. Paget, et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nature Materials,2013,12(2):165-171.
    [12]G. O. Menendez, E. Cortes, D. Grumelli, et al. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces [J]. Nanoscale,2012,4(2):531-540.
    [13]L. Zhang, C. Wang, Y. Zhang. A facile strategy to synthesize bimetallic Au/Ag nanocomposite film by layer-by-layer assembly technique[J]. Applied Surface Science,2012,258(14):5312-5318.
    [14]C. Y. Jiang, S. Markutsya, V. V. Tsukruk. Compliant, robust, and truly nanoscale free-standing multilayer films fabricated using spin-assisted layer-by-layer assembly [J]. Advanced Materials,2004, 16(2):157-161.
    [15]H. Mattoussi, M. F. Rubner, F. Zhou, et al. Photovoltaic heterostructure devices made of sequentially adsorbed poly(phenylene vinylene) and functionalized C-60[J]. Applied Physics Letters,2000, 77(10):1540-1542.
    [16]X. Zhou, H. L. Liu, L. B. Yang, et al. SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film[J]. Analyst,2013,138(6):1858-1864.
    [17]F. Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science,1998, 282(5391):1111-1114.
    [18]D. Q. Wu, Y. X. Sun, X. D. Xu, et al. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release[J]. Biomacromolecules,2008,9(4):1155-1162.
    [19]A. Sanchez-Iglesias, M. Grzelczak, B. Rodriguez-Gonzalez, et al. Synthesis of Multifunctional Composite Microgels via In Situ Ni Growth on pNIPAM-Coated Au Nanoparticles[J]. Acs Nano,2009,3(10): 3184-3190.
    [20]R. Contreras-Caceres, I. Pastoriza-Santos, R. A. Alvarez-Puebla, et al. Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface-Enhanced Raman Scattering Detection[J]. Chemistry-a European Journal,2010,16(31):9462-9467.
    [21]X. Y. Liu, C. Zhang, J. M. Yang, et al. Silver nanoparticles loading pH responsive hybrid microgels:pH tunable plasmonic coupling demonstrated by surface enhanced Raman scattering [J]. Rsc Advances, 2013,3(10):3384-3390.
    [22]A. A. Polotsky, F. A. Plamper, O. V. Borisov. Collapse-to-Swelling Transitions in pH-and Thermoresponsive Microgels in Aqueous Dispersions:The Thermodynamic Theory [J]. Macromolecules,2013, 46(21):8702-8709.
    [23]I. Tokareva, S. Minko, J. H. Fendler, et al. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy[J]. Journal of the American Chemical Society,2004,126(49):15950-15951.
    [24]Q. P. Zhao, N. P. Chen, D. L. Zhao, et al. Thermoresponsive Magnetic Nanoparticles for Seawater Desalination [J]. Acs Applied Materials & Interfaces,2013,5(21):11453-11461.
    [25]N. Y. Lu, K. Yang, J. L. Li, et al. Controlled Drug Loading and Release of a Stimuli-Responsive Lipogel Consisting of Poly(N-isopropylacrylamide) Particles and Lipids[J]. Journal of Physical Chemistry B,2013,117(33):9677-9682.
    [26]S. Nayak, S. Bhattacharjee, Y. S. Chaudhary. In Situ Encapsulation and Release Kinetics of pH and Temperature Responsive Nanogels[J]. Journal of Physical Chemistry C,2012,116(1):30-36.
    [27]M. Toma, U. Jonas, A. Mateescu, et al. Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications [J]. Journal of Physical Chemistry C,2013,117(22):11705-11712.
    [28]H. Gehan, L. Dos Santos, S. Lau, et al. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface enhanced Raman scattering[J]. Plasmonics:Metallic Nanostructures and Their Optical Properties Ix,2011,8096.
    [29]H. Gehan, L. Fillaud, M. M. Chehimi, et al. Thermo-induced Electromagnetic Coupling in Gold/Polymer Hybrid Plasmonic Structures Probed by Surface-Enhanced Raman Scattering[J]. Acs Nano,2010, 4(11):6491-6500.
    [30]Y. Lu, G. L. Liu, L. P. Lee. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate[J]. Nano Letters,2005,5(1):5-9.
    [31]J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan. Multifunctionality in metal@microgel colloidal nanocomposites[J]. Journal of Materials Chemistry A,2013,1(1):20-26.
    [32]M. Karg, I. Pastoriza-Santos, J. Perez-Juste, et al. Nanorod-coated PNIPAM microgels:Thermoresponsive optical properties [J]. Small, 2007,3(7):1222-1229.
