猪SKIP和SHIP2基因的克隆、遗传效应及功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪肌肉组织中能量的贮存、释放、转移和利用是决定肌肉生长发育和猪肉品质的重要因素。水解磷脂酰肌醇(phosphatidyldinositol,PI)的肌醇多磷酸5-磷酸酶家族成员对细胞的糖脂代谢信号和膜运输起重要调节作用。其中骨骼肌和肾脏高表达的5’肌醇磷酸酶(Skeletal muscle and kidney enriched inositol phosphatase, SKIP)和包含SH2结构的肌醇多磷酸5-磷酸酶(SH2-containing inositol polyphosphate 5-phosphatase, SHIP2)都能通过水解胰岛素介导的脂质第二信使PI(3,4,5)P3,负调控P13K依赖的胰岛素信号通路,是影响动物个体生长速度和肉用品质的候选基因。因此,本研究对猪SKIP和SHIP2基因进行了分离和遗传效应分析,研究了它们的表达调控机理,并运用RNAi方法对SKIP的功能进行了验证,取得了以下结果:
     1采用电子克隆方法获得两个候选基因的cDNA序列,均包括完整的编码区(CDS)序列:(1)SKIP,获得cDNA序列1575 bp,其中CDS 1353 bp, GenBank登录号GQ504265。(2)SHIP2,获得cDNA序列4411 bp,其中CDS 3795 bp, GenBank登录号为GU391030。根据基因组比较图谱将SKIP基因定位于猪12号染色体SSC 12q1.3,将SHIP2基因定位于猪9号染色体SSC 9p23-24。分析系统进化树,发现猪SKIP与牛进化关系较近,猪SHIP2与狗进化关系较近。
     2采用RCR-RFLP技术,在不同猪种中对2个候选基因的SNP位点进行基因分型,并在大白×梅山F2代群体中进行性状关联分析。结果表明(1)SKIP,第12外显子G136A位点与皮率,至第一颈椎胴体长,至第一肋胸胴体长呈极显著相关(P<0.01),与肌内脂肪,含水率呈显著相关(P<0.05),第6内含子A17G位点与骨率,内脂率,至第一肋胸胴体长呈极显著相关(P<0.01),与至第一颈椎胴体长呈显著相关(P<0.05);第1内含子C1092T位点与内脂率,至第一肋胸胴体长,股二头肌大理石纹,肌内脂肪含量呈显著相关(P<0.05),与背最长肌大理石纹呈极显著相关(P<0.01);(2)SHIP2,第21内含子G410A与皮率显著相关(P<0.05),与肩部最厚处背膘厚,眼肌高,眼肌宽呈极显著相关(P<0.01)。
     3运用RNA干扰技术和超表达技术研究了SKIP在分化肌细胞C2C12中的功能,Western blot分析发现抑制SKIP的表达使胰岛素介导的Akt(蛋白激酶B)的磷酸化水平、GSK-3β(糖原合酶激酶)的磷酸化水平,和GS(糖原合酶)的去磷酸化水平都有显著提高,同时发现当在肌细胞内超表达外源猪SKIP时,胰岛素介导的糖原合成量显著减少。表明在肌细胞中,SKIP对Akt/GSK-3p/GS介导的糖原合成信号通路起负调控作用。同时也解释了SKIP基因多态影响肉质性状的分子机理。
     4利用基因组PCR步移方法获得猪SKIP基因转录起始位点上游2075bp的启动子序列。生物信息学分析发现两个潜在的MyoD结合位点,若干Spl结合位点和一个位于起始密码子上游的CpG岛。以启动子序列为模板,用PCR方法获得5个5’侧翼缺失片断构建pGL3-basic的双荧光素酶报告基因载体,并将这些载体分别转染C2C12成肌分化前体细胞和肌管细胞,荧光素酶活性分析推测在启动子的-1845到-1171和-1171到-737两处地方存在转录抑制元件,在-2038到-1845处存在潜在的转录增强子。
     5半定量分析发现,SKIP在成年大白猪肌肉组织中高表达,并且在骨骼肌细胞的分化过程中表达上调。利用定点突变和RNA干扰技术,分析了SKIP启动子中潜在E-box元件和转录因子MyoD对SKIP转录的影响。发现突变E-box元件和抑制MyoD的表达都显著降低了肌管细胞中SKIP启动子的活性,表明MyoD可能通过顺式作用元件E-box介导SKIP在肌管细胞中的上调表达,并且TGF-β也以MyoD依赖的方式调控SKIP的转录。
     6利用RNA干扰技术分析了转录因子Spl对SKIP的转录影响。定量分析发现Spl基因的表达抑制使SKIP启动子活性显著下降,表明转录因子Spl可能通过顺式作用元件GC-box对肌肉细胞分化过程中SKIP基因的转录激活起正向调控作用。同时,SKIP启动子活性在Spl和MyoD双重表达抑制的肌细胞中与在Spl或MyoD单一表达抑制的肌细胞中相比,差异不显著,表明Spl可能与MyoD家族成员协同激活肌细胞分化过程中SKIP的表达。
