用户名: 密码: 验证码:
基于N-磺酰基联烯胺中间体的串联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
串联反应来构筑杂环化合物和碳环化合物是当代有机化学家的研究热点,在药物分子和天然产物合成中具有广泛应用。本论文在总结了近年来稳定的联烯酰胺的制备和联烯酰胺在杂环化合物和碳环化合物构筑取得的一系列进展的基础上,研究和发展了炔丙醇与磺酰胺的各种反应。主要内容是基于N-磺酰基联烯胺中间体的串联反应。内容如下:
     1)炔丙醇、磺酰胺和NIS串联反应合成茚类化合物
     发展了一种新的N-磺酰基联烯胺的产生方式,并且用活泼的亲电试剂将其捕获,从而发展了一种包含炔丙醇、.磺酰胺、NIS的三组分串联反应。通过这种合成策略,我们可以从简单易得的起始原料出发,高效地合成2-碘茚类化合物,一锅法可以构筑C-C,C-N,C-I三个δ键。该反应产率中等至良好,条件温和,反应时间短。含碘的产物为之后的衍生化提供了可能性。
     2)2-(3-羟基-1-丙炔)苯磺酰胺串联反应合成螺环化合物
     发展了2-(3-羟基-1-丙炔)苯磺酰胺在Lewis酸催化下的分子内反应,成功地构筑了螺环化合物。该反应操作简便,反应条件温和。通过对机理的研究,我们认为a,β-不饱和酮是该反应的关键中间体。
     3)炔丙醇和腙串联反应合成二氢吡唑类化合物
     发展了由炔丙醇和腙在BF3·Et2O催化下合成二氢吡唑类化合物的方法。该方法操作简单,条件温和,起始原料简单易得,底物范围广。一个可能的机理被提出,机理包含N-磺酰基联烯胺的形成和1,2-磺酰基迁移。更有意义的是,3,3-二芳基丙烯腈类化合物可以通过所合成的二氢吡唑类化合物的N-N键断裂得到。
     4)炔丙醇和羟胺串联反应合成二氢异嗯唑类化合物
     发展了一种炔丙醇和N-磺酰基羟胺在Lewis酸催化下合成2,5-二氢异嗯唑和4-碘(溴)-2,5-二氢异嗯唑类化合物的方法。该方法不需要使用特殊的π-酸催化剂,反应条件温和,原料简单易得。N-磺酰基联烯胺被认为是关键中间体。所得的4-碘-2,5-二氢异嗯唑类化合物可以通过Pd催化的羰基化反应得到4,5-二氢异嗯唑-4-羧酸甲酯类化合物。
As a research hotspot, Construction of heterocycles and carbocycles via tandem reaction is widely used for the synthesis of drug molecules and natural products. In the thesis, preparation of stable allenamides (an effective and versatile building block) and construction of heterocycles and carbocycles by the development of allenamides' reaction has been reviewed. We have constructed several complex skeletons from propargylic alcohols and sulfonamides, mostly via N-sulfonyl allenamide intermediate. The details are summarized as following:
     1) Synthesis of indenes
     An efficient method to generate N-sulfonyl allenamide intermediate, which could be captured by electrophiles was developed. In this process, a facile and efficient three-component domino reaction involving propargylic alcohol, sulfonamide, NIS was investigated. Highly substituted2-iodoindenes were generated from readily accessible and simple starting materials via this synthetic strategy. Consequently,three δ-bonds were efficiently constructed in this one-pot reaction, including C-C, C-N, and C-I δ-bonds. The possibility of derivatization by cross-coupling reaction was provided by the products containing C-I δ-bond.
     2) Synthesis of spiro compounds
     An efficient method to generate spiro compounds via Lewis acid catalyzed intramolecular reaction of2-(3-hydroxyprop-l-yn-l-yl) benzenesulfonamide was developed. The reaction was mild and easily operated, α,β-Unsaturated carbonyl compound is postulated to be the key intermediate for the tandem transformation.
     3) Synthesis of dihydropyrazoles
     An efficient strategy to synthesize4-methylene-4,5-dihydro-1H-pyrazoles was developed via a BF3·Et2O catalyzed domino reaction of propargylic alcohols and N-sulfonylhydrazones. The reaction was mild and easily operated. The starting material was easily prepared and a wide range of substrates could apply to the tandem reaction leading to the formation of different4,5-dihydropyrazoles. A tentative mechanism was postulated, and N-sulfonyl allenamide intermediate is postulated to be the key intermediate, which was formed by trapping the in situ generating allenic carbocation with N-sulfonylhydrazone. More significantly,3,3-diarylacrylonitriles, which might be served for potential utility in cancer chemotherapy, could be efficiently obtained from the synthesized4-methylene-4,5-dihydro-1H-pyrazoles via N-N bond cleavage in excellent yields.
     4) Synthesis of dihydroisoxazoles
     An efficient methodology to synthesize2,5-Dihydroisoxazoles,4-iodo-2,5-dihydroisoxazoles and4-bromo-2,5-dihydroisoxazoles was provided from propargyl alcohols and TsNHOH using Yb(OTf)3, iodine and the combination of NBS and Yb(OTf)3, respectively. N-sulfonyl allenamide is postulated to be the key intermediate for these tandem transformations, which was formed by trapping the in situ generating allenic carbocation with TsNHOH. Moreover, the resulting4-iodo-2,5-dihydroisoxazoles could be elaborated by Pd-catalyzed carbonylation to generate4-methoxycarbonyl-4,5-dihydroisoxazoles.