    [33]R. A. Alvarez-Puebla, R. Contreras-Caceres, I. Pastoriza-Santos, et al. Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis[J]. Angewandte Chemie-International Edition,2009,48(1):138-143.
    [34]D. D. Li, J. Wang, G. C. Zheng, et al. A highly active SERS sensing substrate:core-satellite assembly of gold nanorods/nanoplates[J]. Nanotechnology,2013,24(23).
    [35]J. Prinz, B. Schreiber, L. Olejko, et al. DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering[J]. Journal of Physical Chemistry Letters,2013,4(23):4140-4145.
    [36]M. J. A. Hore, B. Hammouda, Y. Y. Li, et al. Co-Nonsolvency of Poly(n-isopropylacrylamide) in Deuterated Water/Ethanol Mixtures[J]. Macromolecules,2013,46(19):7894-7901.
    [37]J. Wahrmund, J. W. Kim, L. Y. Chu, et al. Swelling Kinetics of a Microgel Shell[J]. Macromolecules,2009,42(23):9357-9365.
    [38]P. K. Jain, M. A. El-Sayed. Plasmonic coupling in noble metal nanostructures[J]. Chemical Physics Letters,2010,487(4-6):153-164.
    [39]L. B. Yang, Y. H. Shen, A. J. Xie, et al. Facile size-controlled synthesis of silver nanoparticles in UV-irradiated tungstosilicate acid solution[J]. Journal of Physical Chemistry C,2007,111(14):5300-5308.
    [40]M. Karg, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, et al. Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels[J]. Langmuir,2008,24(12):6300-6306.
    [41]M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, et al. Single-Molecule Tip-Enhanced Raman Spectroscopy[J]. Journal of Physical Chemistry C,2012,116(1):478-483.
    [42]X. J. Liu, L. K. Pan, T. Lv, et al. Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI)[J]. Rsc Advances,2011,1(7):1245-1249.
    [43]G. Braun, I. Pavel, A. R. Morrill, et al. Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots[J]. Journal of the American Chemical Society,2007, 129(25):7760-7762.
    [44]N. R. Jana, T. Pal. Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates [J]. Advanced Materials,2007, 19(13):1761-1763.
    [45]S. J. Lee, M. Moskovits. Visualizing Chromatographic Separation of Metal Ions on a Surface-Enhanced Raman Active Medium [J]. Nano Letters,2011,11(1):145-150.
    [46]S. M. Nie, S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997, 275(5303):1102-1106.
    [47]C. Y. Lin, C. J. Yu, Y. H. Lin, et al. Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles[J]. Analytical Chemistry,2010,82(16):6830-6837.
    [48]N. G. Greeneltch, M. G. Blaber, A. I. Henry, et al. Immobilized Nanorod Assemblies:Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates[J]. Analytical Chemistry,2013,85(4):2297-2303.
    [1]K. Kneipp, Y. Wang, H. Kneipp, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters,1997, 78(9):1667-1670.
    [2]S. Habuchi, M. Cotlet, R. Gronheid, et al. Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein[J]. Journal of the American Chemical Society,2003,125(28):8446-8447.
    [3]S. Lee, H. Chon, J. Lee, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging[J]. Biosensors & Bioelectronics,2014,51:238-243.
    [4]J. A. Huang, Y. Q. Zhao, X. J. Zhang, et al. Ordered Ag/Si Nanowires Array: Wide-Range Surface-Enhanced Raman Spectroscopy for Reproducible Biomolecule Detection[J]. Nano Letters,2013,13(11):5039-5045.
    [5]X. L. Zhu, L. Shi, M. S. Schmidt, et al. Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays[J]. Nano Letters,2013,13(10): 4690-4696.
    [6]C. X. Zhang, L. Su, Y. F. Chan, et al. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering[J]. Nanotechnology,2013,24(33).
    [7]Q. Shao, R. H. Que, M. W. Shao, et al. Copper Nanoparticles Grafted on a Silicon Wafer and Their Excellent Surface-Enhanced Raman Scattering[J]. Advanced Functional Materials,2012,22(10):2067-2070.
    [8]R. G. Freeman, K. C. Grabar, K. J. Allison, et al. Self-Assembled Metal Colloid Monolayers-an Approach to Sers Substrates[J]. Science,1995,267(5204): 1629-1632.
    [9]Y. Fang, N. H. Seong, D. D. Dlott. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering[J]. Science,2008, 321(5887):388-392.