     7利用猪基因组信息,分离获得猪SHIP2基因转录起始位点上游1820 bp的启动子序列。生物信息学分析发现Sp1, E2F, MyoD, E47, E2等转录因子的潜在结合位点和覆盖整个启动子区的CpG岛。以启动子序列为模板,用PCR方法获得5个5’侧翼缺失片断构建pGL3-basic双荧光素酶报告基因载体,并将这些载体分别转染C2C12成肌分化前体细胞和肌管细胞,荧光素酶活性分析推测在启动子的-1849到-1742存在转录抑制元件,在-1742到-1694处存在转录增强元件,从-1742到-1266处476bp序列已足够使SHIP2正常转录。
     8半定量分析发现SHIP2在成年大白猪的肌肉组织中高表达,定量分析发现SHIP2在骨骼肌细胞的分化早期表达上调而在分化中晚期表达下调。利用RNA干扰技术,分析了转录因子MyoD和Spl对SHIP2转录的影响。MyoD或Spl的表达抑制均显著降低了SHIP2的启动子活性,表明转录因子MyoD和Spl均能促进SKIP启动子在肌管细胞中的表达活性。利用定点突变技术分析了E2F作用元件对SHIP2启动子活性的影响,发现突变的E2F结合元件导致SHIP2启动子在成肌前体细胞中的活性下降,而在肌管细胞中的活性提高。表明转录因子E2F可能具有双向调控作用,在成肌前体细胞中促进SHIP2基因的转录,而在肌管细胞中抑制SHIP2基因的转录。
The energy storage, release, transfer and utilization are the key factors in determining skeletal muscle development and pork quality. Inositol polyphosphate 5-phosphatases regulate insulin signaling and intracellular trafficking. Skeletal muscle and kidney enriched inositol phosphatase (SKIP) and SH2-containing inositol polyphosphate 5-phosphatase (SHIP2) identified as 5'-inositol phosphatase family members play a negative role in PI3K-dependent insulin signaling pathway by hydrolysis of PI(3,4,5)P3. As candidate genes of animal growth and meat quality, the porcine SKIP and SKIP were cloned and identified and the promoter regulation and genetics effect were analyzed. By using RNAi technique, we also verified the influence of SKIP on insulin-induced glycogen synthesis signaling. The main results are as follows:
     1 We obtained the full coding region of the 2 genes with electronic cloning technology. (1)SKIP, obtained cDNA sequence 1575 bp, the CDS is 1353 bp, GenBank accession number. GQ504265. (2) SHIP2, obtained DNA sequence 4411 bp, the CDS is 3795 bp, GenBank accession number GU391030. With the use of comparative mapping, we mapped the SKIP gene to SSC 12q1.3 and the SH1P2 gene to SSC 9p23-24. From the phylogenetic relationship, the porcine protein sequence of SKIP has high sequence similarity with cattle than with other species, and the porcine protein sequence of SHIP2 has high sequence similarity with dog than with other species.