引文
[1]Tietze, L. F., Domino Reactions in Organic Synthesis. Chem. Rev.1996,96, 115-136.
    [2](a) Ma, S. M. Some Typical Advances in the Synthetic Applications of Allenes. Chem. Rev.2005,105,2829-2872; (b) Ma, S. M. Electrophilic Addition and Cyclization Reactions of Allenes. Ace. Chem. Res.2009,42,1679-1688.
    [3]Wei, L.-L.; Xiong, H.; Hsung, R. P., The Emergence of Allenamides in Organic Synthesis. Acc. Chem. Res.2003,36,773-782.
    [4](a) Overman, L. E.; Marlowe, C. K.; Clizbe, L. A., The preparation of N-trichloroacetamido-1,2-dienes. Tetrahedron Lett.1979,20,599-600; (b) Overman, L. E.; Clizbe, L. A.; Freerks, R. L.; Marlowe, C. K., Thermal rearrangements of propargylic trichloroacetimidates. Synthesis of (trichloroacetamido)-1,3-dienes and-1,2-dienes. J. Am. Chem. Soc.1981,103,2807-2815.
    [5](a) Balasubramanian, K. K.; Venugopalan, B., Studies in Claisen rearrangement Claisen rearrangement of 2-propargylthiobenzimidazoles. Tetrahedron Lett.1974,15, 2643-2644; (b) Balasubramanian, K. K.; Venugopalan, B., Studies in Claisen rearragement a novel depropargylative cyclisation of N-propargyl-2-(propargylthio)-benzimidazole. Tetrahedron Lett.1974,15, 2645-2648.
    [6]Danowitz, A. M.; Taylor, C. E.; Shrikian, T. M.; Mapp, A. K., Palladium-Catalyzed [3,3]-Rearrangement for the Facile Synthesis of Allenamides. Org. Lett.2010,12,2574-2577.
    [7]Tamura, Y.; Ikeda, H.; Mukai, C.; Morita, I.; Ikeda, M., Ethyl N-[(trifluoromethanesulfonyl)oxy]carbamate:a new reagent for the synthesis of N-(ethoxycarbonyl)sulfilimines. J. Org. Chem.1981,46,1732-1734.
    [8]Bacci, J. P.; Greenman, K. L.; Van Vranken, D. L., Iron(Ⅱ)-Catalyzed Sulfimidation and [2,3]-Sigmatropic Rearrangement of Propargyl Sulfides with tert-Butoxycarbonyl Azide. Access to N-Allenylsulfenimides. J. Org. Chem.2003,68, 4955-4958.
    [9](a) Armstrong, A.; Cooke, R. S.; Shanahan, S. E., Amination and [2,3]-sigmatropic rearrangement of propargylic sulfides using a ketomalonate-derived oxaziridine:synthesis of N-allenylsulfenimides. Org. Bio. Chem.2003,1,3142-3143; (b) Armstrong, A.; Emmerson, D. P. G., Enantioselective Synthesis of Allenamides via Sulfimide [2,3]-Sigmatropic Rearrangement. Org. Lett.2009,11,1547-1550.
    [10]Yin, G. W.; Zhu, Y. X.; Zhang, L.; Lu, P.; Wang, Y. G., Preparation of Allenephosphoramide and Its Utility in the Preparation of 4,9-Dihydro-2H-benzo f isoindoles. Org. Lett.2011,13,940-943.
    [11]Padwa, A.; Caruso, T.; Nahm, S.; Rodriguez, A., Interconversion of dipoles by the flash vacuum pyrolysis of oxadiazolinones. J. Am. Chem. Soc.1982,104, 2865-2871.
    [12]Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Douglas, C. J.; Xiong, H.; Mulder, J. A., Lewis Acid Promoted Hetero [2+2] Cycloaddition Reactions of Aldehydes with 10-Propynyl-9(10H)-acridone. A Highly Stereoselective Synthesis of Acrylic Acid Derivatives and 1,3-Dienes Using an Electron Deficient Variant of Ynamine. Org. Lett.1999,1,1237-1240.
    [13]Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P., Efficient preparations of novel ynamides and allenamides. Tetrahedron 2001,57, 459-466.
    [14]Trost, B. M.; Stiles, D. T., Synthesis of Allenamides by Copper-Catalyzed Coupling of Allenyl Halides with Amides, Carbamates, and Ureas. Org. Lett.2005,7, 2117-2120.
    [15]Shen, L.; Hsung, R. P.; Zhang, Y.; Antoline, J. E.; Zhang, X., Copper-Catalyzed Stereospecific N-Allenylations of Amides. Syntheses of Optically Enriched Chiral Allenamides. Org. Lett.2005,7,3081-3084.
    [16]Persson, A. K. A.; Johnston, E. V.; Backvall, J.-E., Copper-Catalyzed N-Allenylation of Allylic Sulfonamides. Org. Lett.2009,11,3814-3817.
    [17]Cao, J.; Kong, Y.; Deng, Y.; Lai, G.; Cui, Y.; Hu, Z.; Wang, G., Synthesis of allenamides by Pd-catalyzed coupling of 3-alkoxycarbonyloxy ynamides or 1-alkoxycarbonyloxy allenamides with arylboronic acids. Org. Bio. Chem.2012,10, 9556-9561.