    [10]K. V. Kong, Z. Y. Lam, W. K. O. Lau, et al. A Transition Metal Carbonyl Probe for Use in a Highly Specific and Sensitive SERS-Based Assay for Glucose[J]. Journal of the American Chemical Society,2013,135(48): 18028-18031.
    [11]F. K. Guedje, M. Giloan, M. Potara, et al. Optical properties of single silver triangular nanoprism[J]. Physica Scripta,2012,86(5).
    [12]Z. G Dai, X. H. Xiao, Y. P. Zhang, et al. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays[J]. Nanotechnology,2012,23(33).
    [13]K. Christou, I. Knorr, J. Ihlemann, et al. Fabrication and Characterization of Homogeneous Surface-Enhanced Raman Scattering Substrates by Single Pulse UV-Laser Treatment of Gold and Silver Films[J]. Langmuir,2010,26(23): 18564-18569.
    [14]P. R. Sajanlal, T. Pradeep. Mesoflowers:A New Class of Highly Efficient Surface-Enhanced Raman Active and Infrared-Absorbing Materials[J]. Nano Research,2009,2(4):306-320.
    [15]T. Y. Olson, A. M. Schwartzberg, C. A. Orme, et al. Hollow gold-silver double-shell nanospheres:Structure, optical absorption, and surface-enhanced Raman scattering[J]. Journal of Physical Chemistry C,2008,112(16): 6319-6329.
    [16]P. Aldeanueva-Potel, E. Faoucher, R. A. Alvarez-Puebla, et al. Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots[J]. Analytical Chemistry,2009,81(22):9233-9238.
    [17]E. Z. Tan, P. G Yin, T. T. You, et al. Three Dimensional Design of Large-Scale TiO2 Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection[J]. Acs Applied Materials & Interfaces,2012,4(7):3432-3437.
    [18]S. L. Kleinman, B. Sharma, M. G. Blaber, et al. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy[J]. Journal of the American Chemical Society,2013, 135(1):301-308.
    [19]B. D. Piorek, C. Andreou, M. Moskoyits, et al. Discrete Free-Surface Millifluidics for Rapid Capture and Analysis of Airborne Molecules Using Surface-Enhanced Raman Spectroscopy[J]. Analytical Chemistry,2014,86(2): 1061-1066.
    [20]A. Q. Chen, A. E. DePrince, A. Demortiere, et al. Self-Assembled Large Au Nanoparticle Arrays with Regular Hot Spots for SERS[J]. Small,2011,7(16): 2365-2371.
    [21]C. Chen, J. A. Hutchison, F. Clemente, et al. Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering[J]. Angewandte Chemie-International Edition,2009,48(52):9932-9935.
    [22]G. Braun, I. Pavel, A. R. Morrill, et al. Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots[J]. Journal of the American Chemical Society,2007,129(25):7760-7763.
    [23]J. P. Camden, J. A. Dieringer, Y. M. Wang, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots[J]. Journal of the American Chemical Society,2008,130(38):12616-12619.
    [24]P. H. C. Camargo, M. Rycenga, L. Au, et al. Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes[J]. Angewandte Chemie-International Edition,2009,48(12):2180-2184.
    [25]Z. Liu, F. L. Zhang, Z. B. Yang, et al. Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy[J]. Journal of Materials Chemistry C,2013,1(35):5567-5576.
    [26]H. X. Lin, J. M. Li, B. J. Liu, et al. Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy[J]. Physical Chemistry Chemical Physics,2013,15(12):4130-4135.
    [27]I. Yoon, T. Kang, W. Choi, et al. Single Nanowire on a Film as an Efficient SERS-Active Platform[J]. Journal of the American Chemical Society,2009, 131(2):758-762.
    [28]R. Y. Liu, B. H. Liu, G J. Guan, et al. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays[J]. Chemical Communications,2012,48(75):9421-9423.
    [29]X. H. Tang, W. Y. Cai, L. B. Yang, et al. Highly uniform and optical visualization of SERS substrate for pesticide analysis based on Au nanoparticles grafted on dendritic alpha-Fe2O3[J]. Nanoscale,2013,5(22):11193-11199.
    [30]X. Y. Xu, N. L. Rosi, Y. H. Wang, et al. Asymmetric functionalization of gold nanoparticles with oligonucleotides[J]. Journal of the American Chemical Society,2006,128(29):9286-9287.
