新型离子色谱固定相的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的迅速发展,离子色谱作为色谱分析的重要分支,已经被广泛应用于环境监测、电力和能源行业、电子行业、食品及饮料行业、化学工业、制药行业和生命科学等领域。与其他色谱分支一样,色谱柱作为各目标分析物的分离场所,是整个分离系统的核心,更是色谱工作者的研究热点。同时随着离子色谱应用领域的逐渐拓展,所面临样品的多样性和复杂性不断增加,对样品前处理方法提出了更高的要求。本文开发了表面超支化接枝型及碳纳米管附聚型两类阴离子交换色谱固定相的制备方法,并将其应用于离子色谱柱切换系统在线样品前处理研究中。
     第一部分:
     第一章简单介绍了离子色谱的发展、分类及其主要应用领域,着重介绍了离子交换色谱固定相的研究进展,并对各类固定相制备方法的优缺点进行了总结。随后综述了碳纳米管在色谱固定相制备中的应用,为碳纳米管应用于离子色谱固定相的制备提供了依据。
     第二部分:
     第二章以聚苯乙烯-二乙烯基苯微球为基质,利用甲胺及1,4-丁二醇二环氧甘油醚的循环缩聚反应在微球表面接枝超支化阴离子交换基团,制备了不同交换容量的阴离子色谱固定相。通过扫描电镜、元素分析、突跃曲线、无机离子色谱分离等检测方法表征了填料的表面形貌、元素含量、交换容量及色谱分离性能,最后将自制色谱柱应用于自来水中无机阴离子的测定中。
     第三章将自制的超支化修饰聚苯乙烯-二乙烯基苯色谱柱应用于单泵柱切换同时测定强保留与弱保留离子中,优化了色谱条件及柱切换时间,并实现了强保留离子先于弱保留离子被检出分析。同时该离子色谱柱切换技术被成功应用于聚维酮碘溶液中碘与碘酸根离子的同时测定。
     第四章利用自制的超支化修饰聚苯乙烯-二乙烯基苯色谱柱,实现了单泵柱切换技术测定高盐基质中痕量阴离子。利用抑制器能将淋洗液中和成水的特点,将从抑制器中流出的离子进行富集和二次分析。优化了色谱条件及柱切换时间,完成了加碘食盐中痕量碘酸根的测定。
     第三部分:
     第五章建立了一种季铵化碳纳米管的制备方法。将多壁碳纳米管进行酸化处理后,利用甲胺及1,4-丁二醇二环氧甘油醚的缩聚反应,可得到季铵化修饰的多壁碳纳米管。通过红外光谱、热重分析、扫描电镜等表征方法,考察了多壁碳纳米管表面的功能基团及形貌。季铵化修饰后的碳纳米管含有大量亲水基团及正电荷,显著提高了碳纳米管的水溶液分散性。
     第六章建立了一种碳纳米管附聚型离子色谱固定相的制备方法。利用静电相互作用将季铵化修饰多壁碳纳米管附聚于磺化聚苯乙烯-二乙烯基苯微球表面,制备成阴离子交换色谱固定相。考察了碳纳米管附聚后基质微球的表面形貌及色谱性能,并将固定相应用于含磷阴离子的分析中。
As the rapid development of technology, ion chromatography (IC), an important branch of chromatography, has been widely used in the fields of environmental monitoring, power and energy industry, electronic industry, food and beverage industry, chemical industry, pharmaceutical industry and bioscience, etc. Same as other chromatographic techniques, columns are the heart of IC for it is the place where interaction between the stationary phase and analyte occurs. Therefore, study on preparation of novel ion chromatographic stationary phases has attracted the interest of scientists. Additionally, the varieties and complexities of samples are increasing as well as the requirements of sample pretreatment, with the spread of IC application. This dissertation focuses on preparation and application of anion exchange stationary phases with hyperbranched polymers or electrostatic agglomerated carbon nanotubes on polymeric substrates for ion chromatography. Moreover, the homemade columns are applied in on-line sample pretreatment column-switching for ion chromatography.
     Part Ⅰ:
     In chapter one, it briefly introduced the development history, classification and main application fields of IC, and focused on the research progress of ion-exchange stationary phases as well as the summary of advantages and disadvantages of various methods of preparing stationary phases. Then, preparation of novel chromatographic stationary phases with carbon nanotubes were reviewed, as the foundation of preparing stationary phases with carbon nanotubes for IC.
     Part Ⅱ:
     In chapter two, a novel anion exchange stationary phase with hyperbranched polymers grafted on polystyrene-divinylbenzene (PS-DVB) substrates for IC was prepared. The modified PS-DVB was based on the polycondensation reaction between1,4-butanediol diglycidyl ether (BDDE) and methylamine (MA) to get hyperbranched anion-exchange groups. Controlled synthesis allowed obtaining stationary phase with defined number of bonded layers and appropriate anion-exchange capacity. Several methods were utilized to characterize the stationary phase, such as the scanning electron microscope (SEM), elemental analysis, breakthrough curves and the separation of common inorganic anions in order to study the surface morphology, elemental contents, exchange capacity and chromatographic separation performance. Finally, Tap water was chosen to be analyzed without dilution on the homemade column.
     In chapter three, a simple ion chromatographic method for simultaneous detection of anions with weak retention and strong retention in a single running was proposed, with columns packed with homemade functionalized polystyrene-divinylbenzene (PS-DVB) resins and column-switching technique. The chromatographic conditions and column switching time were optimized. With the column-switching technique, anions with strong retention could be eluted off the column and detected prior to anions with weak retention. Anions in povidone iodine solution were analyzed by the column-switching IC system.
     In chapter four, a single pump cycling-column-switching technique has been developed for the analysis of trace anions in high salt matrices, with the homemade functionalized polystyrene-divinylbenzene (PS-DVB) columns. Anions could be concentrated and analyzed twice in homemade columns after eluent passing through the suppressor, for the eluent of KOH was converted into water in suppressor, which having rather low eluting power for the concentrator column. The chromatographic conditions and column switching time were optimized. Iodate in iodized edible salt was analyzed by the column-switching IC system.
     Part Ⅲ:
     In chapter five, it described a method of covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with quaternary ammonium groups. MWCNTs were easily quaternized with a defined number of bonded layers and desirable positive charge by a multi-step synthesis after acid treatment, using methylamine and1,4-butanediol diglycidyl ether as monomers to build a branching polymer that has quaternary ammonium groups. Functionalization of MWCNTs was characterized by techniques that include Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA) and SEM. The dispersion of MWCNTs in deionized water was enhanced after the grafting of cationic polyelectrolytes on them, which was in agreement with the positive charge at any pH value.
     In chapter six, an approach for fabrication of core-shell composite beads was described, with polystyrene-divinylbenzene (PS-DVB) as the core and multi-walled carbon nanotubes (MWCNTs) as the shell through electrostatic attraction-induced self-assembly. Quaternized multi-walled carbon nanotubes (Q-MWCNTs) were electrostatically adsorbed onto the surface of sulfonated PS-DVB beads to generate the anion exchanger, which were confirmed by FTIR and SEM. The stationary phase was rigid, chemically stable and showed good ion-exchange characteristics, and the analysis of phosphorus-containing anions was performed on the stationary phase.
引文
[1]吴宏,彭中贵.离子色谱及其应用.重庆市:重庆出版社,1988.