    [18]Tanaka, H.; Kameyama, Y.; Sumida, S.-i.; Yamada, T.; Tokumaru, Y.; Shiroi, T.; Sasaoka, M.; Taniguchi, M.; Torii, S., A New Short Cut Route to 3-Norcephalosporinsl. Synlett 1991,1991,888-890.
    [19]Farina, V.; Kant, J., A new strategy for the conversion of penams into cephems via allene chemistry. Tetrahedron Lett.1992,33,3559-3562.
    [20]Kimura, M.; Wakamiya, Y.; Horino, Y.; Tamaru, Y., Efficient synthesis of 4-ethenylidene-2-oxazolidinones via palladium-catalyzed aminocyclization of 2-butyn-1,4-diol biscarbamates. Tetrahedron Lett.1997,38,3963-3966.
    [21](a)Berry, C. R.; Hsung, R. P.; Antoline, J. E.; Petersen, M. E.; Challeppan, R.; Nielson, J. A., Syntheses of 2,5-Disubstituted Dihydrofurans from y-Substituted Chiral Allenamides. J. Org. Chem.2005,70,4038-4042; For a similar work, see:(b) Navarro-Vazquez, A.; Rodriguez, D.; Martinez-Esperon, M. F.; Garcia, A.; Saa, C.; Dominguez, D., Acid-catalyzed cyclization of acyliminium ions derived from allenamides. A new entry to protoberberines. Tetrahedron Lett.2007,48,2741-2743.
    [22]Jiang, Z.; Lu, P.; Wang, Y., Three-Component Reaction of Propargyl Amines, Sulfonyl Azides, and Alkynes:One-Pot Synthesis of Tetrasubstituted Imidazoles. Org. Lett.2012,14,6266-6269.
    [23]Xin, X.; Wang, D.; Li, X.; Wan, B., Highly Regioselective Migration of the Sulfonyl Group:Easy Access to Functionalized Pyrroles. Angew. Chem. Int. Ed.2012, 51,1693-1697.
    [24]Yu, X.; Xin, X.; Wan, B.; Li, X., Base-Catalyzed Cyclization of N-Sulfonyl Propargylamides to Sulfonylmethyl-Substituted Oxazoles via Sulfonyl Migration. J. Org. Chem.2013,78,4895-4904.
    [25]Polindara-Garcia, L. A.; Miranda, L. D., Two-Step Synthesis of 2,3-Dihydropyrroles via a Formal 5-endo Cycloisomerization of Ugi 4-CR/Propargyl Adducts. Org. Lett.2012,14,5408-5411.
    [26](b) Hayashi, R.; Feltenberger, J. B.; Hsung, R. P., Torquoselective Ring Closures of Chiral Amido Trienes Derived from Allenamides. A Tandem Allene Isomerization-Pericyclic Ring-Closure-Intramolecular Diels-Alder Cycloaddition. Org. Lett.2010,12,1152-1155.
    [27]Hayashi, R.; Walton, M. C.; Hsung, R. P.; Schwab, J. H.; Yu, X., Stereoselective 6π-Electron Electrocyclic Ring Closures of 2-Halo-Amidotrienes via a Remote 1,6-Asymmetric Induction. Org. Lett.2010,12,5768-5771.
    [28]Zhu, Y.; Lu, W.-T.; Sun, H.-C.; Zhan, Z.-P., Lewis Base Catalyzed Synthesis of Multisubstituted 4-Sulfonyl-lH-Pyrazole Involving a Novel 1,3-Sulfonyl Shift. Org. Lett.2013,15,4146-4149.
    [29]Cao, J.; Huang, X., Facile Synthesis of Tetrahydro-lH-isoindolones via a Sequential Three-Component Copper-Catalyzed Coupling/Propargyl-Allenyl Isomerization/[4 + 2] Cyclization Reaction. Org. Lett.2010,12,5048-5051.
    [30]Zhu, S.; Cao, J.; Wu, L.; Huang, X., Synthesis of Polycyclic Isoindoline Derivatives via Tandem Pd-Catalyzed Coupling, Propargyl-Allenyl Isomerization, [4 +2] Cycloaddition and Aromatization Reaction. J. Org. Chem.2012,77, 10409-10415.
    [31]Zhou, H.; Xing, Y.; Yao, J.; Lu, Y., Heteroatom as a Promotor:Synthesis of Polyfunctionalized Benzenes and Naphthalenes. J. Org. Chem.2011,76,4582-4590.
    [32]Zhou, H.; Liu, L,; Xu, S., Synthesis of Polyfunctionalized Quinolines via the Sequence of Propargyl-Allenyl Isomerization and Aza-electrocyclization. J. Org. Chem.2012,77,9418-9421.
    [33]Shen, L.; Hsung, R. P., Highly Regioselective Radical Cyclizations of Allenamides. Org. Lett.2005,7,775-778.
    [34]Romero, N. A.; Klepser, B. M.; Anderson, C. E., Au(III)-Catalyzed Tandem Amination-Hydration of Alkynes:Synthesis of a-(N-2-Pyridonyl)ketones. Org. Lett. 2012,14,874-877.
    [35]Gonzalez-Gomez, A.; Dominguez, G.; Perez-Castells, J., Synthesis of Benzazepines by Gold-Catalysed Reactions of N-Allenylamides. Eur. J. Org. Chem. 2009,2009,5057-5062.