    [31]J. A. Fan, Y. He, K. Bao, et al. DNA-Enabled Self-Assembly of Plasmonic Nanoclusters[J]. Nano Letters,2011,11(11):4859-4864.
    [32]F. W. Huo, A. K. R. Lytton-Jean, C. A. Mirkin. Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects[J]. Advanced Materials,2006,18(17):2304-2306.
    [33]N. Gandra, A. Abbas, L. M. Tian, et al. Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures[J]. Nano Letters,2012, 12(5):2645-2651.
    [34]D. D. Li, J. Wang, G. C. Zheng, et al. A highly active SERS sensing substrate: core-satellite assembly of gold nanorods/nanoplates[J]. Nanotechnology,2013, 24(23).
    [35]Y. P. Wu, F. Zhou, L. B. Yang, et al. A shrinking strategy for creating dynamic SERS hot spots on the surface of thermosensitive polymer nanospheres[J]. Chemical Communications,2013,49(44):5025-5027.
    [36]J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, et al. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes[J]. Langmuir,2006,22(16):7007-7010.
    [37]J. H. Ohaver, J. H. Harwell, E. A. Orear, et al. In-Situ Formation of Polystyrene in Adsorbed Surfactant Bilayers on Precipitated SilicafJ]. Langmuir, 1994,10(8):2588-2593.
    [38]D. Feller, E. D. Glendening, W. A. de Jong. Structures and binding enthalpies of M+(H2O)(n) clusters, M=Cu, Ag, Au[J]. Journal of Chemical Physics,1999, 110(3):1475-1491.
    [39]R. Contreras-Caceres, I. Pastoriza-Santos, R. A. Alvarez-Puebla, et al. Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface-Enhanced Raman Scattering Detection[J]. Chemistry-a European Journal, 2010,16(31):9462-9467.
    [40]X. H. Li, G Y. Chen, L. B. Yang, et al. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection[J]. Advanced Functional Materials,2010,20(17): 2815-2824.
    [41]G. De, D. Kundu. Gold-nanocluster-doped inorganic-organic hybrid coatings on polycarbonate and isolation of shaped gold microcrystals from the coating sol[J]. Chemistry of Materials,2001,13(11):4239-4246.
    [42]H. L. Liu, Y. D. Sun, Z. Jin, et al. Capillarity-constructed reversible hot spots for molecular trapping inside silver nanorod arrays light up ultrahigh SERS enhancement[J]. Chemical Science,2013,4(9):3490-3496.
    [43]K. Qian, H. L. Liu, L. B. Yang, et al. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly [J]. Nanoscale,2012,4(20): 6449-6454.
    [44]Y. Y. Liu, Y. X. Zhang, H. L. Ding, et al. Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles:their synthesis and pronounced SERS and catalytic properties[J]. Journal of Materials Chemistry A, 2013,1(10):3362-3371.
    [45]Y. Y. Xia, T. J. Li, J. Chen. Compact large area and high-quality Au film with a hierarchical structure and its application in SERS[J]. Physical Chemistry Chemical Physics,2013,15(28):11900-11903.
    [46]Z. D. Mu, X. W. Zhao, Z. Y. Xie, et al. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS)[J]. Journal of Materials Chemistry B,2013,1(11):1607-1613.
    [47]Y. D. Wang, N. Lu, W. T. Wang, et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays[J]. Nano Research,2013,6(3):159-166.
    [48]K. A. Antonio, Z. D. Schultz. Advances in Biomedical Raman Microscopy[J]. Analytical Chemistry,2014,86(1):30-46.
    [1]Y. Sawai, B. Takimoto, H. Nabika, et al. Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering[J]. Journal of the American Chemical Society,2007,129(6): 1658-1662.
    [2]M. Moskovits. Surface-Enhanced Spectroscopy[J]. Reviews of Modern Physics, 1985,57(3):783-826.
    [3]C. L. Haynes, A. D. McFarland, R. P. Van Duyne. Surface-enhanced Raman spectroscopy[J]. Analytical Chemistry,2005,77(17):338a-346a.
    [4]W. H. Lin, Y. H. Lu, Y. J. Hsu. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing[J]. Journal of Colloid and Interface Science,2014,418:87-94.
    [5]C. Hou, G. W. Meng, Q. Huang, et al. Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs[J]. Chemical Communications,2014,50(5): 569-571.
    [6]I. Al-Ogaidi, H. L. Gou, A. K. A. Al-Kazaz, et al. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection[J]. Analytica Chimica Acta,2014,811:76-80.