    [2]Small M., Stevens T. S., Baumann W. C. Novel ion exchange chromatographic method using conductimetric detection[J]. Anal. Chem.,47(1975):1801-1809.
    [3]Gjerde D. T., Fritz J. S., Schmuckler G. Anion chromatography with low-conductivity eluents[J]. J. Chromatogr.,186(1979):509-519.
    [4]何世伟.色谱仪器.杭州市:浙江大学出版社,2012.
    [5]Buchberger W., Ahrer W. Combination of suppressed and non-suppressed ion chromatography with atmospheric pressure ionization mass spectrometry for the determination of anions[J]. J. Chromatogr. A,850(1999):99-106.
    [6]Seubert A. On-line coupling of ion chromatography with ICP-AES and ICP-MS[J]. Trends Anal. Chem.,20 (2001):274-287.
    [7]丁明玉,田松柏.离子色谱原理与应用.北京:清华大学出版社,2001.
    [8]Small H. Ion Chromatography, Plenum Press, New York,1989.
    [9]Haddad P. R., Jackson P. E. Ion Chromatography Principles and Applications, Journal of Chromatography Library, Vol.46, Elsevier, New York,1990.
    [10]Weiss J. Ion Chromatography,2nd ed., VCH, Weinheim,1995.
    [11]Gjerde D. T., Fritz J. S. Ion Chromatography, Huthig, Heidelberg,1987.
    [12]Smith R. E. Ion Chromatography Applications, CRC Press, Boca Raton, FL, 1988.
    [13]Jackson P. E., Pohl C. A. Advances in stationary phase development in suppressed ion chromatography [J]. Trends Anal. Chem.16(1997):393-400.
    [14]Ohta K., Sando M., Tanaka K., Haddad P. R. Simultaneous determination of common mono- and divalent cations by ion chromatography with an unmodified silica gel column[J]. J. Chromatogr. A,752(1996):167-172.
    [15]Ohta K., Morikawa H., Tanaka K., Uryu Y, Paull B., Haddad P. R. Ion chromatographic behavior of alkali and alkaline earth metal cations on silica gel columns with cation exchange characteristics[J]. Anal. Chim. Acta 359(1998): 255-261.
    [16]杨瑞琴,蒋生祥,刘霞,.陈立仁.聚马来酸包夹硅胶基质单柱弱阳离子色谱柱填料[J].分析化学,26(1998):151-153.
    [17]Ohta K., Morikawa H., Tanaka K., Haddad P. R. Non-suppressed ion chromatography of cations on silica gel modified with aluminium[J]. J. Chroma togr. A,804(1998) 171-177.
    [18]Ohta K., Tanaka K., Haddad P. R. Simultaneous separation of common mono- and divalent cations on silica gels modified with aluminium and zirconium[J]. Trends Anal. Chem.,20(2001):330-335.
    [19]Sarzanini C. Recent developments in ion chromatography [J]. J. Chromatogr. A, 956(2002):3-13.
    [20]Kolla P., Kohler J., Schomburg G. Polymer-coated cation-exchange stationary phases on the basis of silica[J]. Chromatographia,23(1987):465-472.
    [21]Jensen D., Weiss J., Rey M. A., Pohl C. A. Novel weak acid cation-exchange column[J]. J. Chromatogr.,640(1993):65-71.
    [22]Rey M. A., Pohl C. A., Jagodzinski J. J., Kaiser E. Q., Riviello J.M. A new approach to dealing with high-to-low concentration ratios of sodium and ammonium ions in ion chromatography [J]. J. Chromatogr. A,804(1998): 201-209.
    [23]Pohl C. A., Rey M. A., Jensen D., Kerth J. Determination of sodium and ammonium ions in disproportionate concentration ratios by ion chromatography [J]. J. Chromatogr. A,850(1999):239-245.
    [24]Rey M. A. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography[J]. J. Chromatogr. A,920(2001): 61-68.
    [25]Jensen D., Weiss J., Rey M. A., Pohl C. A. Novel weak acid cation-exchange column[J]. J. Chromatogr.,640(1993):65-71.
    [26]Pohl C., Saini C. New developments in the preparation of anion exchange media based on hyperbranched condensation polymers[J]. J. Chromatogr. A,1213 (2008):37-44.
    [27]Jackson P. E, Thomas D.H., Donovan B., Pohl C. A., Kiser R. E. New block-grafted anion exchanger for environmental water analysis by ion chromatography[J]. J. Chromatogr. A,920(2001):51-60.
    [28]Cassidy R. M., Elchuk S. Dynamically coated columns and conductivity detection for trace determination of organic anions by ion chromatography[J]. J. Chromatogr.,262(1983):311-315.
    [29]Zhu Y, Haddad P. R., Fritz J. S. Ion chromatography on reversed-phase materials coated with mixed cationic and nonionic surfactants[J]. J. Chromatogr. A, 985(2003):359-365.
    [30]Fritz J. S., Zhu Y, Haddad P. R. Zhu Y., Haddad P. R., Fritz J. S. Modification of ion chromatographic separations by ionic and nonionic surfactants [J]. J. Chromatogr. A,997(2003):21-31.
    [31]Zhu Y, Ling Y. Y., Fritz J. S., Haddad P. R. Separation of anions by ion-interaction chromatography with a novel cationic/zwitterionic eluent[J]. J. Chromatogr. A,1020(2003):259-264.
    [32]Hjerten S., Liao J. L., Zhang R. High-performance liquid chromatography on continuous polymer beds[J]. J. Chromatogr.473(1989):273-275.
    [33]Leinweber F. C., Lubda D., Cabrera K., Tallarek U. Characterization of silica-based monoliths with bimodal pore size distribution[J]. Anal. Chem., 74(2002):2470-2477.
    [34]Leinweber F. C., Tallarek U. Chromatographic performance of monolithic and particulate stationary phases:Hydrodynamics and adsorption capacity[J]. J. Chromatogr. A,1006(2003):207-228.
    [35]Hara T., Kobayashi H., Ikegami T., Nakanishi K., Tanaka N. Performance of Monolithic Silica Capillary Columns with Increased Phase Ratios and Small-Sized Domains[J]. Anal. Chem.,78(2006):7632-7642.
    [36]Pelletier S., Lucy C. A. Fast and high-resolution ion chromatography at high pH on short columns packed with 1.8 μm surfactant coated silica reverse-phase particles[J]. J. Chromatogr. A,1125(2006):189-194.
    [37]Gusev I., Huang X., Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography[J]. J. Chromatogr. A,855(1999):273-290.
    [38]Svec F., Frechet J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J]. Anal. Chem.1992,64,820-822.
    [39]Augustin V., Jardy A., Gareil P., Hennion M. C. J. Chromatogr. A, In situ synthesis of monolithic stationary phases for electrochromatographic separations:Study of polymerization conditions [J].1119(2006):80-87.
    [40]Yu C., Svec F., Frechet J. M. J. Capillary electrochromatography with physically and dynamically absorbed stationary phases[J]. Electrophoresis, 21(2000):120-127.
    [41]Safrany A., Beiler B., Laszlo K., Svec F. Control of pore formation in macroporous polymers synthesized by single-step y-radiation-initiated polymerization and cross-linking[J]. Polymer,46(2005):2862-2871.
