链霉菌LZ35菌株中沉默新安莎基因簇的激活和hygrocin生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐药病原微生物和各种新型传染病的不断出现,迫使人们不断寻求新的药物。天然产物一直是新药发现的源泉,其中放线菌尤其是链霉菌产生的次级代谢产物是抗生素和其它药物的主要来源。基因组测序数据显示微生物中含有大量的次级代谢基因簇,其编码次级代谢产物的合成潜力远超过已发现代谢产物的数量,其中大部分次级代谢基因簇是沉默或低表达的,基因组挖掘的方法是发现这些基因簇代谢产物的有力工具。安莎霉素是一类主要由放线菌产生的结构独特的大环内酰胺类抗生素,具有显著的生物活性,如抗菌、抗肿瘤和酶抑制剂等。在后基因组时代,通过基因组挖掘发现微生物中新颖安莎代谢产物,为新药研究提供先导化合物,对新药创制具有重要意义。
     本学位论文研究通过全基因组测序和生物信息学分析,从链霉菌LZ35菌株中发现3个安莎基因簇,包括安莎化合物geldanamycin生物合成基因簇(gdm)和hygrocin生物合成基因簇(hgc),以及一个结构未知的新安莎基因簇(nam)。分析nam生物合成基因簇,其可能编码一个新型8酮萘安莎化合物。在实验室条件下,优化发酵条件未能分离得到这一安莎化合物,推测nam基因簇是沉默的或其表达量低于检测限。我们采用了3条途径尝试激活这个沉默安莎基因簇表达:(1)在聚酮合酶基因前插入组成型表达ermEp*启动子,RT-PCR分析显示部分激活了基因簇表达,分离得到一个中间体4酮化合物。(2)分别敲除nam基因簇中TetR家族负调控因子,HPLC分析突变株发酵产物,与野生型相比未发现明显的代谢谱变化。(3)通过组成型过表达基因簇中LuxR家族调控因子Naml,全面激活了nam基因簇的表达,得到基因簇的编码产物neoansamycins。生物活性测定显示neoansamycin A对HeLa和HepG-2细胞的ICso均为10μM,具有中等的抗肿瘤活性。Neoansamycins生物合成中含有乙基丙二酰辅酶A和戊基丙二酰辅酶A两种不常见的延伸单元,阻断nam8基因终止了neoansamycins的产生,表明nam8基因可能与戊基丙二酰辅酶A的合成相关。基因nam7与rifemycin生物合成基因簇中rif-orf19同源,可能参与萘环的形成,阻断nam7基因终止了neoansamycins的产生,积累了一个可能是苯安莎的中间代谢产物。
     Hygrocins是LZ35菌株产生的另一类萘安莎化合物,其生物合成机制尚未见报道。我们通过序列分析在基因组上定位了其生物合成基因簇,通过阻断hgcA基因进行了确认。对hgc基因簇开展了以下几方面的工作:(1)前体AHBA及乙基延伸单元的合成。表明hygrocin生物合成和其它次级代谢产物途径存在前体共享性,与geldanamycin生物合成途径共用起始单元AHBA,与其它生物合成途径共用延伸单元乙基丙二酰辅酶A。(2)酰胺合酶的功能验证。酰胺合酶是安莎类化合物特有的聚酮链释放和环化酶,在hgcF基因敲除突变株中分别回补其它安莎基因簇来源的酰胺合酶基因,结果ansalactam和divergolides基因簇的酰胺合酶可以环化hygrocin生物合成聚酮链,并产生新的hygrocin衍生物。(3)氧化后修饰基因功能的研究。通过对hgc基因簇中7个氧化还原酶基因敲除,确定了hgc2、hgc3和hgc4与hygrocin的生物合成相关。基因rif-orf19交叉回补实验,表明羟基化酶Hgc2可能参与hygrocin萘环形成;单氧化酶Hgc3可能通过Baeyer-Villiger氧化反应催化hygrocin C5/C6位的氧化断裂;P450氧化酶Hgc4负责催化hygrocin C7位的羟基化反应。(4) hygrocin生物合成调控的研究。通过基因敲除、回补及组成型过表达LAL家族调控基因hgcl,证明Hgc1是hygrocin生物合成途径的正调控因子。
     综上,本学位论文研究通过基因组挖掘策略,从链霉菌LZ35菌株中发现了一类新骨架的安莎类化合物neoansamycins,一方面证明了由基因序列指导天然产物发现研究策略的可行性和有效性;另一方面证实了自然界微生物中还存在许多新骨架安莎的猜想。对hygrocins的生物合成研究,加深了我们对安莎生物合成机制的理解,为进一步通过组合生物学和合成生物学手段,理性改造获得更优良的安莎类先导化合物提供依据。
There is a constant need for new drugs to combat the increase of resistance of pathogenic microorganisms and infectious diseases. Natural products continue to provide a diverse and unique source of bioactive lead compounds for drug discovery. Actinomycetes and especially the genus Streptomyces are the main producers of secondary metabolites. Genomics data has revealed that most of microorganisms have the potential to produce a far larger number of natural products than have been isolated previously. In search for new drugs, the genome mining approach proved to be a powerful tool in the identification of cryptic secondary metabolite pathways. Ansamycins is a family of macrocyclic lactam compounds, mainly produced by Actinomycetes. These compounds demonstrate extensive biological and pharmaceutical activities, and are used as antibiotics, anticancer gents, and enzyme inhibitors. In the post-genome era, it's significant that genome mining for novel ansamycins to offer new lead compound for drugs.