    [36]Ma, Z.-X.; He, S.; Song, W.; Hsung, R. P., a-Aryl-Substituted Allenamides in an Imino-Nazarov Cyclization Cascade Catalyzed by Au(I). Org. Lett.2012,14, 5736-5739.
    [37]Heffernan, S. J.; Beddoes, J. M.; Mahon, M. F.; Hennessy, A. J.; Carbery, D. R., Gold-catalysed cascade rearrangements of ynamide propargyl esters. Chem. Commun. 2013,49,2314-2316.
    [38]Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R., Gold-catalyzed synthesis of tetrahydrocarbazole derivatives through an intermolecular cycloaddition of vinyl indoles and N-allenamides. Chem. Commun.2013,49,3594-3596.
    [39]Fuwa, H.; Sasaki, M., A strategy for the synthesis of 2,3-disubstituted indoles starting from N-(o-halophenyl)allenamides. Org. Bio. Chem.2007,5,2214-2218.
    [40]Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H., Palladium-Catalyzed Multistep Reactions Involving Ring Closure of 2-Iodophenoxyallenes and Ring Opening of Bicyclic Alkenes. Org. Lett.2006,8,621-623.
    [41]Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.; Sakamoto, T., Highly Regioselective Palladium-Catalyzed Annulation Reactions of Heteroatom-Substituted Allenes for Synthesis of Condensed Heterocycles. Chem. Pharm. Bull.2005,53, 1502-1507.
    [42]Fuwa, H.; Tako, T.; Ebine, M.; Sasaki, M., A New Method for the Generation of Indole-2,3-quinodimethanes from Allenamides. Chem. Lett.2008,37,904-905.
    [43]Persson, A. K. A.; Backvall, J.-E., Palladium(II)-Catalyzed Oxidative Carbocyclization of Aza-Enallenes. Angew. Chem. Int. Ed.2010,49,4624-4627
    [44]Beccalli, E. M.; Bernasconi, A.; Borsini, E.; Broggini, G.; Rigamonti, M.; Zecchi, G., Tunable Pd-Catalyzed Cyclization of Indole-2-carboxylic Acid Allenamides: Carboamination vs Microwave-Assisted Hydroamination. J. Org. Chem.2010,75, 6923-6932.
    [45]Brummond, K. M.; Yan, B., Rhodium(I)-Catalyzed Cycloisomerization Reaction of Yne-Allenamides:An Approach to Cyclic Enamides. Synlett 2008,2008, 2303-2308.
    [46]Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B., Stereoselective Rh2(S-IBAZ)4-Catalyzed Cyclopropanation of Alkenes, Alkynes, and Allenes:Asymmetric Synthesis of Diacceptor Cyclopropylphosphonates and Alkylidenecyclopropanes. J. Am. Chem. Soc.2013,135,1463-1470.
    [47]Zhang, Z.; Zhang, Q.; Ni, Z.; Liu, Q., Ag-containing all-carbon 1,3-dipoles: generation and formal cycloaddition for furo[3,2-b]-[small beta]/[gamma]-lactams. Chem. Commun.2010,46,1269-1271.
    [48]Hu, Y.; Yi, R.; Wu, F.; Wan, B., Synthesis of Functionalized Oxazoles via Silver-Catalyzed Cyclization of Propargylamides and Allenylamides. J. Org. Chem. 2013,78,7714-7726.
    [49]Brioche, J.; Meyer, C.; Cossy, J., Synthesis of Functionalized Allenamides from Ynamides by Enolate Claisen Rearrangement. Org. Lett.2013,15,1626-1629.
    [50]Meyer K, Schuster K. Rearrangement of tert-Ethinyl Carbinols into Unsaturated Ketones. Chem. Ber 1922,55,819-823.
    [51](a) Swaminathan, S.; Narayanan, K. V. Rupe and Meyer-Schuster Rearrangements. Chem. Rev.1971,71,429-438; (b) Engel, D. A.; Dudley, G. B., The Meyer-Schuster rearrangement for the synthesis of unsaturated carbonyl compounds. Org. Biomol. Chem.2009,7,4149-4158.
    [52](a) Wang, S. Y.; Zhu, Y. X.; Wang, Y. G.; Lu, P., Synthesis of Functionalized Indenes via Cascade Reaction of Aziridines and Propargyl Alcohols. Org. Lett.2009, 11,2615-2618; (b) Yin, G. W.; Zhu, Y. X.; Zhang, L.; Lu, P.; Wang, Y. G., Preparation of Allenephosphoramide and Its Utility in the Preparation of 4,9-Dihydro-2H-benzo f isoindoles. Org. Lett. 2011,13,940-943; (c) Yin, G.; Zhu, Y.; Lu, P.; Wang, Y., Lewis Acid-Promoted Three-Component Reactions of Propargylic Alcohols with 2-Butynedioates and Secondary Amines. J. Org. Chem.2011,76, 8922-8929; (d) Zhang, L.; Zhu, Y.; Yin, G.; Lu, P.; Wang, Y.,3-Alkenylation or 3-Alkylation of Indole with Propargylic Alcohols:Construction of 3,4-Dihydrocyclopenta[b]indole and 1,4-Dihydrocyclopenta[b]indole in the Presence of Different Catalysts. J. Org. Chem.2012,77,9510-9520; (e) Zhou, C.; Chen, X.; Lu, P.; Wang, Y., Synthesis of 2,3-diiodoindenes and their applications in construction of 13H-indeno[1,2-1]phenanthrenes. Tetrahedron 2012,68,2844-2850; (f) Yin, G.; Zhu, Y.; Wang, N.; Lu, P.; Wang, Y., Lewis acid-promoted cascade reaction of primary amine,2-butynedioate, and propargylic alcohol:a convenient approach to 1,2-dihydropyridines and 1H-pyrrolo[3,4-b]pyridine-5,7(2H,6H)-diones. Tetrahedron 2013,69,8353-8359.