    [42]Kala R., Biju V. M., Rao T. P. Synthesis, characterization, and analytical applications of erbium(Ⅲ) ion imprinted polymer particles prepared via y-irradiation with different functional and crosslinking monomers[J]. Anal. Chim. Acta.,549(2005):51-58.
    [43]Podgornik A., Barut M., Strancar A., Josic D., Koloini T. Construction of Large-Volume Monolithic Columns[J]. Anal. Chem.,72(2000):5693-5699.
    [44]Aoki H., Kubo T., Ikegami T., Tanaka N., Daisuke K. H. Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen[J]. J. Chromatogr. A,1119(2006):66-79.
    [45]Chen J. G, Weber S. G., Glavina L. L., Cantwell F. F. Electrical double-layer models of ion-modified (ion-pair) reversed-phase liquid chromatography [J]. J. Chromatogr.,656(1993):549-576.
    [46]Connolly D., Paull B. Fast separation of UV absorbing anions using ion-interaction chromatography [J]. J. Chromatogr. A,917(2001):353-359.
    [47]Hatsis P., Lucy C. A. Ultra-fast HPLC separation of common anions using a monolithic stationary phasenalyst[J].127(2002):451-454.
    [48]Hatsis P., Lucy C. A., Improved Sensitivity and Characterization of High-Speed Ion Chromatography of Inorganic Anions[J]. Anal. Chem.,75(2003):995-1001.
    [49]Xu Q., Mori M., Tanaka K., Ikedo M., Hu W., Haddad P. R. Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants [J]. J. Chromatogr. A,1041(2004): 95-99.
    [50]Connolly D., Victory D., Paull B. Rapid, low pressure, and simultaneous ion chromatography of common inorganic anions and cations on short permanently coated monolithic columns[J]. J. Sep. Sci.,27(2004):912-920.
    [51]Sugrue E., Nesterenko P., Paull B. Iminodiacetic acid functionalised monolithic silica chelating ion exchanger for rapid determination of alkaline earth metal ions in high ionic strength samples[J]. Analyst,128(2003):417-420.
    [52]Sugrue, E., Nesterenko, P. N., Paull, B. Fast ion chromatography of inorganic anions and cations on a lysine bonded porous silica monolith[J]. J. Chromatogr. A, 1075(2005):167-175.
    [53]Preinerstorfer B., Lubda D., Lindner W., Lammerhofer M. Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography[J]. J. Chromatogr. A,1106(2006):94-105.
    [54]Tennikova, T. B., Belenkii, B. G., Svec, F. High-performance membrane chromatography, a novel method of protein separation[J]. J. Liq. Chromatogr., 13(1990):63-70.
    [55]Tennikova T. B., Bleha M., Svec F., Almazova T. V., Belenkii B. G High-performance membrane chromatography of proteins, a novel method of protein separation[J]. J. Chromatogr.,555(1991):97-107.
    [56]Josic D., Reusch J., Loster K., Baum O., Reutter W. High-performance membrane chromatography of serum and plasma membrane proteins [J]. J. Chromatogr., 590(1992):59-76.
    [57]Ueki Y., Umemura T., Li J., Odake T., Tsunoda K. Preparation and application of methacrylate-based cation-exchange monolithic columns for capillary ion chromatography [J]. Anal. Chem.,76(2004):7007-7012.
    [58]Lin J., Lin J., Lin X., Xie Z. Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes[J]. J. Chromatogr. A,1216(2009): 801-806.
    [59]Hutchinson J. P., Hilder E. F., Macka M., Avdalovic N., Haddad P. R. Preparation and characterisation of anion-exchange latex-coated silica monoliths for capillary electrochromatography[J]. J. Chromatogr. A,1109(2006):10-18.
    [60]Zakaria P., Hutchinson J. P., Avdalovic N., Liu Y., Haddad P. R. Latex-coated polymeric monolithic ion-exchange stationary phases.2. micro-ion chromatography [J]. Anal. Chem.,77(2005):417-423.
    [61]何世伟,黄忠平,朱岩.新型碳纳米管色谱固定相制备的研究进展[J].色谱,31(2013):1146-1153.
    [62]Iijima S. Helical microtubules of graphitic carbon[J]. nature,354(1991):56-58.
    [63]Poole C. P., Owens F. J. Introduction to nanotechnology. Hoboken NJ:John Wiley and Sons Inc.,2003.
    [64]Connell M. O. Carbon nanotubes:properties and applications. Boca Raton FL: CRC,2006.
    [65]Gogotsi Y. Carbon nanomaterials. Boca Raton FL:CRC,2006.
    [66]Yang B. X., Pramoda K. P., Xu G. Q., Goh S. H. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes [J]. Adv. Funct. Mater.,2007,17(13):2062-2069.
    [67]Piran M., Kotlyar V., Medina D. D., Pirlot C., Goldman D. End-selective functionalization of carbon nanotubes. Use of DOE for the optimization of a DNA probe attachment and hybridization using an enzymatic amplifying system[J]. J. Mater. Chem.,19(2009):631-638.
    [68]Gopalan A. I., Lee K. P., Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network[J]. Biosens. Bioelectron.,24(2009):2211-2217.
    [69]Zhu X. Y., Lee S. M., Lee Y. H., Frauenheim T. Adsorption and desorption of an O2 molecule on carbon nanotubes[J]. Phys. Rev. Lett.,85(2000):2757-2760.
    [70]付善良,丁利,朱绍华,焦艳娜,龚强,陈继涛,吴新华,王利兵.磁性多壁碳纳米管固相萃取-气相色谱-质谱法检测水样中的13种领苯二甲酸酯类化合物[J].色谱,29(2011):737-742.
    [71]吴新华,丁利,李忠海,张彦丽,刘晓霞,王利兵.多壁碳纳米管固相萃取-高效液相色谱-串联质谱法测定食品接触材料中双酚-二环氧甘油醚的迁移量[J].色谱,28(2010):1094-1098.
    [72]赵海香,贾艳霞,丁明玉,孙大江,赵孟彬.多壁碳纳米管固相萃取净化气相色谱法分析蔬菜中有机氯和拟除虫菊酯农药残留[J].色谱,29(2011):443-449.
    [73]彭晓俊,庞晋山,邓爱华,梁伟华,梁优珍,温绮靖.改性多壁碳纳米管固相萃取-高效液相色谱法测定农产品中痕量残留的4种有机氯农药[J].色谱,30(2012):966-970.
    [74]武春霞,王春,王志.碳纳米管在分离科学中的应用研究进展[J].色谱,29(2011):6-14.
    [75]Mittermuller M., Volmer D. A. Micro- and nanostructures and their application in gas chromatography[J]. Analyst,137(2012):3195-3201.
    [76]Zhang Z. X., Wang Z. Y, Liao Y P., Liu H. W. Applications of nanomaterials in liquid chromatography:Opportunities for separation with high efficiency and selectivity[J]. J. Sep. Sci.,29(2006):1872-1878.
    [77]Chen A., Holt-Hindle P. Platinum-based nanostructured materials:synthesis, properties, and applications [J]. Chem. Rev.,110(2010):3767-3804.
    [78]Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of carbon nanotubes[J]. Chem. Rev.,106(2006):1105-1136.
    [79]Li Q. L., Yuan D. X. Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing[J]. J. Chromatogr. A,1003(2003):203-209.
    [80]李权龙,袁东星.多壁碳纳米管作为气相色谱固定相的性能研究[J].化学学报,60(2002):1876-1882.