     2 Using PCR-RFLP, we detected SNPs of 2 genes in different pig populations and observed associations with carcass and meat quality traits in Large White and Meishan F2 hybrids. The results showed:(1) SKIP, G136A-Eco47Ⅰ-RFLP is higher significant association with Skin percentage, Carcass length to 1st spondyle and Carcass length to 1 st rib (P<0.01), high significant association with Intramuscular fat and Water content (LD) (P<0.05); A17G-ApaⅠ-RFLP is higher significant association with Bone percentage, Internal fat rat Carcass length to 1st rib (P<0.01), high significant association with Carcass length to 1st spondyle (P<0.05). C1092T-BamHⅠ-RFLP is higher significant association with Meat marbling (BF) (P<0.01), high significant association with Internal fat rat, Meat marbling (LD) and Intramuscular fat (LD) (P< 0.05) (2) SHIP2, G410A- BamHⅠ-RFLP is higher significant association with Shoulder fat thickness, m.longissimus Dorsi height, and m.longissimus Dorsi width (P< 0.01),high significant association with Skin percentage (P<0.05).
     3 We employed RNAi technique to study the SKIP function in differentiating C2C12 myoblasts. Western blot analysis showed that insulin-induced phosphorylation of Akt (protein kinase B) and GSK-3β(Glycogen synthase kinase), and dephosphorylation of GS (glycogen synthase) were increased by inhibiting the expression of SKIP, whereas the insulin-induced glycogen synthesis was decreased by overexpression of WT-SKIP. Our results suggest that SKIP plays a negative regulatory role in Akt/GSK-3β/GS (glycogen synthase) pathway leading to glycogen synthesis in myocytes. These results also explained the molecule mechanism of relationship between SKIP polymorphism with meat quality traits.
     4 Genome walking technique was used to clone the proximal promoter region of porcine SKIP. A fragment of 2075 bp upstream start code was obtained from genomic DNA of porcine. Use computer analyze, tow MyoD binding site, several Sp1 binding site, and a CpG island were found. Based on this fragment, a series of 5'-deletion mutants of SKIP promoter cloned by PCR were cloned upstream of the pGL3-basic constructs and were analyzed using transfection and luciferase activity. Two regions that could inhibit transcription (between -1845 and -1171 and between -1171 and -737) and an area with potential transcriptional enhancers (between -2038 and -1845) were identified in SKIP promoter:
     5 The tissue expression profile analysis showed that the SKIP gene was expressed at a high level in skeletal muscle. And porcine SKIP was transcriptionally upregulated during skeletal muscle differentiation. Use site-directed mutagenesis and RNAi technique, the effect of E-box element and MyoD on SKIP transcription activity were analyzed. The porcine SKIP promoter activity was significantly decreased by mutated E-box element and inhibiting the expression of MyoD. It demonstrated that MyoD was involved in upregulating SKIP mRNA expression in myotubes, partly via the cis-acting elements in SKIP promoter. SKIP expression is also modulated by TGF-β, and is MyoD dependent.
     6 Using RNAi technique, the effect of Sp1 on SKIP transcription activity was analyzed. Real-Time PCR analysis indicated a decrease in SKIP transcriptional activity by inhibiting the expression of transcription factor Sp1 in differentiating C2C12 myoblasts. These results suggest that Sp1 plays a positive regulatory role in SKIP expression possibly by GC elements in myotubes. However, there were no significant differences in SKIP promoter activity between myotube cells treated with both Spl-siRNA and MyoD-siRNA and myotube cells treated with only Spl-siRNA or MyoD-siRNA. It was speculated that Sp1 might interact with MyoD family members in regulating SKIP expression during skeletal muscle differentiation.