    [53]Andres, J.; Cardenas, R.; Silla, E.; Tapia, O., A theoretical study of the Meyer-Schuster reaction mechanism:minimum-energy profile and properties of transition-state structure. J. Am. Chem. Soc.1988,110,666-674.
    [1](a) Froimowitz, M.; Wu, K.-M.; Moussa, A.; Haidar, R. M.; Jurayj, J.; George, C.; Gardner, E. L., Slow-Onset, Long-Duration 3-(3',4'-Dichlorophenyl)-1-indanamine Monoamine Reuptake Blockers as Potential Medications To Treat Cocaine Abuse. J. Med. Chem.2000,43,4981-4992; (b) Yu, H.; Kim, I. J.; Folk, J. E.; Tian, X.; Rothman, R. B.; Baumann, M. H.; Dersch, C. M.; Flippen-Anderson, J. L.; Parrish, D.; Jacobson, A. E.; Rice, K. C., Synthesis and Pharmacological Evaluation of 3-(3,4-Dichlorophenyl)-1-indanamine Derivatives as Nonselective Ligands for Biogenic Amine Transporters. J. Med. Chem.2004,47,2624-2634; (c) Di Stefano, A.; Sozio, P.; Cacciatore, I.; Cocco, A.; Giorgioni, G.; Costa, B.; Montali, M.; Lucacchini, A.; Martini, C.; Spoto, G.; Di Pietrantonio, F.; Di Matteo, E.; Pinnen, F., Preparation and Pharmacological Characterization of trans-2-Amino-5(6)-fluoro-6(5)-hydroxy-l-phenyl-2,3-dihydro-lH-indenes as D2-like Dopamine Receptor Agonists. J. Med. Chem.2005,48,2646-2654.
    [2](a) Alt, H. G.; Koppl, A., Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. Chem. Rev.2000,100,1205-1222; (b) Zargarian, D., Group 10 metal indenyl complexes. Coord. Chem. Rev.2002,233-234,157-176; (c) Leino, R.; Lehmus, P.; Lehtonen, A., Heteroatom-Substituted Group 4 Bis(indenyl)metallocenes. Eur. J. Inorg. Chem.2004,2004,3201-3222.
    [3]For liquid crystal, see:(a) Barbera, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T., Breaking the Mold of Discotic Liquid Crystals. Angew. Chem. Int. Ed.1998,37, 296-299; (b) For solids coating, see:Kozak, H. A.; Liu, T. Y, Two-component High Solids Coating For Rusty Steels. US patent 4451591,1984; For conducting polymers, see:(c) Yang, J.; Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.; Bethelot, J. R., Synthesis and Characterization of 5,10-Bis(2-thienyl)indeno[2,1-a]indene Derivatives:The First Examples of Conducting Polymers Containing a Rigid Bis(thienyl)butadiene Core. J. Org. Chem. 2000,65,6739-6742.
    [4](a) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y, Intramolecular Nucleophilic Addition of Vinylpalladiums to Aryl Ketones. J. Am. Chem. Soc.1999,121, 3545-3546; (b) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y., Synthesis of indenols and indanones via catalytic cyclic vinylpalladation of aromatic aldehydes. Tetrahedron Lett.1999,40,4089-4092.
    [5]Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C., Synthesis of Indenes by the Palladium-Catalyzed Carboannulation of Internal Alkynes. Org. Lett.2005,7, 4963-4966.
    [6]Zhang, D.; Liu, Z.; Yum, E. K.; Larock, R. C., Synthesis of Indenes by the Transition Metal-Mediated Carboannulation of Alkynes. J. Org. Chem.2007,72, 251-262.
    [7]Duan, X.-H.; Guo, L. N.; Bi, H.-P.; Liu, X.-Y.; Liang, Y.-M., Synthesis of 2-Substitued 3-Aroylindenes via Palladium-Catalyzed Carbonylative Cyclization of Diethyl 2-(2-(1-Alkynyl)phenyl)malonates with Aryl Halides. Org. Lett.2006,8, 3053-3056.
    [8]Cu-catalyzed synthesis of indenes:(a) Park, E. J.; Kim, S. H.; Chang, S., Copper-Catalyzed Reaction of a-Aryldiazoesters with Terminal Alkynes:A Formal [3+2] Cycloaddition Route Leading to Indene Derivatives. J. Am. Chem. Soc.2008, 130,17268-17269; (b) Zeng, X.; Ilies, L.; Nakamura, E., Synthesis of Functionalized 1H-Indenes via Copper-Catalyzed Arylative Cyclization of Arylalkynes with Aromatic Sulfonyl Chlorides. J. Am. Chem. Soc.2011,133, 17638-17640.