     Genome sequence of Streptomyces sp.LZ35has revealed three ansamycins biosynthetic gene clusters, two of which for producing geldanamycin and hygrocin, the other for producing cryptic ansamycin compounds. According to bioinformatics analysis, the cryptic ansamycin gene cluster is related to a new octaketide naphthalenic ansamycin compounds. Initially, we failed to isolate the compound by the optimization of culture conditions, maybe in the laboratory standard conditions, the cluster is either silent or expressed at a very low level. To trigger expression of the cluster, three different strategies were adopted in this work, respectively. The first one is introduction of a constitutive promoter ermEp*into the upstream of the polyketide synthase genes, RT-PCR analysis showed that the cluster is partially activated, and leading to the production of tetraketide intermediates. The second one is knocking out the TetR family negative regulators, the resulted mutant had no discernible effect on the metabolite profile. The third one is constitutive overexpression of the luxR family regulatory gene naml, transcriptional analysis showed total activation of the silent ansamycin biosynthetic genes, and led to the identification of three novel ansamycins, named neoansamycins. Interestingly, the neoansamycin A showed IC5010μM against the growth of HeLa and HepG2cell line, respectively, exhibiting moderate anti-tumor activity. The structure of neoansamycins contains an atypical extender unit, ethylnalonyl-CoA and pentalmalonyl-CoA, inactivation of nam8terminated the generation of neoansamycin, indcated that nam8maybe involved in the biosynthesis of pentalmalonyl-CoA. Nam7is homologous to Rif-orfl9, disruption of nam7gene resulted in neoansamycin elimination and concurrent production of a putative analog, maybe a derivative of neoansamycin with a benzenic ring system.
     Hygrocin is another naphthalenic ansamycin compounds produced by strain LZ35and its biosynthesis have not been reported in the literature. We analyzed the sequence of hgc gene cluster and locate it in the genome, the cluster was confirmed by disruption of hgcA leading to no hygrocin production. We carried out the following work:(1) The biosynthesis of AHBA precursor and ethyhnalonyl-CoA extendr unit. The hygrocin biosynthetic pathway shared the precursor with other secondary metabolites pathway, such as the AHBA precursor in geldanamycin gene cluster, and ethylmabnyl-CoA extendr unit in other biosynthetic pathways in strain LZ35.(2) Amide synthase functional verification. Amide synthase is a key enzyme, which is respond for ansamycin cyclization and release from the PKS. We have investigated the substrate selectivity of amide synthase. In hgcF disruption mutant, cross-complementation of amide synthase gene from other ansamycin gene cluster, only the amide synthase gene from ansalactam and divergolides can replace the hgcF to release and cyclization hygrocin derivatives.(3) The genes involved in tailoring process. To investigate the roles of oxidase gene played in the hygrocin gene cluster, seven genes were inactivated, the hgc2, hgc3, hgc4disruption mutants abolished the production of hygrocin, confirming their involvement in the hygrocin biosynthesis. Cross-complementation of rif-orfl9indicated that the Hgc2may involvement in naphthalene ring formation in biosynthesis of hygrocin. The Hgc3functions in the oxidative cleavage C5/C6of hygrocin via a Baeyer-Viliger type oxidation reaction. The Hgc4encodes a cytochrome P450hydroxylases, involved in the hydroxylation of the hygrocin polyketide moiety at C7. Gene inactivation, complementation and constitutive overexpression indicated that Hgcl is a positive regulator for hygrocin biosynthesis.
     In summary, we have identified a unique novel structural class of ansamycin named neoansamycins used genome mining strategy, which demonstrated that the feasibility and effectiveness of gene cluster and pathway analysis provide important information to guide isolation of compounds specified by particular gene clusters. And it also proved that many novel structural ansamycins produced by microbiology are waiting for us to exploit. The information of biosynthesis hygrocin presented here expands our knowledge of the biosynthesis of ansamycins, and pave the way for further rational engineering new ansamycin with combinatorial biosynthesis and synthetic biology.
引文
[1]Berdy J. Bioactive microbial metabolites[J]. J Antibiot (Tokyo),2005,58(l):l-26.
    [2]Baker D D, Chu M, Oza U, et al. The value of natural products to future pharmaceutical discovery[J]. Nat Prod Rep,2007,24(6):1225-1244.
    [3]Mishra B B, Tiwari VK. Natural products:an evolving role in future drug discovery[J]. Eur J Med Chem, 2011,46(10):4769-4807.
    [4]Cragg GM, Newman D J. Natural products:a continuing source of novel drug leads[J]. Biochim Biophys Acta,2013,1830(6):3670-3695.
    [5]Newman D J, Cragg G M. Natural products as sources of new drugs over the 30 years from 1981 to 2010[J]. J Nat Prod,2012,75(3):311-335.
    [6]Knight V Sanglier J J, DiTullio D, et al. Diversifying microbial natural products for drug discovery[J]. Appl Microbiol Biotechnol,2003,62(5-6):446-458.
    [7]Davies J, Ryan K S. Introducing the parvome:bioactive compounds in the microbial world [J]. ACS Chem Biol,2012,7(2):252-259.
    [8]Butler M S. Natural products to drugs:natural product-derived compounds in clinical trials [J]. Nat Prod Rep,2008,25(3):475-516.
    [9]Shen B. Poryketide biosynthesis beyond thetype I, Hand III poh/ketide synthase paradigms [J]. CurrOpin Chem Biol,2003,7(2):285-295.
    [10]Lam K S. New aspects of natural products in drug discovery[J]. Trends Microbiol,2007,15(6):279-289.
    [11]Ganesan A. The impact of natural products upon modern drug discovery [J]. Curr Opin Chem Biol,2008, 12(3):306-317.
    [12]Koehn F E, Carter GT. The evolving role of natural products in drug discovery[J]. Nat Rev Drug Discov, 2005,4(3):206-220.
    [13]PelaezF. The historical delivery of antibiotics from microbial natural products-can history repeat?[J]. Biochem Pharmacol,2006,71(7):981-990.