     7 Comparative genomic technology was used to clone the proximal promoter region of porcine SHIP2. A fragment of 1820 bp upstream start code was obtained from genomic DNA of porcine. Use computer analyze, a MyoD binding site, a E2F binding site, a E47 binding site, a E2 binding site, several Sp1 binding site, and a large area of CpG island were found. Based on this fragment, a series of 5'-deletion mutants of SHIP2 promoter cloned by PCR were cloned upstream of the pGL3-basic constructs and were analyzed using transfection and luciferase activity. An area that could inhibit transcription (between-1849 and -1742) and an area with potential transcriptional enhancers (between -1742 and-1694) were identified in SHIP2 promoter. The region upstream from position -1742 to-1266 was sufficient for almost intact SHIP2 promoter activity.
     8 The tissue expression profile analysis showed that the SHIP2 gene was expressed at a high level in skeletal muscle. And porcine SHIP2 was transcriptionally upregulated in early stage and downregulated in intermediate and advanced stages of skeletal muscle differentiation. Use RNAi technique, the effect of MyoD and Sp1 on SHIP2 transcription activity were analyzed. The porcine SHIP2 promoter activity was significantly decreased by inhibiting the expression of both MyoD and Sp1 in differentiating C2C12 myoblasts. It demonstrated that MyoD and Sp1 were involved in upregulating SHIP2 mRNA expression in myotubes. Meanwhile, use site-directed mutagenesis technique, the effect of potential E2F binding element on SKIP transcription activity was analyzed. The luciferase activity of mutated SHIP2 promoter was decreased in myoblast cells and increased in myotube cells. It suggested that transcription factor E2F has a biphase regulation on SHIP2 mRNA expression in different cell types. In other words, the E2F element promotes SHIP2 transcription in myoblasts but inhibits SHIP2 transcription in myotubes.
引文
1. 常怀普,欧江涛,钟金城,王希龙,郭春华,宾石玉,马志杰.五指山猪IGF2基因5’调控区单核苷酸多态性分析.遗传,2007,29:57-64.
    2.丁朝阳,陈斌.SNPs在猪遗传育种中的应用.猪业科学,2007,24:54-56.
    3.冯超,雷莹,刘永忠.柑橘L-半乳糖-1,4-内酯脱氢酶基因的克隆.华中农业大学学报,2009,6:731-735.
    4. 冯莹颖,张强,周青春,罗勤,张晓莉,秦龙娟.一步法定点突变技术快速构建bsh基因突变启动子.生物技术,2009,19:28-32.
    5. 高媛媛,杨郁文,张保龙,倪万潮.番茄中性/碱性蔗糖转化酶基因的电子克隆,分析及表达载体的构建.江苏农业科学,2009:36-38.
    6.何志颖,胡以平.EST技术及其在基因全长cDAN克隆上的应用策略.国外医学:遗传学分册,2002,25:67-69.
    7.黄宏刚,肖邦,任红艳,唐中林,杨述林,崔文涛,牟玉莲,储明星,李奎.猪TIMP-2基因克隆,序列特征和表达分析.畜牧兽医学报,2009,40:1727-1734.
    8.李绍华,李爱云.猪MSTN基因多态性及其SNPs的研究.遗传学报,2002,29:326-331.
    9.刘德武,杜颖军,张豪,吴珍芳,张细权,杨关福.猪Leptin基因的SNP筛查及其与生长性状的关联分析.华中农业大学学报,2008,27:251-257.
    10.肖书奇,张树敏,张嘉保,李爽,高妍,姜宁,戴立胜,赵中利,赵志辉.松辽黑猪IGF-Ⅰ基因的单核苷酸多态性(SNP)及其与生长和胴体性状的关联性.中国兽医学报,2008,28:724-728.
    11.易乐飞,王萍,周向红.条斑紫菜eIF4A基因的电子克隆与试验验证.水产科学,2009,12:775-778.
    12.张浩,毛秉智.定点突变技术的研究进展.免疫学杂志,2000:108-110.