    [7]G. H. Pontifex, P. Zhang, Z. Wang, et al. Stm Imaging of the Surface of Small Metal Particles Formed in Anodic Oxide Pores [J]. Journal of Physical Chemistry, 1991,95(24):9989-9993.
    [8]B. Nikoobakht, M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method[J]. Chemistry of Materials, 2003,15(10):1957-1962.
    [9]X. H. Huang, S. Neretina, M. A. El-Sayed. Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications [J]. Advanced Materials, 2009,21(48):4880-4910.
    [10]J. F. Huang, Y. H. Zhu, M. Lin, et al. Site-Specific. Growth of Au-Pd Alloy Horns on Au Nanorods:A Platform for Highly Sensitive Monitoring of Catalytic Reactions by Surface Enhancement Raman Spectroscopy[J]. Journal of the American Chemical Society,2013,135(23):8552-8561.
    [11]S. Choi, M. Ahn, J. Kim. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition:Origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates[J]. Analytica Chimica Acta,2013,779:1-7.
    [12]R. Contreras-Caceres, C. Dawson, P. Formanek, et al. Polymers as Templates for Au and Au@Ag Bimetallic Nanorods:UV-Vis and Surface Enhanced Raman Spectroscopy[J]. Chemistry of Materials,2013,25(2):158-169.
    [13]X. G Hu, T. Wang, S. J. Dong. Thermal annealing of Au nanorod self-assembled nanostructured materials:Morphology and optical properties [J]. Journal of Colloid and Interface Science,2007,316(2):947-953.
    [14]K. D. Osberg, M. Rycenga, N. Harris, et al. Dispersible Gold Nanorod Dimers with Sub-5 nm Gaps as Local Amplifiers for Surface-Enhanced Raman Scattering[J]. Nano Letters,2012,12(7):3828-3832.
    [15]K. D. Alexander, K. Skinner, S. P. Zhang, et al. Tunable SERS in Gold Nanorod Dimers through Strain Control on an Elastomeric Substrate[J], Nano Letters,2010,10(11):4488-4493.
    [16]J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, et al. Gold nanorods: Synthesis, characterization and applications[J]. Coordination Chemistry Reviews, 2005,249(17-18):1870-1901.
    [17]M. R. Jones, K. D. Osberg, R. J. Macfarlane, et al. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures[J]. Chemical Reviews, 2011,111(6):3736-3827.
    [18]B. Peng, G. Y. Li, D. H. Li, et al. Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates:Self-Assembly and Femtomolar Detection of Food Contaminants[J]. Acs Nano,2013,7(7):5993-6000.
    [19]S. L. Ke, C. X. Kan, J. S. Liu, et al. Controlled assembly of gold nanorods using tetrahydrofuran[J]. Rsc Advances,2013,3(8):2690-2696.
    [20]X. Zhou, F. Zhou, H. L. Liu, et al. Assembly of polymer-gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection[J]. Analyst,2013,138(19):5832-5838.
    [21]P. K. Jain, M. A. El-Sayed. Plasmonic coupling in noble metal nanostructures[J]. Chemical Physics Letters,2010,487(4-6):153-164.
    [22]N. R. Jana, L. A. Gearheart, S. O. Obare, et al. Liquid crystalline assemblies of ordered gold nanorods[J]. Journal of Materials Chemistry,2002,12(10): 2909-2912.
    [23]T. K. Sau, C. J. Murphy. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes[J]. Langmuir,2005,21(7):2923-2929.
    [24]P. Pramod, K. G Thomas. Plasmon Coupling in Dimers of Au Nanorods[J]. Advanced Materials,2008,20(22):4300-4305.
    [25]B. Nikoobakht, Z. L. Wang, M. A. El-Sayed. Self-assembly of gold nanorods[J]. Journal of Physical Chemistry B,2000,104(36):8635-8640.
    [26]T. Ming, X. S. Kou, H. J. Chen, et al. Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation[J]. Angewandte Chemie-International Edition,2008,47(50):9685-9690.
    [27]J. C. Love, L. A. Estroff, J. K. Kriebel, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J]. Chemical Reviews,2005, 105(4):1103-1169.
    [28]L. Shao, K. C. Woo, H. J. Chen, et al. Angle-and Energy-Resolved Plasmon Coupling in Gold Nanorod Dimers[J]. Acs Nano,2010,4(6):3053-3062.