    [14]Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant infections:a call to action for the medical community from the Infectious Diseases Society of AmericafJ]. Gin Infect Dis,2008, 46(2):155-164.
    [15]Watve M G, Tickoo R, Jog M M, et al. Howmany antibiotics are produced by the genus Streptomyces?[J]. Arch Microbiol,2001,176(5):386-390.
    [16]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivationfJ]. Microbiol Rev,1995,59(1):143-169.
    [17]Donadio S, Monciardini P, Alduina R, et al. Microbial technologies for the discovery of novel bioactive metabolites [J]. J Biotechnol,2002,99(3):187-198.
    [18]Tiwari K, Gupta R K. Rare actinomycetes:a potential storehouse for novel antibiotics [J]. Crit Rev Biotechnol,2012,32(2):108-132.
    [19]\fenter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science,2004,304(5667):66-74.
    [20]Fenical W, Jensen P R. Developing a new resource for drug discovery:marine actinomycete bacteriafJ]. Nat Chem Biol,2006,2(12):666-673.
    [21]Goodfellow M, Fiedler HP. A guide to successful bioprospecting:informed by actinobacterial systematics[J]. AntonieVfcn Leeuwenhoek,2010,98(2):119-142.
    [22]Zotchev S B. Marine actinomycetes as an emerging resource for the drug development pipelines [J]. J Biotechnol,2012,158(4):168-175.
    [23]Naumann K. Influence of chlorine substituents on biological activity of chemicals[J]. Journal fiir praktische Chemie,1999,341(5):417-435.
    [24]Blunt J W, Copp B R, Keyzers R A, et al. Marine natural products [J]. Nat Prod Rep,2012,29(2):144-222.
    [25]Gerwick W H, Moore B S. Lessons from the past and charting the future of marine natural products drug discovery and chemical bio logy [J]. Chem Biol,2012,19(1):85-98.
    [26]Fenical W, Jensen P R, Palladino M A, et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052)[J]. Bioorg Med Chem,2009,17(6):2175-2180.
    [27]Mincer T J, Jensen P R, Kauffman C A, et al. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments [J]. Appl Environ Microbiol,2002,68(10):5005-5011.
    [28]Feling R H, Buchanan G O, Mincer T J, et al. Salinosporamide A:a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora[J]. Angew Chem Int Ed Engl,2003,42(3):355-357.
    [29]Cusack J C, Jr., Liu R, Xia L, et al. NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model[J]. Clin Cancer Res,2006,12(22):6758-6764.
    [30]Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi:origins of secondary metabolites[J]. Chem Biol,2012,19(7):792-798.
    [31]Kharwar R N, Mishra A, Gond S K, et al. Anticancer compounds derived from fungal endophytes:their importance and future challenges [J]. Nat Prod Rep,2011,28(7):1208-1228.
    [32]Qin S, Xing K, Jiang J H, et al. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria[J]. Appl Microbiol Biotechnol,2011,89(3):457-473.
    [33]Chandra S. Endophytic fungi:novel sources of anticancer lead molecuies[J]. Appl Microbiol Biotechnol, 2012,95(1):47-59.
    [34]WaniM C, Taylor H L, Wall M E, et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. J Am Chem Soc,1971,93(9):2325-2327.
    [35]Miller K, Neilan B, Sze D M. Development of Tawol and other endophyte produced anti-cancer agents [J]. Recent Pat Anticancer Drug Discov,2008,3(1).14-19.
    [36]Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science,1993,260(5105):214-216.
    [37]Caruso M, Colombo A L, Crespi-Perellino N, et al. Studies on a strain of Kitasatospora sp paclitaxel producer[J]. Annals of Microbiology,2000,50(2):89-102.
    [38]Flores-Bustamante Z R, Rivera-Orduna F N, Martinez-Cardenas A, et al. Microbial paclitaxel:advances and perspectives[J]. J Antibiot (Tokyo),2010,63(8):460-467.
    [39]Pham V H, Kim J. Cultivation of unculturable soil bacteria[J]. Trends Biotechnol,2012,30(9):475-484.
    [40]Lewis K, Epstein S, D'Onofrio A, et al. Uncultured microorganisms as a source of secondary metabolites [J]. J Antibiot (Tokyo),2010,63(8):468-476.
    [41]Alain K, Querellou J. Cultivating the uncultured:limits, advances and future challenges [J]. Extremophiles, 2009,13(4):583-594.
    [42]Han dels man J. Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiol Mol Biol Rev,2004,68(4):669-685.
    [43]Streit W R, Daniel R, Jaeger K E Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms [J]. Curr Opin Biotechnol,2004,15(4):285-290.
    [44]Streit W R, Schmitz R A. Metagenomics--the key to the uncultured microbes[J]. Curr Opin Microbiol, 2004,7(5):492-498.
    [45]Oremland R S, Hoeft S E, Santini J M, et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1[J]. Appl Environ Microbiol,2002, 68(10):4795-4802.
    [46]D'Onofrio A, Crawford J M, Stewart E J, et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria[J]. Chem Biol,2010,17(3):254-264.
    [47]Kaeberlein T, Lewis K, Epstein S S. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J]. Science,2002,296(5570):1127-1129.
    [48]Zengler K, Toledo G, Rappe M, et al. Cultivating the uncultured[J]. Proc Natl Acad Sci U S A,2002, 99(24):15681-15686.
    [49]Ferrari B C, Winsley T, Gillings M, et al. Cultivating previously uncultured soil bacteria using a soil substrate membrane system[J]. Nat Protoc,2008,3(8):1261-1269.
    [50]Brady S F, Simmons L, Kim J H, et al. Metagenomic approaches to natural products from free-living and symbiotic organisms[J]. Nat Prod Rep,2009,26(11):1488-1503.