    13.赵焕英,赵君朋,杨慧,徐群渊.重组PCR快速基因定点突变的技术方法.首都医科大学学报,2007,28:260-261.
    14. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell,2000,103:667-678.
    15. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol,1997,7:261-269.
    16. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA. Role of translocation in the activation and function of protein kinase B. J Biol Chem,1997,272:31515-31524.
    17. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A,1993,90:11995-11999.
    18. Astle MV, Horan KA, Ooms LM, Mitchell CA. The inositol polyphosphate 5-phosphatases:traffic controllers, waistline watchers and tumour suppressors? Biochem Soc Symp,2007:161-181.
    19. Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S. Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care,2005, 8:67-72.
    20. Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell,2003,12:627-637.
    21. Backers K, Blero D, Paternotte N, Zhang J, Erneux C. The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. Adv Enzyme Regul,2003, 43:15-28.
    22. Bagchi S, Weinmann R, Raychaudhuri P. The retinoblastoma protein copurifies with E2F-Ⅰ, an E1A-regulated inhibitor of the transcription factor E2F. Cell,1991,65: 1063-1072.
    23. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature,2004,428:431-437.
    24. Bernstein E, Caudy A, Hammond S, Hannon G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409:363-366.
    25. Bieda M, Xu X, Singer MA, Green R, Farnham PJ. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res,2006,16:595-605.
    26. Biesiada E, Hamamori Y, Kedes L, Sartorelli V. Myogenic basic helix-loop-helix proteins and Spl interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol Cell Biol,1999, 19:2577-2584.
    27. Blais A, Dynlacht BD. Hitting their targets:an emerging picture of E2F and cell cycle control. Curr Opin Genet Dev,2004,14:527-532.
    28. Blais A, Dynlacht BD. E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol,2007,19:658-662.
    29. Bodine S, Stitt T, Gonzalez M, Kline W, Stover G, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence J, Glass D. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology,2001,3:1014-1019.
    30. Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H. Spl elements protect a CpG island from de novo methylation. Nature,1994,371:435-438.
    31. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998,391:597-601.
    32. Bruce JL, Hurford RK, Jr., Classon M, Koh J, Dyson N. Requirements for cell cycle arrest by p16INK4a. Mol Cell,2000,6:737-742.
    33. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature,2003,424: 797-801.
    34. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science,2000,289:2122-2125.
    35. Cantley LC. The phosphoinositide 3-kinase pathway. Science,2002,296:1655-1657.
    36. Cantley LC, Neel BG. New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A,1999,96:4240-4245.
    37. Cardoso C, Leventer RJ, Ward HL, Toyo-Oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet,2003,72:918-930.
    38. Chai J, Xiong Q, Zhang CX, Miao W, Li FE, Zheng R, Peng J, Jiang SW. Effect of pre-slaughter transport plant on blood constituents and meat quality in halothane genotype of NN Large White×Landrace pigs. Livestock Science,2010,127: 211-217.
    39. Chen Z, Stockton J, Mathis D, Benoist C. Modeling CTLA4-linked autoimmunity with RNA interference in mice. Proc Natl Acad Sci U S A,2006,103:16400-16405.
    40. Chi Y, Chen J, Aoki K. Electrochemical generation of free nitric oxide from nitrite catalyzed by iron meso-tetrakis(4-N-methylpyridiniumyl)porphyrin. Inorg Chem, 2004,43:8437-8446.
    41. Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A,1990,87:7988-7992.
    42. Christensen J, Cloos P, Toftegaard U, Klinkenberg D, Bracken AP, Trinh E, Heeran M, Di Stefano L, Helin K. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res,2005,33: 5458-5470.
    43. Chung JK, Sekiya F, Kang HS, Lee C, Han JS, Kim SR, Bae YS, Morris AJ, Rhee SG. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem,1997,272:15980-15985.