    [9]Pt-catalyzed synthesis of indenes:(a) Zhao, J.; Clark, D. A., Regiodivergent Synthesis of Functionalized Indene Derivatives via Pt-Catalyzed Rautenstrauch Reaction of Propargyl Carbonates. Org. Lett.2012,14,1668-1671; (b) Yang, S.; Li, Z.; Jian, X.; He, C., Platinum(Ⅱ)-Catalyzed Intramolecular Cyclization of o-Substituted Aryl Alkynes through sp3 C-H Activation. Angew. Chem. Int. Ed.2009, 48,3999-4001.
    [10]Rh-catalyzed synthesis of indenes:(a) Shi, X.-Y.; Li, C.-J., Synthesis of Indene Frameworks via Rhodium-Catalyzed Cascade Cyclization of Aromatic Ketone and Unsaturated Carbonyl Compounds. Org. Lett.2013,15,1476-1479; (b) Huang, X.-C.; Yang, X.-H.; Song, R.-J.; Li, J.-H., Rhodium-Catalyzed Synthesis of Isoquinolines and Indenes from Benzylidenehydrazones and Internal Alkynes. J. Org. Chem.2014,79,1025-1031.
    [11]Fe-catalyzed synthesis of indenes:Liu, C.-R.; Yang, F.-L.; Jin, Y.-Z.; Ma, X.-T.; Cheng, D.-J.; Li, N.; Tian, S.-K., Catalytic Regioselective Synthesis of Structurally Diverse Indene Derivatives from N-Benzylic Sulfonamides and Disubstituted Alkynes. Org. Lett.2010,12,3832-3835.
    [12]Khan, Z. A.; Wirth, T., Synthesis of Indene Derivatives via Electrophilic Cyclization. Org. Lett.2009,11,229-231.
    [13]Zhou, X.; Zhang, H,; Xie, X.; Li, Y, Efficient Synthesis of 3-Iodoindenes via Lewis-Acid Catalyzed Friedel-Crafts Cyclization of Iodinated Allylic Alcohols. J. Org. Chem.2008,73,3958-3960.
    [14](a) Okitsu, T.; Nakazawa, D.; Taniguchi, R.; Wada, A., Iodocyclization of Ethoxyethyl Ethers to Alkynes:A Broadly Applicable Synthesis of 3-Iodobenzo[b]furans. Org. Lett.2008,10,4967-4970; (b) Okitsu, T.; Sato, K.; Wada, A., Reagent-Controlled Oxidative Aromatization in Iodocyclization:Switchable Access to Dihydropyrazoles and Pyrazoles. Org. Lett.2010,12,3506-3509; (c) Okitsu, T.; Nakazawa, D.; Kobayashi, A.; Mizohata, M.; In, Y.; Ishida, T.; Wada, A., ipso-Iodocyclization of Ethoxyethyl Ethers to Alkynes at the ortho-Position:An Efficient Synthesis of Functionalized Spiro Compounds. Synlett 2010,2010,203-206; (d) Okitsu, T.; Sato, K.; Potewar, T. M.; Wada, A., Iodocyclization of Hydroxylamine Derivatives Based on the Control of Oxidative Aromatization Leading to 2,5-Dihydroisoxazoles and Isoxazoles. J. Org. Chem.2011,76,3438-3449.
    [15](a) Shi, M.; Zhao, G.-L., Aza-Baylis-Hillman reactions of diisopropyl azodicarboxylate or diethyl azodicarboxylate with acrylates and acrylonitrile. Tetrahedron 2004,60,2083-2089; (b) Kamimura, A.; Gunjigake, Y.; Mitsudera, H.; Yokoyama, S., A facile preparation of a-hydrazino-α,β-unsaturated ketones via aza-Baylis-Hillman reaction. Tetrahedron Lett.1998,39,7323-7324.
    [16](a) Anstead, G. M.; Peterson, C. S.; Pinney, K. G.; Wilson, S. R.; Katzenellenbogen, J. A., Torsionally and hydrophobically modified 2,3-diarylindenes as estrogen-receptor ligands. J. Med. Chem.1990,33,2726-2734. (b) Huang, H.-C.; Chamberlain, T. S.; Selbert, K.; Koboldt, C. M.; Isakson, P. C; Reitz, D. B., Diaryl indenes and benzofurans:Novel classes of potent and selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett.1995,5,2377-2380.
    [1]Pandey, R. C.; Toussaint, M. W.; Stroshane, R. M.; Kalita, C. C.; Aszalos, A. A.; Garretson, A. L.; Wei, T. T.; Byrne, K. M.; Geoghegan, R. F., Jr.; White, R. J., Fredericamycin A, a new antitumor antibiotic. I. Production, isolation and physicochemical properties. The Journal of antibiotics 1981,34,1389-401.
    [2](a) Tomita, M.; Okamoto, Y.; Kikuchi, T.; Osaki, K.; Nishikawa, M.; Kamiya, K.; Sasaki, Y.; Matoba, K.; Goto, K., Acutumine and acutumidine, chlorine containing alkaloids with a novel skeleton (1):X-ray analysis of acutumine. Tetrahedron Lett. 1967,8,2421-2424; (b) Tomita, M.; Okamoto, Y.; Kikuchi, T.; Osaki, K.; Nishikawa, M.; Kamiya, K.; Sasaki, Y.; Matoba, K.; Goto, K., Acutumine and acutumidine, chlorine containing alkaloids with a novel skeleton (2):Chemical proof. Tetrahedron Lett.1967,8,2425-2430.