    [51]Fujita M J, Kimura N, Sakai A, et al. Cloning and heterologous expression of the vibrioferrin biosynthetic gene cluster from a marine metagenomic library[J]. Biosci Biotechnol Biochem,2011,75(12):2283-2287.
    [52]Fujita M J, Kimura N, Yokose H, et al. Heterologous production of bisucaberin using a biosynthetic gene cluster cloned from a deep sea metagenome[J]. Mol Biosyst,2012,8(2):482-485.
    [53]Bentley S D, Chater K F, Cerdeno-Tarraga A M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature,2002,417(6885):141-147.
    [54]Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis[J]. Nat Biotechnol,2003,21(5):526-531.
    [55]Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics[J]. Nat Prod Rep,2007,24(5):1073-1109.
    [56]Udwary D W, Gontang E A, Jones A C, et al. Significant natural product biosynthetic potential of actinorhizal symbionts of the genus frankia, as revealed by comparative genomic and proteomic analyses[J]. Appl Environ Microbiol,2011,77(11):3617-3625.
    [57]Behnken S, Hertweck C. Anaerobic bacteria as producers of antibiotics [J]. Appl Microbiol Biotechnol, 2012,96(1):61-67.
    [58]Lincke T, Behnken S, Ishida K, et al. Closthioamide:an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum[J], Angew Chem Int Ed Engl,2010,49(11):2011-2013.
    [59]Bode H B. Entomopathogenic bacteria as a source of secondary metabolites [J]. Curr Opin Chem Biol, 2009,13(2):224-230.
    [60]Kevany B M, Rasko D A, Thomas M G. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus[J]. Appl Environ Microbiol,2009,75(4):1144-1155.
    [61]Sorensen J L, Hansen F T, Sondergaard T E, et al. Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum[J]. Environ Microbiol,2012,14(5):1159-1170.
    [62]Challis G L, Hopwood D A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species[J]. Proc Natl Acad Sci U S A,2003,100 Suppl 2:14555-14561.
    [63]Demain A L, Fang A. The natural functions of secondary metabolites [J]. Adv Biochem Eng Biotechnol, 2000,69:1-39.
    [64]Sanchez S, Demain A L. Metabolic regulation of fermentation processes [J]. Enzyme and Microbial Technology,2002,31(7):895-906.
    [65]Ruiz B, Chavez A, Forero A, et al. Production of microbial secondary metabolites:regulation by the carbon source[J]. Crit Rev Microbiol,2010,36(2):146-167.
    [66]Bode H B, Bethe B, Hofs R, et al. Big effects from small changes:possible ways to explore nature's chemical diversity [J]. Chembiochem,2002,3(7):619-627.
    [67]Scherlach K, Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms[J]. Org Biomol Chem,2009,7(9):1753-1760.
    [68]Sarkar A, Funk A N, Scherlach K, et al. Differential expression of silent polyketide biosynthesis gene clusters in chemostat cultures ofAspergillus nidulans[J]. J Biotechnol,2012,160(1-2):64-71.
    [69]Pettit R K. Mixed fermentation for natural product drug discovery[J]. Appl Microbiol Biotechnol,2009, 83(1):19-25.
    [70]Charusanti P, Fong N L, Nagarajan H, et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction[J]. PLoS One,2012,7(3):e33727.
    [71]Schroeckh V, Scherlach K, Nutzmann H W, et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal poryketides in Aspergillus nidulans[J]. Proc Natl Acad Sci U S A,2009, 106(34):14558-14563.
    [72]Rigali S, Titgemeyer F, Barends S, et al. Feast or famine:the global regulator DasR links nutrient stress to antibiotic production by Streptomyces [J]. EMBO Rep,2008,9(7):670-675.
    [73]Pettit R K. Small-molecule elicitation of microbial secondary metabolites [J]. Microb Biotechnol,2011, 4(4):471_478.
    [74]Craney A, Ozimok C, Pimentel-FJardo S M, et al. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism[J]. Chem Biol,2012,19(8):1020-1027.
    [75]Ochi K, Okamoto S. A magic bullet for antibiotic discovery[J]. Chem Biol,2012,19(8):932-934.
    [76]Oliynyk M, Samborskyy M, Lester J B, et al. Complete genome sequence of the erythromycin-producing bacterium SaccharoporysporaerythraeaNRRL23338[J]. Nat Biotechnol,2007,25(4):447-453.
    [77]Udwary D W, Zeigler L, Asolkar RN, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica[J]. Proc Natl Acad Sci USA,2007,104(25):10376-10381.
    [78]Nett M, Ikeda H, Moore B S. Genomic basis for natural product biosynthetic diversity in the actinomycetes[J]. Nat Prod Rep,2009,26(11):1362-1384.
    [79]Baltz R H. Strain improvement in actinomycetes in the postgenomic era[J]. J Ind Microbiol Biotechnol, 2011,38(6):657-666.
    [80]Ochi K, Hosaka T. New strategies for drug discovery:activation of silent or weakly expressed microbial gene clusters[J]. Appl Microbiol Biotechnol,2013,97(1):87-98.
    [81]Zerikly M, Challis G L. Strategies for the discovery of new natural products by genome mining[J]. Chembiochem,2009,10(4):625-633.
    [82]Corre C, Challis GL. New natural product biosynthetic chemistry discovered by genome mining[J]. Nat Prod Rep,2009,26(8):977-986.
    [83]Wietzorrek A, Bibb M. A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold[J]. Mol Microbiol,1997,25(6):1181-1184.
    [84]De Schrijver A, De Mot R A subfamily of MalT-related ATP-dependent regulators in the LuxR family [J]. Microbiology,1999,145 (Pt 6):1287-1288.
    [85]Boos W, Bohm A. Learning new tricks from an old dog:MalT of the Escherichia coli maltose system is part of a complex regulatory network[J]. Trends Genet,2000,16(9):404-409.