    [81]Speltini A., Merli D., Quartarone E., Profumo A. Separation of alkanes and aromatic compounds by packed column gas chromatography using functionalized Multi-Walled Carbon Nanotubes as stationary phases[J]. J. Chromatogr. A, 1217(2010):2918-2924.
    [82]Merli D., Speltini A., Ravelli D., Quartarone E., Costa L., Profumo A. Multi-walled carbon nanotubes as the gas chromatographic stationary phase:Role of their functionalization in the analysis of aliphatic alcohols and esters[J]. J. Chromatogr. A,1217(2010):7275-7281.
    [83]Speltini A., Merli D., Dondi D., Paganini G, Profumo. Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase[J]. Anal. Bioanal. Chem.,403(2012):1157-1165.
    [84]Lin Y., Taylor S., Li H., Fernando K. A. S., Qu L., Wang W., Gu L., Zhou B., Sun Y. P. Advances toward bioapplications of carbon nanotubes [J]. J. Mater. Chem., 14(2004):527-541.
    [85]Menna E., Negra F. D., Prato M., Tagmatarchis N., Ciogli A., Gasparrini F., Misiti D., Villani C. Carbon nanotubes on HPLC silica microspheres[J]. Carbon, 44(2006):1581-1616.
    [86]Chang Y. X., Zhou L. L., Li G. X., Li L., Yuan L. M. Single-wall carbon nanotubes used as stationary phase in HPLC[J]. J. Liq. Chromatogr. R. T., 30(2007):2953-2958.
    [87]Kwon S. H., Park J. H. Intermolecular interactions on multiwalled carbon nanotubes in reversed-phase liquid chromatography [J]. J. Sep. Sci.,29(2006): 945-952.
    [88]Andre C., Gharbi T., Guillaume Y. C. A novel stationary phase based on amino derivatized nanotubes for HPLC separations:Theoretical and practical aspects[J]. J. Sep. Sci.,32(2009):1757-1764.
    [89]Andre C., Aljhani R., Gharbi T., Guillaume Y. Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: Theoretical and practical aspects[J]. J. Sep. Sci.,34(2011):1221-1227.
    [90]Liang X. J., Liu S. J., Liu H. M., Liu X., Jiang S. X. Layer-by-layer self-assembled multi-walled carbon nanotubes/silica microsphere composites as stationary phase for highperformance liquid chromatography[J]. J. Sep. Sci., 33(2010):3304-3312.
    [91]Zhong Y. Y, Zhou W. F., Zhang P. M., Zhu Y. Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers[J]. Talanta,82(2010):1439-1447.
    [92]Saridara C., Mitra S. Chromatography on self-assembled carbon nanotubes[J]. Anal. Chem.,77(2005):7094-7097.
    [93]Karwa M., Mitra S. Gas Chromatography on self-assembled, single-walled carbon nanotubes[J]. Anal. Chem.,78(2006):2064-2070.
    [94]Hussain C. M., Saridara C., Mitra S. Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns[J]. Anal. Chem.,82(2010):5184-5188.
    [95]Hussain C. M., Saridara C., Mitra S. Altering the polarity of self-assembled carbon nanotubes stationary phasevia covalent functionalization[J]. RSC Adv., 1(2011):685-689.
    [96]Yuan L. M., Ren C. X., Li L., Ai P. Yan Z. H., Zi M., Li Z. Y Single-walled carbon nanotubes used as stationary phase in GC[J]. Anal. Chem.,78(2006): 6384-6390.
    [97]任朝兴,艾萍,袁黎明.离子液体和碳纳米管作为混合气相色谱固定相的研究与应用[J].分析试验室,27(2008):23-25.
    [98]赵丽,艾萍,熊维伟,李芙蓉,袁黎明.单壁碳纳米管+SE-30毛细管柱的制备研究及对多种物质的拆分[J].分析试验室,28(2009):85-89.
    [99]Zhao L., Ai P., Duan A. H., Yuan L. M. Single-walled carbon nanotubes for improved enantioseparations on a chiral ionic liquid stationary phase in GC[J]. Anal. Bioanal. Chem.,399(2011):143-147.
    [100]孙澈,郑永杰,田景芝.新型毛细管气相色谱柱的制备及分离性能研究[J].高师理科学刊,33(2013):57-60.
    [101]Wang Q., Svec F., Frechet J. M. J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography[J]. Anal. Chem.,65(1993):2243-2248.
    [102]Wang Q., Svec F., Frechet J. M. J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly (styrene-co-divinylbenzene)[J]. J. Chromatogr. A,669(1994):230-235.
    [103]Li Y., Chen Y., Xiang R., Ciuparu D., Pfefferle L. D., Horvath C., Wilkins J. A. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography[J]. Anal. Chem.,77(2005):1398-1406.
    [104]Chambers S. D., Svec F., Frechet J. M. J. Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules[J]. J. Chromatogr. A,1218(2011):2546-2552.
    [105]任呼博,柳仁民.含多壁碳纳米管的硅胶整体柱的制备、表征及性能评价[J].分析试验室,28(2009):1-4.
    [106]Andre C., Lenancker G., Guillaume Y. C. Non-covalent functionalisation of monolithic silica for the development of carbon nanotube HPLC stationary phases[J]. Talanta,99(2012):580-585.
    [107]Aqel A., Yusuf K., Al-Othman Z. A., Badjah-Hadj-Ahmed Y, Alwarthan A. A. Effect of multi-walled carbon nanotubes incorporation into benzyl methacrylate monolithic columns in capillary liquid chromatography [J]. Analyst,137(2012): 4309-4317.
    [108]Wang N. N., He S. W., Yan W. W., Zhu Y. Incorporation of multiwalled carbon nanotube into a polymethacrylate-based monolith for ion chromatography [J]. J. Appl. Polym. Sci.,128(2013):741-749.
    [109]Safavi A., Maleki N., Doroodmand M. M. Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen[J]. Anal.Chim. Acta,675(2010):207-212.
    [110]Katz E., Willner I. Biomolecule-functionalized carbon nanotubes:applications in nanobioelectronics[J]. Chem. Phys. Chem.,5(2004):1084-1104.
    [111]Zhong Y. Y., Zhou W. F., Zhu H. B., Zeng X. L., Ye M. L., Zhang P. M., Zhu Y. A single pump column-switching technique coupled with polystyrene-divinylbenzene-carbon nanotubes column for the determination of trace anions in different concentrated organic matrices by ion chromatography[J]. Anal. Chim. Acta.,686(2011):1-8.
    [112]Zhong Y. Y, Zhou W.F., Zeng X. L., Ye M. L., Zhu Y. Trace analysis of anions in organic matrices by ion chromatography coupled with a novel reversed-phase column for on-line sample pretreatment[J]. Chinese Chemical Letters,22(2011): 461-464.
    [113]Stadermann M., McBrady A. D., Dick B., Reid V. R., Noy A., Synovec R. E., Bakajin O. Ultrafast gas chromatography on single-wall carbon nanotube stationary phases in microfabricated channels[J]. Anal. Chem.,78(2006): 5639-5644.
    [114]Reid V. R., Stadermann M., Bakajin O., Synovec R. E. High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase[J]. Talanta,77(2009):1420-1425.