    [3]Das, A.; Chang, H.-K.; Yang, C.-H.; Liu, R.-S., Platinum-a nd Gold-Catalyzed Hydrative Carbocyclization of Oxo Diynes for One-Pot Synthesis of Benzopyrones and Bicyclic Spiro Ketones. Org. Lett.2008,10,4061-4064.
    [4]Sanchez-Larios, E.; Holmes, J. M.; Daschner, C. L.; Gravel, M., NHC-Catalyzed Spiro Bis-Indane Formation via Domino Stetter-Aldol-Michael and Stetter-Aldol-Aldol Reactions. Org. Lett.2010,12,5772-5775.
    [5]Kern, N.; Blanc, A.; Weibel, J.-M.; Pale, P., Gold(i)-catalyzed rearrangement of aryl alkynylaziridines to spiro[isochroman-4,2[prime or minute]-pyrrolines]. Chem. Commun.2011,47,6665-6667.
    [1]Schmidt, A.; Dreger, A., Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Curr. Org. Chem.2011,15,1423-1463.
    [2]Willy, B.; Muller, T. J. J., Rapid One-Pot, Four-Step Synthesis of Highly Fluorescent 1,3,4,5-Tetrasubstituted Pyrazoles. Org. Lett.2011,13,2082-2085.
    [3]Deng, X.; Mani, N. S., Reaction of N-Monosubstituted Hydrazones with Nitroolefins:A Novel Regioselective Pyrazole Synthesis. Org. Lett.2006,8, 3505-3508.
    [4]Deng, X.; Mani, N. S., Regioselective Synthesis of 1,3,5-Tri-and 1,3,4,5-Tetrasubstituted Pyrazoles from N-Arylhydrazones and Nitroolefins. J. Org. Chem.2008,73,2412-2415.
    [5]Deng, X.; Mani, N. S., Base-Mediated Reaction of Hydrazones and Nitroolefins with a Reversed Regioselectivity:A Novel Synthesis of 1,3,4-Trisubstituted Pyrazoles. Org. Lett.2008,10,1307-1310.
    [6]NOE experiments of 4.3d,参见附图。
    [7](a) Nakamura, I.; Shiraiwa, N.; Kanazawa, R.; Terada, M., Copper-Catalyzed Rearrangement of (Z)-Propynal Hydrazones via N-N Bond Cleavage. Org. Lett.2010, 12,4198-4200.
    [8](a) Miller, J. S.; Manson, J. L., Designer Magnets Containing Cyanides and Nitriles. Acc. Chem. Res.2001,34,563-570; (b) Fleming, F. F.; Wang, Q., Unsaturated Nitriles:Conjugate Additions of Carbon Nucleophiles to a Recalcitrant Class of Acceptors. Chem. Rev.2003,103,2035-2078.
    [9](a) Fang, Z.; Song, Y.; Sarkar, T.; Hamel, E.; Fogler, W. E.; Agoston, G. E.; Fanwick, P. E.; Cushman, M., Stereoselective Synthesis of 3,3-Diarylacrylonitriles as Tubulin Polymerization Inhibitors. J. Org. Chem.2008,73,4241-4244; (b) Zhang, L.-H.; Wu, L.; Raymon, H. K.; Chen, R. S.; Corral, L.; Shirley, M. A.; Krishna Narla, R.; Gamez, J.; Muller, G. W.; Stirling, D. I.; Bartlett, J. B.; Schafer, P. H.; Payvandi, F., The Synthetic Compound CC-5079 Is a Potent Inhibitor of Tubulin Polymerization and Tumor Necrosis Factor-α Production with Antitumor Activity. Cancer Res.2006, 66,951-959.
    [1](a) Giomi, D.; Cordero, F. M.; Machetti, F., Isoxazoles. In Comprehensive Heterocyclic Chemistry III, Alan, R. K.; Christopher, A. R.; Eric, F. V. S.; Richard, J. K. T., Eds. Elsevier:Oxford,2008; pp 365-485; (b) Diana, G. D.; McKinlay, M. A.; Brisson, C. J.; Zalay, E. S.; Miralles, J. V.; Salvador, U. J., Isoxazoles with antipicornavirus activity. J. Med. Chem.1985,28,748-752; (c) Guiles, J. W.; Diana, G. D.; Pevear, D. C., [(Biaryloxy)alkyl]isoxazoles:Picornavirus Inhibitors. J. Med. Chem.1995,38,2780-2783; (d) Habeeb, A. G.; Praveen Rao, P. N.; Knaus, E. E., Design and Synthesis of 4,5-Diphenyl-4-isoxazolines:Novel Inhibitors of Cyclooxygenase-2 with Analgesic and Antiinflammatory Activity. J. Med. Chem. 2001,44,2921-2927; (e) Niho, N.; Kitamura, T.; Takahashi, M.; Mutoh, M.; Sato, H.; Matsuura, M.; Sugimura, T.; Wakabayashi, K., Suppression of azoxymethane-induced colon cancer development in rats by a cyclooxygenase-1 selective inhibitor, mofezolac. Cancer Sci.2006,97,1011-1014.