    [86]Guerra S M, Rodriguez-Garcia A, Santos-Aberturas J, et al. LAL regulators SCO0877 and SCO7173 as pleiotropic modulators of phosphate starvation response and actinorhodin biosynthesis in Streptomyces coelicolor[J]. PLoS One,2012,7(2):e31475.
    [87]Laureti L, Song L, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proc Natl Acad Sci U S A, 2011,108(15):6258-6263.
    [88]Sanchez J F, Somoza A D, KellerN P, et al. Advances in Aspergillus secondary metabolite research in the post-genomic era[J]. Nat Prod Rep,2012,29(3):351-371.
    [89]Bergmann S, Schumann J, Scherlach K, et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans[J]. Nat Chem Biol,2007,3(4):213-217.
    [90]Zabala A O, Xu W, Chooi Y H, et al. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation [J]. Chem Biol,2012, 19(8):1049-1059.
    [91]Ramos J L, Martinez-Bueno M, Molina-Henares A J, et al. The TetR family of transcriptional repressors[J]. Microbiol Mo I Biol Rev,2005,69(2):326-356.
    [92]Bunet R, Song L, Mendes M V et al. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins[J]. J Bacteriol,2011, 193(5):1142-1153.
    [93]Smanski M J, Peterson R M, Rajski S R, et al. Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin[J]. Antimicrob Agents Chemother,2009,53(4):1299-1304.
    [94]Gottelt M, Kol S, Gomez-Escribano J P, et al. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)[J]. Microbiology,2010,156(Pt 8):2343-2353.
    [95]Zheng J T, Wang S L, Yang K Q. Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae[J]. Appl Microbiol Biotechnol,2007,76(4):883-888.
    [96]Saleh O, Bonitz T, Flinspach K, et al. Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines[J]. MedChemComm,2012, 3(8):1009-1019.
    [97]Chiang YM, Szewczyk E, Davidson A D, et al. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway fora polyketide, asperfuranone, in Aspergillus nidulans[J]. J AmChem Soc,2009,131(8):2965-2970.
    [98]Zhang H, Boghigian B A, Armando J, et al. Methods and options for the heterologous production of complex natural products [J]. Nat Prod Rep,2011,28(1):125-151.
    [99]Wenzel S C, Muller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways [J], Curr Opin Biotechnol,2005,16(6):594-606.
    [100]Iqbal H A, Feng Z, Brady S F. Biocatalysts and small molecule products from metagenomic studies[J]. Curr Opin Chem Biol,2012,16(1-2):109-116.
    [101]Pfeifer B A, Khosla C. Biosynthesis of polyketides in heterologous hosts[J]. Microbiol Mol Biol Rev, 2001,65(1):106-118.
    [102]Wenzel S C, Gross F, Zhang Y, et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads viared/ET recombineering[J]. Chem Biol,2005,12(3):349-356.
    [103]Kim J H, Feng Z, Bauer J D, et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR[J]. Biopolymers,2010,93(9):833-844.
    [104]Liu H, Jiang H, Haltli B, et al. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-streptomyces artificial chromosome vector, pSBAC[J]. J Nat Prod,2009,72(3):389-395.
    [105]Kakirde K S, Wild J, Godiska R, et al. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries[J]. Gene,2011,475(2):57-62.
    [106]Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism[J]. Proc Natl Acad Sci USA,2010,107(6):2646-2651.
    [107]Gomez-Escribano J P, Bibb M J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters[J]. Microb Biotechnol,2011,4(2):207-215.
    [108]King R W, Bauer J D, Brady S F. An environmental DNA-derived type Ⅱ polyketide biosynthetic pathway encodes the biosynthesis of the pentacyclic polyketide erdacin[J]. Angew Chem Int Ed Engl,2009, 48(34):6257-6261.
    [109]Feng Z, Kim J H, Brady S F. Fluostatins produced by the heterologous egression of a TAR reassembled environmental DNA derived type II PKS genecluster[J]. J Am Chem Soc,2010,132(34):11902-11903.
    [110]Feng Z, Kallifidas D, Brady S F. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites [J]. Proc Natl Acad Sci USA,2011, 108(31):12629-12634.
    [111]Kallifidas D, Kang H S, Brady S F. Tetarimycin A, an MRSA-Active Antibiotic Identified through Induced Expression of Environmental DNA Gene Clusters[J]. J Am Chem Soc,2012,134(48):19552-19555.
    [112]Gross F, Luniak N, Perlova O, et al. Bacterial type III polyketide synthases:phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads[J].ArchMicrobiol,2006,185(1):28-38.
    [113]Hornung A, Bertazzo M, Dziarnowski A, et al. A genomic screening approach to the structure-guided identification of drug candidates from natural sources[J]. Chembiochem,2007,8(7):757-766.
    [114]Olano C, Lombo F, Mendez C, et al. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering[J]. MetabEng,2008,10(5):281-292.
    [115]Shima J, Hesketh A, Okamoto S, et al. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2)[J]. JBacteriol,1996,178(24):7276-7284.
    [116]Hu H, Zhang Q, Ochi K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans[J]. J Bacteriol,2002, 184(14):3984-3991.
    [117]Ochi K, Okamoto S, Tozawa X et al. Ribosome engineering and secondary metabolite production[J]. Adv Appl Microbiol,2004,56:155-184.
    [118]Ochi K. From microbial differentiation to ribosome engineering[J]. Biosci Biotechnol Biochem,2007, 71(6):1373-1386.
    [119]Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12[J]. Nat Biotechnol,2009,27(5):462-464.
    [120]Rodriguez E, McDaniel R. Combinatorial biosynthesis of antimicrobials and other natural products [J]. Curr Opin Microbiol,2001,4(5):526-534.