    [115]Fonverne A., Ricoul F., Demesmay C., Delattre C, Fournier A., Dijon J., Vinet F. In situ synthesized carbon nanotubes as a new nanostructured stationary phase for microfabricated liquid chromatographic column[J]. Sensor Actuat. B-Chem., 129(2008):510-517.
    [116]Fonverne A., Demesmay C., Ricoul F., Rouviere E. Dijon J. Vinet F. New carbon nanotubes growth process in a closed microfabricated channel for liquid chromatography application[J]. Sensor Actuat. A-Phys.,167(2011):517-523.
    [117]Yu J. G, Huang D. S., Huang K. L., Hong Y Preparation of hydroxypropyl-β-cyclodextrin cross-linked multi-walled carbon nanotubes and their application in enantioseparation of clenbuterol[J]. Chin. J. Chem.,29(2011): 893-897.
    [1]Small H., Stevens T. S., Bauman W. S. Novel ion exchange chromatographic method using conductimetric detection[J]. Anal. Chem.,47(1975):1801-1809.
    [2]Nair L. M., Kildew B. R., Saari-Nordhaus, R. J. Chromatogr. A,739(1996): 99-110.
    [3]Li J., Fritz J. S. Novel polymeric resins for anion-exchange chromatography[J]. J. Chromatogr. A,793(1998):231-238.
    [4]Weiss J., Reinhard S., Pohl C., Saini C., Narayaran, L. Stationary phase for the determination of fluoride and other inorganic anions[J]. J. Chromatogr. A, 706(1995):81-92.
    [5]Weiss J. Handbook of Ion Chromatography,3rd Edn, VCH, Weinheim 2004.
    [6]Nair L. M., Saari-Nordhaus R., Montgomery R. M. Applications of a new methacrylate-based anion stationary phase for the separation of inorganic anions[J]. J. Chromatogr. A,789(1997):127-134.
    [7]Matsushita S., Tada Y, Baba N., Hosako K., High-performance ion chromatography of anions[J]. J. Chromatogr.259(1983):459-464.
    [8]Auler L. M. L. A., Silva C. R., Collins K. E., Collins C. H. New stationary phase for anion-exchange chromatography[J]. J. Chromatogr. A,1073(2005):147-153.
    [9]Jal P. K., Patel S., Mishra B. K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta,62(2004):1005-1028.
    [10]Collinson M. M. Recent trends in analytical applications of organically modified silicate materials [J]. Trends Anal. Chem.,21(2002):31-39.
    [11]Cortes H. J. High-performance liquid chromatography of inorganic and organic anions using ultraviolet detection and an amino column[J]. J. Chromatogr., 234(1982):517-520.
    [12]Kiseleva M. G, Nestenko P. N. Novel stationary phase with regulated anion-exchange capacity[J]. J. Chromatogr. A,920(2001):87-93.
    [13]Huber C. G, Oefner P., Bonn G. K., High-resolution liquid chromatography of DNA fragments on non-porous poly(styrene-divinylbenzene) particles[J]. Nucl. Acid Res.,21(1993):1061-1066.
    [14]Jenson D., Weiss J., Rey M. A., Pohl C. A. Novel weak acid cation-exchange column[J]. J. Chromatogr.,640(1993):65-71.
    [15]Pohl C., Saini C. New developments in the preparation of anion exchange media based on hyperbranched condensation polymers[J]. J. Chromatogr. A,1213(2008): 37-44.
    [16]Kuban P., Dasgupta P. K., Pohl C., Open tubular anion exchange chromatography. Controlled layered architecture of stationary phase by successive condensation polymerization[J]. Anal. Chem.,79(2007):5462-5467.
    [17]Jackowska M., Bocian S., Kosobucki P., Buszewski B., Polymeric functionalized stationary phase for separation of ionic compounds by IC[J]. Chromatographia, 72(2010):611-616.
    [18]Buszewski B., Jackowska M., Bocian S., Kosobucki P., Gawdzik B., Functionalized polymeric stationary phases for ion chromatography [J]. J. Sep. Sci.,34(2011):601-608.
    [19]Muller, E. Comparison between mass transfer properties of weak-anionexchange resins with graft-functionalized polymer layers and traditional ungrafted resins[J]. J. Chromatogr. A,1006(2003):229-240.
    [20]Hill D. J., O'Donnell J. H., Pomery P. J., Whittaker M. R. A high resolution NMR investigation into the microstructure of HEMA and EEMA copolymers[J]. Polym. Gels. Netw.,3(1995):85-97.
    [21]Creed J. T., Magnuson M. L., Pfaff J. D., Brockhoff C. Determination of bromate in drinking waters by ion chromatography with inductively coupled plasma mass spectrometric detection[J]. J. Chromatogr. A,753(1996):261-267.
    [22]Huck C. W., Bonn G. K. Poly(styrene-divinylbenzene) based media for liquid chromatography[J]. Chem. Eng. Technol.,28(2005):1457-1472.
    [23]Zhong Y. Y., Zhou W. F., Zhang P. M., Zhu Y, Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers[J]. Talanta,82(2010):1439-1447.
    [24]Zhong Y. Y., Zhou W. F., Zhu H. B., Zeng X. L., Ye M. L., Zhang P. M., Zhu Y, A single pump column-switching technique coupled with polystyrene-divinylbenzene-carbon nanotubes column for the determination of trace anions in different concentrated organic matrices by ion chromatography[J]. Anal. Chim. Acta,686(2011):1-8.
    [25]钟莺莺.新型聚合物碳纳米管复合色谱固定相的研究及应用[博士学位论文].中国杭州,浙江大学,2010年。
    [1]Small H., Stevens T. S., Bauman W. S. Novel ion exchange chromatographic method using conductimetric detection[J]. Anal. Chem.,47(1975):1801-1809.
    [2]Saari-Nordhaus R., Anderson J. M. Dual-column techniques for the simultaneous analysis of anions and cations[J]. J. Chromatogr.,602 (1992):127-133.
    [3]Yan D., Schwedt G. Simultaneous ion chromatography of inorganic anions together with some organic anions and alkaline earth metal cations using chelating agents as eluents[J]. J. Chromatogr.,516 (1990):383-393.
    [4]Wang K., Lei Y, Eitel M., Tan S. Ion chromatographic analysis of anions in ammonium hydroxide, hydrofluoric acid, and slurries, used in semiconductor processing[J]. J. Chromatogr. A,956 (2002):109-120.
    [5]Vermeiren K. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography:Ⅰ. Matrix elimination by ion-exclusion chromatography[J]. J. Chromatogr. A,1085 (2005):60-65.
    [6]Vermeiren K. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography:Ⅱ. Method performance study with a hydroxide eluent and a low noise suppressor[J]. J. Chromatogr. A,1085 (2005): 66-73.
    [7]Kaiser E., Rohrer J. S., Watanabe K. Determination of trace anions in concentrated weak acids by ion chromatography [J]. J. Chromatogr. A,850 (1999):167-176.
    [8]Stover F. S. Spacer performance in the cationic isotachophoresis of proteins [J]. J. Chromatogr.,470 (1989):201-208.
    [9]Kaiser E., Wojtusik M. J. Determination of trace anions in isopropanol[J]. J. Chromatogr.,671 (1994):253-258.
    [10]Sanders J. K. Cation analysis in electronics-grade organic solvents by ion chromatography[J]. J. Chromatogr. A,804 (1998):193-200.