    44. Clague MJ, Lorenzo O. The myotubularin family of lipid phosphatases. Traffic,2005, 6:1063-1069.
    45. Clement S, Krause U, Desmedt F, Tanti JF, Behrends J, Pesesse X, Sasaki T, Penninger J, Doherty M, Malaisse W, Dumont JE, Le Marchand-Brustel Y, Erneux C, Hue L, Schurmans S. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature,2001,409:92-97.
    46. Clement S, Krause U, Desmedt F, Tanti JF, Behrends J, Pesesse X, Sasaki T, Penninger J, Doherty M, Malaisse W, Dumont JE, Le Marchand-Brustel Y, Erneux C, Hue L, Schurmans S. The lipid phosphatase SHIP2 controls insulin sensitivity (vol 409, pg 92,2001). Nature,2004,431:878-878.
    47. Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek,1994,65:205-209.
    48. Coumoul X, Shukla V, Li C, Wang RH, Deng CX. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res,2005a,33: 102.
    49. Coumoul X, Shukla V, Li C, Wang RH, Deng CX. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res,2005b,33: e102.
    50. Courel M, Friesenhahn L, Lees JA. E2f6 and Bmil cooperate in axial skeletal development. Dev Dyn,2008,237 1232-1242.
    51. Courey AJ, Holtzman DA, Jackson SP, Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell,1989,59:827-836.
    52. Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev,1995,5:309-314.
    53. Cvekl A, Jr., Zavadil J, Birshtein BK, Grotzer MA, Cvekl A. Analysis of transcripts from 17p13.3 in medulloblastoma suggests ROX/MNT as a potential tumour suppressor gene. Eur J Cancer,2004,40:2525-2532.
    54. Czech MP. PIP2 and PIP3:complex roles at the cell surface. Cell,2000,100: 603-606.
    55. Czech MP. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol,2003,65:791-815.
    56. Da Silva Xavier G, Qian Q, Cullen PJ, Rutter GA. Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem J,2004,377:149-158.
    57. DeGregori J, Johnson DG. Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med,2006,6:739-748.
    58. Deleris P, Bacqueville D, Gayral S, Carrez L, Salles JP, Perret B, Breton-Douillon M. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J Biol Chem,2003,278: 38884-38891.
    59. Dynan WS, Tjian R. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase Ⅱ. Cell,1983,32:669-680.
    60. Dyson JM, Kong AM, Wiradjaja F, Astle MV, Gurung R, Mitchell CA. The SH2 domain containing inositol polyphosphate 5-phosphatase-2:SHIP2. Int J Biochem Cell Biol,2005,37:2260-2265.
    61. Dyson JM, Munday AD, Kong AM, Huysmans RD, Matzaris M, Layton MJ, Nandurkar HH, Berndt MC, Mitchell CA. SHIP-2 forms a tetrameric complex with filamin, actin, and GPIb-IX-V:localization of SHIP-2 to the activated platelet actin cytoskeleton. Blood,2003,102:940-948.
    62. Dyson JM, O'Malley CJ, Becanovic J, Munday AD, Berndt MC, Coghill ID, Nandurkar HH, Ooms LM, Mitchell CA. The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol,2001,155:1065-1079.
    63. Erdman S, Lin L, Malczynski M, Snyder M. Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol,1998,140:461-483.
    64. Fassler JS, Gussin GN. Promoters and basal transcription machinery in eubacteria and eukaryotes:concepts, definitions, and analogies. Methods Enzymol,1996,273: 3-29.
    65. Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391:806-811.
    66. Fleming JB, Shen GL, Holloway SE, Davis M, Brekken RA. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells:justification for K-ras-directed therapy. Mol Cancer Res,2005,3:413-423.
    67. Fukui K, Wada T, Kagawa S, Nagira K, Ikubo M, Ishihara H, Kobayashi M, Sasaoka T. Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5 '-phosphatase 2) on insulin signaling and glucose metabolism in mice. Diabetes,2005, 54:1958-1967.