    [121]Zhang W, Tang Y Combinatorial Biosynthesis of Natural Products[J]. J Med Chem,2008,51(9):2629-2633.
    [122]Menzella H G, Reeves C D. Combinatorial biosynthesis for drug development[J]. Curr Opin Microbiol, 2007,10(3)238-245.
    [123]Coeffet-Le Gal M F, Thurston L, Rich P, et al. Complementation of daptomycin dptA and dptD deletion mutations in trans and production of hybrid lipopeptide antibiotics [J]. Microbiology,2006,152(Pt 10):2993-3001.
    [124]Miao V, Coeffet-Le Gal M F, Nguyen K, et al. Genetic engineering in Streptomyces roseosporus to produce hybridlipopeptide antibiotics[J]. Chem Biol,2006,13(3)269-276.
    [125]Nguyen K T, Ritz D, Gu J Q, et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin[J]. Proc Natl Acad Sci U S A,2006,103(46):17462-17467.
    [126]Baltz R H. Renaissance in antibacterial discovery from actinomycetes[J]. Curr Op in Pharmacol,2008, 8(5):557-563.
    [127]Prather K L, Martin C H. De novo biosynthetic pathways:rational design of microbial chemical factories[J]. Curr Opin Biotechnol,2008,19(5):468-474.
    [128]Goss R J, Shankar S, Fayad A A. The generation of "unnatural" products:synthetic biology meets synthetic chemistry [J]. Nat Prod Rep,2012,29(8):870-889.
    [129]Agapakis C M, Boyle P M, Silver P A. Natural strategies for the spatial optimization of metabolism in synthetic bio logy [J]. Nat Chem Biol,2012,8(6):527-535.
    [130]Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature,2006,440(7086):940-943.
    [131]Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science,2010,330(6000):70-74.
    [132]Kang Q, Shen Y, Bai L. Biosynthesis of 3,5-AHBA-derived natural products [J]. Nat Prod Rep,2012, 29(2):243-263.
    [133]Wehrli W. Ansamycins. Chemistry, biosynthesis and biological activity[J]. Top Curr Chem,1977,72:21-49.
    [134]DeBoer C, Meulman P A, Wnuk R J, et al. Geldanamycin, a new antibiotic[J]. J Antibiot (Tokyo),1970, 23(9):442-447.
    [135]Kupchan S M, Komoda Y, Court W A, et al. Maytansine, a novel antileukemic ansa macrolide from Maytenusovatus[J].JAm Chem Soc,1972,94(4):1354-1356.
    [136]Higashide E, Asai M, Ootsu K, et al. Ansamitocin, a group of novel may tans inoid antibiotics with antitumour properties from Nocardia[J]. Nature,1977,270(5639):721-722.
    [137]SiminoffP, Smith RM, Sokolski W T, et al. Streptovaricin. I. Discovery and biologic activity[J]. Am Rev Tuberc,1957,75(4):576-583.
    [138]Sensi P, Margalith P, Timbal M T. Rifomycin, a new antibiotic; preliminary report[J]. Farmaco Sci,1959, 14(2):146-147.
    [139]Balerna M, Keller-Schierlein W, Martius C, et al. [Metabolic products of microorganisms.72. Naphthomycin, an antimetabolite of vitamin K][J]. Arch Mikrobiol,1969,65(4):303-317.
    [140]Stebbins C E, Russo A A, Schneider C, et al. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent[J]. Cell,1997,89(2):239-250.
    [141]Eichner S, Knobloch T, Floss H Q et al. The interplay between mutasynthesis and semisynthesis: generation and evaluation of an ansamitocin library [J]. AngewChem IntEd Engl,2012,51(3):752-757.
    [142]Campbell E A, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial ma pofymerase[J]. Cell,2001,104(6):901-912.
    [143]Okabe T, Yuan B D, Isono F, et al. Studies on antineoplastic activity of naphthomycin, a naphthalenic ansamycin, and its mode of action[J]. J Antibiot (Tokyo),1985,38(2):230-235.
    [144]August P R, Tang L, Yoon Y J, et al. Biosynthesis of the ansamycin antibiotic rifamycin:deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699[J]. Chem Biol,1998,5(2):69-79.
    [145]Chen S, von Bamberg D, Hale V et al. Biosynthesis of ansatrienin (mycotrienin) and naphthomycin. Identification and analysis oftwo separate biosynthetic gene clusters in Streptomyces collinus Tu 1892[J]. Eur JBiochem,1999,261(1):98-107.
    [146]Yu T W, Bai L, Clade D, et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from ActinosynnemapretiosumfJ]. Proc Natl Acad Sci U S A,2002,99(12):7968-7973.
    [147]Rascher A, Hu Z, Viswanathan N, et al. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602[J]. FEMS Microbiol Lett,2003,218(2):223-230.
    [148]Rascher A, Hu Z, Buchanan G O, et al. Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption[J]. Appl Environ Microbiol, 2005,71(8):4862-4871.
    [149]Kim C G, Lamichhane J, Song K I, et al. Biosynthesis of rubradirin as an ansamycin antibiotic from Streptomyces achromogenesvar. rubradiris NRRL3061[J]. Arch Microbiol,2008,189(5):463-473.
    [150]Wu X Kang Q, Shen Y, et al. Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp.CS[J]. Mol Biosyst,2011,7(8):2459-2469.
    [151]Ghisalba O, Nuesch J. A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. IV Identification of 3-amino-5-hydrojgbenzoic acid as a direct precursor of the seven-carbon amino starter-unit[J]. J Antibiot (Tokyo),1981,34(1):64-71.
    [152]Yu T W, Muller R, Muller M, et al. Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxy benzoic acid, the starter unit of rifamycin biosynthesis in amycolatopsis Mediterranei S699[J]. J Biol Chem,2001,276(16):12546-12555.