    [11]Kaiser E., Rohrer J. Determination of trace anions in organic solvents[J]. J. Chromatogr. A,858 (1999):55-63.
    [12]Bruno P., Caselli M., Gennaro G. D., Tommaso B. D., Lastella G., Mastrolitti S. Determination of nutrients in the presence of high chloride concentrations by column-switching ion chromatography [J]. J. Chromatogr. A,1003 (2003): 133-141.
    [13]Zhu Z. Y., Xu J. G, Zhong N. F., Zhang P. M., Zhu Y. Fast determination of hexafluorophosphate, fluorid, chloride, nitrate and sulfate inorganic anions by ion chromatography with valve switching[J]. Chin. J. of Anal. Chem.39 (2011): 1738-1742.
    [14]Huang Z. P., Ni C. Z., Wang F. L., Zhu Z. Y, Subhani Q., Wang M. H., Zhu Y. Simultaneous determination of peroxydisulfate and conventional inorganic anions by ion chromatography with the column-switching technique[J]. J. Sep. Sci., 37(2014):198-203.
    [15]Edmonds J. S., Morita M. The determination of iodine species in environmental and biological samples[J]. Pure Appl. Chem.,70 (1998):1567-1584.
    [16]Francisco P. P., Sonia S. F., Isela L., Carlos B. Determination of iodate in waters by cuvetteless UV-vis micro-spectrophotometry after liquid-phase microextraction[J].Talanta,81 (2010):625-629.
    [17]Tang C. R., Su Z. H., Lin B. G., Huang H. W., Zeng Y L., Li S., Huang H., Wang Y. J., Li C. X., Shen G. L., Yu R. Q. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes [J]. Anal. Chim. Acta, 678 (2010):203-207.
    [18]Huang X., Li Y. X., Chen Y. L., Wang L. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode[J]. Sensors and Actuators B,134 (2008):780-786.
    [19]Li M. G, Ni F., Wang Y. L., Xu S. D., Zhang D. D., Wang L. LDH modified electrode for sensitive and facile determination of iodate[J]. Appl. Clay Sci.,46 (2009):396-400.
    [20]Shin H. S., Oh-Shin Y. S., Kim J. H., Ryu J. K. Trace level determination of iodide, iodine and iodate by gas chromatography-mass spectrometry[J]. J. Chromatogr. A,732 (1996):327-333.
    [21]Grinberg P., Mester Z., D'Ulivo A., Sturgeon R. E. Gas chromatography-mass spectrometric identification of iodine species arising from photo-chemical vapor generation[J]. Spectrochimica Acta Part B,64 (2009):714-716.
    [22]Kishan R. N., Jain A., Verma K. K., Liquid-phase microextraction-gas chromatography-mass spectrometry for the determination of bromate, iodate, bromide and iodide in high-chloride matrix[J]. J. Chromatogr. A,1148 (2007): 145-151.
    [23]Wang T. L., Zhao S. Z., Shen C. H., Tang J., Wang D. Determination of iodate in table salt by transient isotachophoresis-capillary zone electrophoresis[J]. Food Chem.,112 (2009):215-220.
    [24]Ito K., Ichihara T., Zhuo H., Kumamoto K., Timerbaev A. R., Hirokawa T. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration Comparison with ion chromatography[J]. Anal. Chim. Acta,497 (2003):67-74.
    [25]Yokota K., Fukushi K., Takeda S., Wakida S. I. Simultaneous determination of iodide and iodate in seawater by transient isotachophoresis-capillary zone electrophoresis with artificial seawater as the background electrolyte[J]. J. Chromatogr. A,1035 (2004):145-150.
    [26]Nacapricha D., Sangkarn P., Karuman C., Mantim T., Waiyawat W., Wilairat P., Cardwell T., McKelvie I. D., Ratanawimarnwon N. Pervaporation-flow injection with chemiluminescence detection for determination of iodide in multivitamin tablets[J]. Talanta,72 (2007):626-633.
    [27]Xie Z., Zhao J. Reverse flow injection spectrophotometric determination of iodate and iodide in table salt[J]. Talanta,63 (2004):339-343.
    [28]Choengchan N., Uraisin K., Choden K., Veerasai W., Grudpan Kate, Nacapricha D. Simple flow injection system for colorimetric determination of iodate in iodized salt[J]. Talanta,58 (2002):1195-1201.
    [29]Rebary B., Paul P., Ghosh P. K. Determination of iodide and iodate in edible salt by ion chromatography with integrated amperometric detection[J]. Food Chem., 123 (2010):529-534.
    [30]Malongo T. K., Patrisa S., Macours P., Cottona F., Nsangu J., Kauffmanna J. M. Highly sensitive determination of iodide by ion chromatography with amperometric detection at a silver-based carbon paste electrode [J]. Talanta,76 (2008):540-547.
    [31]Hu W. Z., Yang P. J., Hasebe K., Haddad P. R., Tanaka K. Germanium dioxide as internal standard for simplified trace determination of bromate, bromide, iodate and iodide by on-line coupling ion chromatography-inductively coupled plasma mass spectrometry[J]. J. Chromatogr. A,956 (2002):103-109.
    [32]Chen Z. L., Megharaj M., Naidu R. Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry[J]. Talanta,72 (2007):1842-1846.
    [33]Eickhorst T., Seubert A. Rapid and direct determination of iodide in seawater by electrostatic ion chromatography [J]. J. Chromatogr. A,1050 (2004):103-107.
    [34]Kumar S. D., Maiti B., Mathur P. K. Determination of iodate and sulphate in iodized common salt by ion chromatography with conductivity detection[J]. Talanta,53 (2001):701-705.
    [1]Buchberger W. Determination of iodide and bromide by ion chromatography with post-column reaction detection[J]. J. Chromatogr. A,439(1988):129-135.
    [2]Yao S. Z., Chen P., Wei W. Z. A quartz crystal microbalance method for the determination of iodine in food stuffs[J]. Food Chem.,67(1999):311-316.
    [3]Delange F., Burgi H., Chen Z. P., Dunn J. T. World status of monitoring of iodine deficiency disorders control programs[J]. Thyroid,12 (2002):915-924.
    [4]Eckhoff K. M., Maage A. Iodine content in fish and other food products from East Africa analyzed by ICP-MS[J]. J. Food Compos. Anal.,10(1997):270-282.
    [5]Cunniff P. Official methods of analysis (16th ed.). Arlington:Association of official analytical chemists,1990.
    [6]Rebary B., Paul P., Ghosh P. K. Determination of iodide and iodate in edible salt by ion chromatography with integrated amperometric detection[J]. Food Chem.,123 (2010):529-534.
    [7]Borges S. S., Peixoto J. D. S., Feres M. A., Reis B. F. Downscaling a multicommuted flow injection analysis system for the photometric determination of iodate in table salt[J]. Anal. Chim. Acta,668 (2010):3-7.
    [8]Shabani A. M. H., Ellis P. S., McKelvie I. D. Spectrophotometric determination of iodate in iodised salt by flow injection analysis[J]. Food Chem.,129(2011): 704-707.
    [9]Xie Z. H., Zhao J. C. Reverse flow injection spectrophotometric determination of iodate and iodide in table salt[J]. Talanta,63(2004):339-343.
    [10]Wang T. L., Zhao S. Z, Shen C. H, Tang J., Wang D. Determination of iodate in table salt by transient isotachophoresis-capillary zone electrophoresis[J]. Food Chem.,112 (2009):215-220.