    [29]S. T. S. Joseph, B. I. Ipe, P. Pramod, et al. Gold nanorods to nanochains: Mechanistic investigations on their longitudinal assembly using alpha,omega-alkanedithiols and interplasmon coupling[J]. Journal of Physical Chemistry B,2006,110(1):150-157.
    [30]Z. H. Sun, W. H. Ni, Z. Yang, et al. pH-controlled reversible assembly and disassembly of gold nanorods[J]. Small,2008,4(9):1287-1292.
    [31]K. Liu, N. N. Zhao, E. Kumacheva. Self-assembly of inorganic nanorods[J]. Chemical Society Reviews,2011,40(2):656-671.
    [32]Y. Fu, J. Zhang, J. R. Lakowicz. Plasmon-Enhanced Fluorescence from Single Fluorophores End-Linked to Gold Nanorods[J]. Journal of the American Chemical Society,2010,132(16):5540-5543.
    [33]C. G. Wang, Y. Chen, T. T. Wang, et al. Biorecognition-driven self-assembly of gold nanorods:A rapid and sensitive approach toward antibody sensing[J]. Chemistry of Materials,2007,19(24):5809-5811.
    [34]J. A. Wang, P. Zhang, J. Y. Li, et al. Adenosine-aptamer recognition-induced assembly of gold nanorods and a highly sensitive plasmon resonance coupling assay of adenosine in the brain of model SD rat[J]. Analyst,2010,135(11): 2826-2831.
    [35]Y. Wang, Y. F. Li, J. Wang, et al. End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(II) molecular recognition[J]. Chemical Communications,2010,46(8):1332-1334.
    [36]Y. P. Wu, F. Zhou, L. B. Yang, et al. A shrinking strategy for creating dynamic SERS hot spots on the surface of thermosensitive polymer nanospheres[J]. Chemical Communications,2013,49(44):5025-5027.
    [37]Y P. Wu, P. Li, L. B. Yang, et al. Individual SERS substrate with core-satellite structure decorated in shrinkable hydrogel template for pesticide detection[J]. Journal of Raman Spectroscopy,2014,45(1):68-74.
    [38]M. Das, N. Sanson, D. Fava, et al. Microgels loaded with gold nanorods: Photothermally triggered volume transitions under physiological conditions[J]. Langmuir,2007,23(1):196-201.
    [39]M. Karg, I. Pastoriza-Santos, J. Perez-Juste, et al. Nanorod-coated PNIPAM microgels:Thermoresponsive optical properties[J]. Small,2007,3(7): 1222-1229.
    [40]T. K. Sau, C. J. Murphy. Seeded high yield synthesis of short Au nanorods in aqueous solution[J]. Langmuir,2004,20(15):6414-6420.
    [41]H. J. Chen, L. Shao, Q. Li, et al. Gold nanorods and their plasmonic properties[J]. Chemical Society Reviews,2013,42(7):2679-2724.
    [42]K. A. Kozek, K. M. Kozek, W. C. Wu, et al. Large-Scale Synthesis of Gold Nanorods through Continuous Secondary Growth[J]. Chemistry of Materials, 2013,25(22):4537-4544.
    [43]S. R. Ma, H. S. Zhang, C. Y. Zhou, et al. Surface-Enhanced Raman Spectroscopy of Thiuram Pesticide[J]. Spectroscopy and Spectral Analysis,2013, 33(10):2683-2687.
    [44]C. X. Zhang, L. Su, Y. F. Chan, et al. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering[J]. Nanotechnology,2013,24(33).
    [45]L. L. Zhang, C. L. Jiang, Z. P. Zhang. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring[J]. Nanoscale,2013,5(9):3773-3779.
    [46]A. Mahadevan-Jansen, W. F. Mitchell, N. Ramanujam, et al. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo[J]. Photochemistry and Photobiology,1998,68(3):427-431.
    [47]S. Nayak, S. Bhattacharjee, Y. S. Chaudhary. In Situ Encapsulation and Release Kinetics of pH and Temperature Responsive Nanogels[J]. Journal of Physical Chemistry C,2012,116(1):30-36.
    [48]Y. F. Jiao, Y. F. Sun, B. S. Chang, et al. Redox- and Temperature-Controlled Drug Release from Hollow Mesoporous Silica Nanoparticles[J]. Chemistry-a European Journal,2013,19(45):15410-15420.
    [49]L. Y. Li, J. H. Ryu, S. Thayumanavan. Effect of Hofmeister Ions on the Size and Encapsulation Stability of Polymer Nanogels[J]. Langmuir,2013,29(1): 50-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700