    [153]Yu T W, Shen X Doi-Katayama X et al. Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processivery[J]. Proc Natl Acad Sci USA,1999,96(16):9051-9056.
    [154]Floss H G, Yu T W, Arakawa K. The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), the precursor of mCTN units in ansamycin and mitomycin antibiotics:a review[J]. J Antibiot (Tokyo),2011, 64(1):35-44.
    [155]Ding L, Maier A, Fiebig H H, et al. Divergolides A-D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis[J]. AngewChem IntEd Engl,2011,50(7):1630-1634.
    [156]Wilson M C, Nam S J, Gulder T A, et al. Structure and biosynthesis of the marine streptomycete ansamycin ansalactam A and its distinctive branched chain polyketide extender unit[J], J Am Chem Soc, 2011,133(6):1971-1977.
    [157]Gust B, Challis GL, Fowler K, et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin[J]. Proc Natl Acad Sci USA, 2003,100(4):l 541-1546.
    [158]Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J]. Proc Natl Acad Sci USA,2000,97(12):6640-6645.
    [159]Cherepanov P P, Wackernagel W. Gene disruption in Escherichia coli:TcR and KmR cassettes with the option of Flp-cataryzed excision of the antibiotic-resistance determinant[J]. Gene,1995,158(1):9-14.
    [160]He Y, Wang Z, Bai L, et al. Two pHZ1358-derivative vectors for efficient gene knockout in streptomyces [J]. J Microbiol Biotechnol,2010,20(4):678-682.
    [161]Dubeau M P, Ghinet M G, Jacques P E, et al. Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria[J]. Appl Environ Microbiol,2009,75(4):1211-1214.
    [162]石妞妞,王浩鑫,鲁春华,et al海洋放线菌Streptomyces sp. LZ35中的安莎霉素类化合物[J].中国药学杂志,2011,46(17):1317-1320.
    [163]He W, Wu L, Gao Q, et al. Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997[J]. Curr Microbiol,2006,52(3):197-203.
    [164]Huitu Z, Linzhuan W, Aiming L, et al. PCR screening of 3-amino-5-hydroxybenzoic acid synthase gene leads to identification of ansamycins and AHBA-related antibiotic producers in Actinomycetes[J]. Journal of applied microbiology,2009,106(3):755-763.
    [165]Ishikawa J, Hotta K. FramePlot:a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content[J]. FEMS Microbiol Lett,1999,174(2):251-253.
    [166]Yadav G, Gokhale R S, Mohanty D. SEARCHPKS:A program for detection and analysis of polyketide synthasedomains[J]. Nucleic Acids Res,2003,31(13):3654-3658.
    [167]Tae H, Kong E B, Park K. ASMPKS:an analysis system for modular polyketide synthases[J], BMC Bioinformatics,2007,8:327.
    [168]Dai S, Ouyang Y, Wang G, et al. Streptomyces autolyticus JX-47 large-insert bacterial artificial chromosome library construction and identification of clones covering geldanamycin biosynthesis gene cluster[J]. Curr Microbiol,2011,63(1):68-74.
    [169]Yin M, Lu T, Zhao L X, et al. The missing C-17 O-methyltransferase in geldanamycin biosynthesis[J]. Org Lett,2011,13(14):3726-3729.
    [170]Arakawa K, Muller R, Mahmud T, et al. Characterization of the early stage aminoshikimate pathway in the formation of 3-amino-5-hydroxybenzoic acid:the RifN protein specifically converts kanosamine into kanosamine 6-phosphate[J]. J Am Chem Soc,2002,124(36):10644-10645.
    [171]Keatinge-Clay A T. The structures of type I polyketide synthases[J]. Nat Prod Rep,2012,29(10):1050-1073.
    [172]Hertweck C. The biosynthetic logic of polyketide diversity[J]. Angew Chem Int Ed Engl,2009, 48(26):4688-4716.
    [173]Admiraal S J, Walsh C T, Khosla C. The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates[J]. Biochemistry,2001, 40(20):6116-6123.
    [174]Aparicio J F, Molnar I, Schwecke T, et al. Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus:analysis of the enzymatic domains in the modular polyketide synthase[J], Gene,1996,169(1):9-16.
    [175]Donadio S, Katz L. Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolysporaerythraea[J]. Gene,1992,111(1):51-60.
    [176]Bisang C, Long P F, Cortes J, et al. A chain initiation factor common to both modular and aromatic polyketide synthases[J]. Nature,1999,401(6752):502-505.
    [177]Yadav G, Gokhale R S, Mohanty D. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases[J]. JMol Biol,2003,328(2):335-363.
    [178]Flaman A S, Chen J M, Van Iderstine S C, et al. Site-directed mutagenesis of acyl carrier protein (ACP) reveals amino acid residues involved in ACP structure and acyl-ACP synthetase activity [J]. J Biol Chem, 2001,276(38):35934-35939.
    [179]Reid R, Piagcntini M, Rodriguez E, et al. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases[J]. Biochemistry,2003,42(1)72-79.
    [180]Caffrey P. Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases[J], Chembiochem,2003,4(7):654-657.
    [181]Xu J, Wan E, Kim C J, et al. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699[J]. Microbiology,2005,151(Pt 8):2515-2528.
    [182]Chan YA, Podevels A M, Kevany B M, et al. Biosynthesis of polyketide synthase extender units[J]. Nat Prod Rep,2009,26(1):90-114.
    [183]Kato Y, Bai L, Xue Q, et al. Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of2-desmethyl-2-methoxy-6-deoxyerythronolide B[J]. J Am Chem Soc,2002,124(19):5268-5269.
    [184]Wenzel S C, Williamson R M, Grunanger C, et al. On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of "glycolate" units into ansamitocin and soraphenA[J]. J Am Chem Soc,2006,128(44):14325-14336.