    [11]Xu X. R., Li H. B., Gu J. D., Paeng K. J. Determination of iodate in iodized salt by reversed-phase high-performance liquid chromatography with UV detection[J]. Chromatographia,60(2004):721-723.
    [12]Kosminsky L., Bertotti M. Determination of iodate in salt samples with amperometric detection at a molybdenum oxide modified electrode[J]. Electroanalysis,11 (1999):623-626.
    [13]Kumar S. D., Maiti B., Mathur P. K. Determination of iodate and sulphate in iodized common salt by ion chromatography with conductivity detection[J]. Talanta,53(2001):701-705.
    [14]Bichsel Y, Gunten U. V. Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/Visible detection[J]. Anal.Chem.,71(1999):34-38.
    [15]Weinberg H. S., Yamada H. Post-ion-chromatography derivatization for the determination of oxyhalides at sub-PPB levels in drinking water[J]. Anal. Chem., 70(1998):1-6.
    [16]Chen Z. L., Megharaj M., Naidu, R. Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry[J]. Talanta,72(2007):1842-1846.
    [17]Zhang W. N., Liu X. Q., Jia X. Y, Han Y, Liu X. L., Xie X. J., Lu J. L., Duan T. C., Chen, H. T. Fast speciation of iodide and iodate in edible salts and human urine by short column IC coupled with inductively coupled plasma MS[J]. Chromatographia,72(2010):1009-1012.
    [18]Zhong Y. Y., Zhou W.F., Zhu H. B., Zeng X. L., Ye M. L., Zhang P. M., Zhu Y. A single pump column-switching technique coupled with polystyrene-divinylbenzene-carbon nanotubes column for the determination of trace anions in different concentrated organic matrices by ion chromatography [J]. Anal. Chim. Acta,686(2011):1-8.
    [19]Huang Z. P., Zhu Z. Y, Subhani Q., Yan W. W., Guo W. Q., Zhu Y. Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with hemade and exchange capacity controllable columns and column-switching technique. J. of Chromatogr. A,1251(2012):154-159.
    [1]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,354(1991):56-58.
    [2]Poole C. P., Owens F.J. Introduction to nanotechnology. Hoboken NJ:John Wiley and Sons Inc.,2003.
    [3]Connell M. O. Carbon nanotubes:properties and applications. Boca Raton FL: CRC,2006.
    [4]Gogotsi Y. Carbon nanomaterials. Boca Raton FL:CRC,2006.
    [5]Yang B. X., Pramoda K. P., Xu G. Q., Goh S. H. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes[J]. Adv. Funct. Mater.,17(2007):2062-2069.
    [6]Kathi J., Rhee K. Y, Lee J. H. Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites[J]. Compos Part A-Appl. S., 40(2009):800-809.
    [7]Piran M., Kotlyar V., Medina D. D., Pirlot C., Goldman D., Lellouche J. P. End-selective functionalization of carbon nanotubes. Use of DOE for the optimization of a DNA probe attachment and hybridization using an enzymatic amplifying system[J]. J. Mater. Chem.,19(2009):631-638.
    [8]Kang H., Lim S., Park N., Chun K. Y, Baik S. Improving the sensitivity of carbon nanotube sensors by benzene functionalization[J]. Sensor Actuat. B-Chem. 147(2010):316-321.
    [9]Gopalan A. I., Lee K. P., Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network[J]. Biosens. Bioelectron.,24(2009):2211-2217.
    [10]Niu L., Luo Y, Li Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol)[J]. Sensor Actuat. B-Chem.,126(2007):361-367.
    [11]Fatemi S., Vesali-Naseh M., Cyrus M., Hashemi J. Improving CO2/CH4 adsorptive selectivity of carbon nanotubes by functionalization with nitrogen-containing groups[J]. Chem. Eng. Res. Des.89(2011):1669-1675.
    [12]"百度百科",http://baike.baidu.com/link?url=oQAPGmdyo_SnkiI80bTOZzPEl_
    iScs_2-c9nIriu6xXeiRjQSc9ORj_a3TC-06cN. (31/12/2013).
    [13]Morishita T., Matsushita M., Katagiri Y., Fukumori K. Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites[J]. Carbon,48(2010):2308-16.
    [14]Ogoshi T., Saito T., Yamagishi T., Nakamoto Y. Solubilization of single-walled carbon nanotubes by entanglements between them and hyperbranched phenolic polymer[J]. Carbon,47(2009):117-123.
    [15]Hu C., Liao H., Li F., Xiang J., Li W., Duo S., Li M. S. Noncovalent functionalization of multi-walled carbon nanotubes with siloxane polyether copolymer[J]. Mater. Lett.,62(2008):2585-2588.
    [16]Yan Y, Cui J., Potschke P., Voit B. Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites[J]. Carbon,48(2010):2603-2612.
    [17]Liu M., Yang Y, Zhu T., Liu Z. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid[J]. Carbon,43(2005):1470-1478.
    [18]Barthos R., Mehn D., Demortier A., Pierard N., Morciaux Y, Demortier G. Functionalization of single-walled carbon nanotubes by using alkyl-halides[J]. Carbon,43(2005):321-325.
    [19]Fifield L. S., Grate J. W. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups [J]. Carbon, 48(2010):2085-2088.
    [20]Farzi G., Akbar S., Beyou E., Cassagnau P., Melis F. Effect of radical grafting of tetramethylpentadecane and polypropylene on carbon nanotubes'dispersibility in various solvents and polypropylene matrix[J]. Polymer,50(2009):5901-5908.
    [21]Akbar S., Beyou E., Cassagnau P., Chaumont P., Farzi G Radical grafting of polyethylene onto MWCNTs: A model compound approach[J]. Polymer,50(2009): 2535-2543.
    [22]Georgakilas V., Kordatos K., Prato M., Guldi D. M., Holzinger M., Hirsch A. Organic functionalization of carbon nanotubes[J]. J. Am. Chem. Soc.,124(2002): 760-761.
    [23]Georgakilas V., Gournis D., Karakassides M. A., Bakandritsos A., Petridis D. Organic derivatization of single-walled carbon nanotubes by clays and intercalated derivatives[J]. Carbon,42(2004):865-870.
    [24]Osorio A. G., Silveira I. C. L., Bueno V. L., Bergmann C. P. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media[J]. Appl. Surf. Sci.,255(2008):2485-2589.
    [25]Kakade B. A., Pillai V. K. An efficient route towards the covalent functionalization of single walled carbon nanotubes[J]. Appl. Surf. Sci., 254(2008):4936-4943.
    [26]Ma P. C., Kim J. K., Tang B. Z. Functionalization of carbon nanotubes using a silane coupling agent[J]. Carbon,44(2006):3232-3238.
    [27]Ma P. C., Kim J. K., Tang B. Z. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites[J]. Compos. Sci. Technol. 67(2007):2965-2972.
    [28]Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C. Solution properties of single-walled carbon nanotubes [J]. Science,282(1998):95-98.
    [29]Feng L., Li H., Li F., Shi Z., Gu Z. Functionalization of carbon nanotubes with amphiphilic molecules and their Langmuir-Blodgett fims[J]. Carbon,41(2003): 2385-2391.
    [30]Ramanathan T., Fisher F. T., Ruoff R. S., Brinson L. C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]. Chem. Mater.,17(2005):1290-1295.