    [2]Matsumoto, M.; Sakuma, T.; Watanabe, N., Synthesis of bicyclic dioxetanes bearing a 3-hydroxy-4-isoxazolylphenyl moiety:new CIEEL-active dioxetanes emitting light with remarkable high-efficiency in aqueous medium. Tetrahedron Lett. 2002,43,8955-8958.
    [3](a) Yang, R.-H.; Chan, W.-H.; Lee, A. W. M.; Xia, P.-F.; Zhang, H.-K., A Ratiometric Fluorescent Sensor for AgI with High Selectivity and Sensitivity. J. Am. Chem. Soc.2003,125,2884-2885; (b) Haino, T.; Tanaka, M.; Ideta, K.; Kubo, K.; Mori, A.; Fukazawa, Y, Solid-phase synthesis of liquid crystalline isoxazole library. Tetrahedron Lett.2004,45,2277-2279.
    [4]Aschwanden, P.; Frantz, D. E.; Carreira, E. M., Synthesis of 2,3-Dihydroisoxazoles from Propargylic N-Hydroxylamines via Zn(II)-Catalyzed Ring-Closure Reaction. Org. Lett.2000,2,2331-2333.
    [5]Yu, X.; Du, B.; Wang, K.; Zhang, J., Highly Substituted 2,3-Dihydroisoxazoles by Et3N-Catalyzed Tandem Reaction of Electron-Deficient 1,3-Conjugated Enynes with Hydroxylamines. Org. Lett.2010,12,1876-1879.
    [6]Cecchi, L.; Sarlo, F. D.; Machetti, F., Synthesis of 4,5-Dihydroisoxazoles by Condensation of Primary Nitro Compounds with Alkenes by Using a Copper/Base Catalytic System. Chem. Eur. J.2008,14,7903-7912.
    [7]Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P., Palladium-Catalyzed Oxime Assisted Intramolecular Dioxygenation of Alkenes with 1 atm of Air as the Sole Oxidant. J. Am. Chem. Soc.2010,132,6284-6285.
    [8](a) Yeom, H.-S.; Lee, E.-S.; Shin, S., Gold(I)-Catalyzed Hydroaminative Cyclization Leading to 2,5-Dihydroisoxazole. Synlett 2007,2007,2292,2294; (b) Knight, D. W.; Proctor, A. J.; Clough, J. M., New Regiospecific Catalytic Approaches to 4,5-Dihydroisoxazoles and 2,5-Dihydroisoxazoles from O-Propargylic Hydroxylamines. Synlett 2010,2010,628,632.
    [9](a) Foot, O. F.; Knight, D. W.; Low, A. C. L.; Li, Y, On the viability of 5-endo-dig cyclisations of O-propargylic hydroxylamine derivatives, leading to 2,5-dihydroisoxazoles (3-isoxazolines). Tetrahedron Lett.2007,48,647-650; (b) Okitsu, T.; Sato, K.; Potewar, T. M.; Wada, A., Iodocyclization of Hydroxylamine Derivatives Based on the Control of Oxidative Aromatization Leading to 2,5-Dihydroisoxazoles and Isoxazoles. J. Org. Chem.2011,76,3438-3449.
    [10]Similar works, see:(a) Debleds, O.; Zotto, C. D.; Vrancken, E.; Campagne, J.-M.; Retailleau, P., A Dual Gold-Iron Catalysis for a One-Pot Synthesis of 2,3-Dihydroisoxazoles from Propargylic Alcohols and N-Protected Hydroxylamines. Adv. Synth. Catal.2009,351,1991-1998; (b) Debleds, O.; Gayon, E.; Ostaszuk, E.; Vrancken, E.; Campagne, J.-M., A Versatile Iron-Catalyzed Protocol for the One-Pot Synthesis of Isoxazoles or Isoxazolines from the Same Propargylic Alcohols. Chem. Eur. J.2010,16,12207-12213; (c) Debleds, O.; Gayon, E.; Vrancken, E.; Campagne, J.-M., Gold-catalyzed propargylic substitutions:Scope and synthetic developments. Beilstein Journal of Organic Chemistry 2011,7,866-877; (d) Gayon, E.; Quinonero, O.; Lemouzy, S.; Vrancken, E.; Campagne, J.-M., Transition-Metal-Catalyzed Uninterrupted Four-Step Sequence to Access Trisubstituted Isoxazoles. Org. Lett. 2011,15,6418-6421.
    [11]Andres, J.; Cardenas, R; Silla, E.; Tapia, O., A theoretical study of the Meyer-Schuster reaction mechanism:minimum-energy profile and properties of transition-state structure. J. Am. Chem. Soc.1988,110,666-674.
    [12](a) Bauer, L.; Exner, O., The Chemistry of Hydroxamic Acids and N-Hydroxyimides. Angew. Chem., Int. Ed.1974,13,376-384; (b) Bohm, S.; Exner, O., Acidity of hydroxamic acids and amides. Org. Biomol. Chem.2003,1, 1176-1180.
    [13]For recent reviews, see:(a) Brennfuhrer, A.; Neumann, H.; Beller, M., Palladium-Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds. Angew. Chem. Int. Ed.2009,48,4114-4133; (b) D'Souza, D. M.; Muller, T. J. J., Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev.2007,36,1095-1108.
    [14]Zadrozna, I.; Kurkowska, J.; Kruszewska, H.; Makuch, I., 4,5-Dihydroisoxazoles:Testing of antimicrobial activity. Il Farmaco 2000,55, 499-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700