    [185]Wilson M C, Moore B S. Beyond ethylmalonyl-CoA:the functional role of crotonyl-CoA carboxylase/reductasehomologs in expanding polyketide diversity [J]. Nat Prod Rep,2012,29(1):72-86.
    [186]Du L, Lou L. PKS andNRPS release mechanisms[J]. Nat Prod Rep,2010,27(2):255-278.
    [187]Heathcote M L, Staunton J, Leadlay P F. Role of type II thioesterases:evidence forremoval of short acyl chains produced by aberrant decarboxylation of chain extender units[J]. Chem Biol,2001,8(2):207-220.
    [188]Doi-Katayama Y, Yoon Y J, Choi C Y, et al. Thioesterases and the premature termination of polyketide chain elongation in rifamycin B biosynthesis by Amycolatopsis mediterranei S699[J]. JAntibiot (Tokyo), 2000,53(5):484-495.
    [189]Payton M, Mushtaq A,%T W, et al. Eubacterial arylamine N-acetyltransferases-identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartateresidues[J]. Microbiology,2001,147(Pt 5):1137-1147.
    [190]Sandy J, Mushtaq A, Holton S J, et al. Investigation of the catalytic triad of arylamine N-acetyhxansferases:essential residues required for acetyl transfer to arylamines[J]. Bio chem J,2005, 390(Pt 1):115-123.
    [191]KubiakX, Dairou J, Dupret J M, et al. Crystal structure of arylamine N-acetyltransferases:insights into the mechanisms of action and substrate selectivity [J]. Expert Opin Drug Metab Toxicol,2013,9(3):349-362.
    [192]Fichner S, Eichner T, Floss H Q et al. Broad substrate specificity of the amide synthase in S. hygroscopicus--new 20-membered macrolactones derived from geldanamycin[J]. J Am Chem Soc,2012, 134(3):1673-1679.
    [193]He W, Lei J, Liu Y, et al. The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997[J]. Arch Microbiol,2008,189(5):501-510.
    [194]Maddocks S E, Oyston P C. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins [J]. Microbiology,2008,154(Pt 12):3609-3623.
    [195]Mao X M, Sun Z H, Liang B R, et al. Positive Feedback Regulation of stgR Expression for Secondary Metabolism in Streptomyces coelicolor[J]. JBacteriol,2013,195(9):2072-2078.
    [196]Medema M H, Blin K, Cimermancic P, et al. antiSMASH:rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences [J]. Nucleic Acids Res,2011,39(Web Server issue):W339-346.
    [197]Starcevic A, Zucko J, Simunkovic J, et al. ClustScan:an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures [J]. Nucleic Acids Res,2008,36(21):6882-6892.
    [198]Weber T, Rausch C, Lopez P, et al. CLUSEAN:a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters [J]. J Biotechnol,2009,140(1-2):13-17.
    [199]Conway K R, Boddy C N. ClusterMine360:a database of microbial PKS/NRPS biosynthesis[J]. Nucleic Acids Res,2013,41(Database issue):D402-407.
    [200]Kieser T, Bibb M J, Buttner M J, et al. Practical streptomyces genetics[M].\bl.412:John Innes Foundation Norwich,2000.
    [201]Santos C L, Correia-Neves M, Moradas-Ferreira P, et al. A Walk into the LuxR Regulators of Actinobacteria: Phylogenomic Distribution and Functional Divers it y[J]. PLoS One,2012,7(10):e46758.
    [202]Santos-Aberturas J, Payero T D, Vicente C M, et al. Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis[J].Metab Eng,2011,13(6):756-767.
    [203]Erb T J, Berg I A, Brecht V, et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase:the ethylmalonyl-CoA pathway[J]. Proc Natl Acad Sci U S A,2007, 104(25):10631-10636.
    [204]Erb T J, Brecht V, Fuchs G, et al. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase[J]. Proc Natl Acad Sci U S A,2009, 106(22):8871-8876.
    [205]Eustaquio A S, McQinchey RP, Liu X et al. Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-L-methionine[J]. Proc Natl Acad Sci USA, 2009,106(30):12295-12300.
    [206]Yoo H G, Kwon S X Kim S, et al. Characterization of 2-octenoyl-CoA carboxylase/reduetase utilizing pteB from Streptomyce avermitilis[J]. Biosci Biotechnol Biochem,2011,75(6):1191-1193.
    [207]Quade N, Huo L, Rachid S, et al. Unusual carbon fixation gives rise to diverse polyketide extenderunits [J]. Nat Chem Biol,2012,8(1):117-124.
    [208]Cai P, Kong F, Ruppen M E, et al. Hygrocins a and B, naphthoquinone macrolides from Streptomyces hygroscopicus[J]. JNat Prod,2005,68(12):1736-1742.
    [209]Lu C, Ii Y, Deng J, et al. Hygrocins C-G, cytotoxic naphthoquinone ansamycins from gdmAI-disrupted Streptomyces sp.LZ35[J]. JNat Prod,2013,76(12)2175-2179.
    [210]Xu Z, Ding L, Hertweck C. A branched extender unit shared between two orthogonal polyketide pathways in an endophyte[J]. AngewChem IntEd Engl,2011,50(20):4667-4670.
    [211]Vagena E, Fakis G, Boukouvala S. Arylamine N-acetyltransferases in prokaryotic and eukaryotic genomes:a survey of public databases [J]. Curr Drug Metab,2008,9(7):628-660.
    [212]Pompeo F, Mushtaq A, Sim E. Expression and purification of the rifamycin amide synthase, RifF, an enayme homologous to the prokaryotic arylamine N-acety ltransferases[J]. Protein Expr Purif,2002, 24(1):138-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700