    [31]Yang B. X., Shi J. H., Pramoda K. P., Goh S. H. Enhancement of the mechanical properties of polypropylene using polypropylene-grafted multiwalled carbon nanotubes[J]. Compos. Sci. Technol.,68(2008):2490-2497.
    [32]Zhou Z., Wang S., Lu L., Zhang Y., Zhang Y. Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites[J]. Compos. Sci. Technol.,68(2008):1727-1733.
    [33]Vigolo B., Mamane V., Valsaque F., Le T. N. H., Thabit J., Ghanbaja J., Aranda L., Fort Y., McRae E. Evidence of sidewall covalent functionalization of single-walled carbon nanotubes and its advantages for composite processing [J]. Carbon,47(2009):411-419.
    [34]Kong H., Gao C., Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. J. Am. Chem. Soc., 126(2004):412-413.
    [35]Baskaran D., Mays J. W., Bratcher M. S. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization[J]. Angew. Chem. Int. Edit., 43(2004):2138-2142.
    [36]You Y. Z., Hong C. Y, Pan C. Y. Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization[J]. Nanotechnology, 17(2006):2350-2354.
    [37]Hong C. Y, You Y. Z., Pan C. Y A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers[J]. Polymer,47(2006): 4300-4309.
    [38]Liu Y. L., Chen W. H., Chang Y. H. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs[J]. Carbohyd. Polym.,76(2009):232-238.
    [39]Li M, Wang X., Tian R., Liu F., Hu H., Chen R., Zheng H. Wan L. Preparation, solubility, and electrorheological properties of carbon nanotubes/poly(methyl methacrylate) nanocomposites by in situ functionalization[J]. Compos. Part. A-Appl. S.,40(2009):413-417.
    [40]Shi J. H., Yang B. X., Goh S. H. Covalent functionalization of multiwalled carbon nanotubes withpoly(styrene-co-acrylonitrile) by reactive melt blending[J]. Eur. Polym. J.,45(2009):1002-1008.
    [41]Mountrichas G., Pispas S., Tagmatarchis N. Grafting-to approach for the functionalization of carbon nanotubes with polystyrene [J]. Mater. Sci. Eng. B-Adv.,152(2008):40-43.
    [42]Ghosh M., Maiti S., Dutta S., Das D., Das P. K. Covalently functionalized single-walled carbon nanotubes at reverse micellar interface:a strategy to improve lipase activity[J]. Langmuir,28(2012):1715-1724.
    [43]Gao C., Li W., Morimoto H., Nagaoka Y, Maekawa T. Magnetic carbon nanotubes:synthesis by electrostatic self-assembly approach and application in biomanipulations[J]. J. Phys. Chem. B,110(2006):7213-7220.
    [44]Hu H., Yu B., Ye Q., Gu Y, Zhou F. Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes[J]. Carbon,48(2010):2347-2353.
    [45]Li W., Xiao L., Qin C. Synthesis and relevant electrochemical properties of 2-hydroxypropyltrimethyl ammonium chloride chitosan-grafted multiwalled carbon nanotubes[J]. J. Mater. Sci.,45(2010):5915-5922.
    [46]Huang Z. P., Zhu Z. Y, Subhani Q., Yan W. W., Guo W. Q., Zhu Y. Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique[J]. J. Chromatogr. A,1251(2012):154-159.
    [1]Kailasam K., Muller K. Physico-chemical characterization of MCM-41 silica spheres made by the pseudomorphic route and grafted with octadecyl chains [J]. J. Chromatogr. A,1191(2008):125-135.
    [2]Gritti F., Guiochon G. Comparison between the loading capacities of columns packed with partially and totally porous fine particles:What is the effective surface area available for adsorption[J]. J. Chromatogr. A,1176(2007):107-122.
    [3]Fritz J. S., Zhu Y, Haddad P. R. Modification of ion chromatographic separations by ionic and nonionic surfactants[J]. J. Chromatogr. A,997(2003):21-31.
    [4]Hatsis P., Lucy C. A. Improved Sensitivity and Characterization of High-Speed Ion Chromatography of Inorganic Anions[J]. Anal. Chem.,75(2003):995-1001.
    [5]Qiu H. D., Jiang S. X., Liu X. N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography [J]. J. Chromatogr. A, 1103(2006):265-270.
    [6]Glenn K.M., Lucy C. A., Haddad P. R., Ion chromatography on a latex-coated silica monolith column[J]. J. Chromatogr. A,1155(2007):8-14.
    [7]Paull B., Nesterenko P. N. Novel ion chromatographic stationary phases for the analysis of complex matrices[J]. Analyst,130(2005):134-146.
    [8]Zakaria P., Hutchinson J. P., Avdalovic N., Liu Y, Haddad P. R. Latex-Coated Polymeric Monolithic Ion-Exchange Stationary Phases.2. Micro-Ion Chromatography[J]. Anal. Chem.,77(2005):417-423.
    [9]Hilder E.F., Svec F., Frechet J. M. J. Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography [J]. J. Chromatogr. A,1053(2004):101-106.
    [10]Slingsby R.W., Pohl C.A. Anion-exchange selectivity in latex-based columns for ion chromatography [J]. J. Chromatogr. A,458(1988):241-253.
    [11]Weiss J. Handbook of Ion Chromatography, Wiley VCH, Weinheim,3rd ed., 2004.
    [12]Chambers S.D., McDermott M.T., Lucy C. A. Covalently modified graphitic carbon-based stationary phases for anion chromatography[J]. Analyst,134(2009): 2273-2580.
    [13]Yuan L. M., Ren C. X., Li L., Ai P., Yan Z. H., Zi M., Li Z. Y. Single-walled carbon nanotubes used as stationary phase in GC[J]. Anal. Chem.,78(2006): 6384-6390.
    [14]Saridara C., Mitra S. Chromatography on self-assembled carbon nanotubes [J]. Anal. Chem.,77(2005):7094-7097.
    [15]Li Y, Chen Y, Xiang R., Ciuparu D., Pfefferle L. D., Horvath C., Wilkins J. A. Incorporation of Single-Wall Carbon Nanotubes into an Organic Polymer Monolithic Stationary Phase for μ-HPLC and Capillary Electrochromatography[J]. Anal. Chem.,77(2005):1398-1406.
    [16]Du W., Zhao F. Q., Zeng B. Z. Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds [J]. J. Chromatogr. A,1216(2009):3751-3757.
    [17]Menna E., Negra F. D., Prato M., Tagmatarchis N., Ciogli A., Gasparrini F., Misiti D., Villani C. Nanowires with a carbon nanotube core and silicon oxide sheath[J]. Carbon,44(2006):1581-1583.
    [18]Chang Y. X., Zhou L. L., Li G. X., Li L., Yuan L. M. Single-wall carbon nanotubes used as stationary phase in HPLC[J]. J. Liq. Chromatogr. Relat. Technol.,30(2007):2953-2958.
    [19]Andre C., Gharbi T., Guillaume Y.C., A novel stationary phase based on amino derivatized nanotubes for HPLC separations:Theoretical and practical aspects [J]. J. Sep. Sci.,32(2009):1757-1764.
    [20]Zhong Y.Y., Zhou W.F., Zhang P.M., Zhu Y. Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers[J]. Talanta,82(2010):1439-1447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700