    68. Gill G, Pascal E, Tseng ZH, Tjian R. A glutamine-rich hydrophobic patch in transcription factor Spl contacts the dTAFI110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A,1994,91: 192-196.
    69. Ginsberg D, Vairo G, Chittenden T, Xiao ZX, Xu G, Wydner KL, DeCaprio JA, Lawrence JB, Livingston DM. E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev,1994,8:2665-2679.
    70. Giuriato S, Pesesse X, Bodin S, Sasaki T, Viala C, Marion E, Penninger J, Schurmans S, Erneux C, Payrastre B. SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets:their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels. Biochem J,2003,376:199-207.
    71. Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME. Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci U S A,2006,103: 5285-5290.
    72. Gonzalez I, Tripathi G, Carter E, Cobb L, Salih D, Lovett F, Holding C, Pell J. Akt2, a novel functional link between p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in myogenesis. Mol Cell Biol,2004,24: 3607-3622.
    73. Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell,1987, 51:975-985.
    74. Guo CS, Degnin C, Fiddler TA, Stauffer D, Thayer MJ. Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem,2003,278: 22615-22622.
    75. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995,81:611-620.
    76. Gurung R, Tan A, Ooms LM, McGrath MJ, Huysmans RD, Munday AD, Prescott M, Whisstock JC, Mitchell CA. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization-The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J Biol Chem,2003,278:11376-11385.
    77. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet,2001,2:110-119.
    78. Hansmannel F, Mordier S, Iynedjian PB. Insulin induction of glucokinase and fatty acid synthase in hepatocytes:analysis of the roles of sterol-regulatory-element-binding protein-lc and liver X receptor. Biochem J,2006, 399:275-283.
    79. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci,2001, 114:4557-4565.
    80. Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol,1993,13:6501-6508.
    81. Huard C, Martinez RV, Ross C, Johnson JW, Zhong W, Hill AA, Kim R, Paulsen JE, Shih HH. Transcriptional profiling of C2C12 myotubes in response to SHIP2 depletion and insulin stimulation. Genomics,2007,89:270-279.
    82. Hughes WE, Cooke FT, Parker PJ. Sac phosphatase domain proteins. Biochem J, 2000,350 Pt 2:337-352.
    83. Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T. Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem,2000, 275:10870-10875.
    84. Ijuin T, Takenawa T. SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol Cell Biol,2003,23:1209-1220.
    85. Ijuin T, Yu YE, Mizutani K, Pao A, Tateya S, Tamori Y, Bradley A, Takenawa T. Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol,2008, 28:5184-5195.
    86. Ikeda MA, Jakoi L, Nevins JR. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci U S A,1996, 93:3215-3220.
    87. Ishibashi J, Perry RL, Asakura A, Rudnicki MA. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. Journal of Cell Biology,2005,171:471-482.
    88. Ishihara H, Sasaoka T, Hori H, Wada T, Hirai H, Haruta T, Langlois WJ, Kobayashi M. Molecular cloning of rat SH2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. Biochem Biophys Res Commun,1999,260: 265-272.
    89. Jackson SP, Lossky M, Beggs JD. Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. Mol Cell Biol,1988,8:1067-1075.
    90. Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell,1990,63:155-165.
    91. Johnson JE, Birren SJ, Saito T, Anderson DJ. DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer. Proc Natl Acad Sci U S A, 1992,89:3596-3600.
    92. Jongstra J, Reudelhuber TL, Oudet P, Benoist C, Chae CB, Jeltsch JM, Mathis DJ, Chambon P. Induction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature,1984,307:708-714.
    93. Kaisaki PJ, Delepine M, Woon PY, Sebag-Montefiore L, Wilder SP, Menzel S, Vionnet N, Marion E, Riveline JP, Charpentier G, Schurmans S, Levy JC, Lathrop M, Farrall M, Gauguier D. Polymorphisms in type Ⅱ SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes,2004,53:1900-1904.
    94. Kang HY, Shim D, Kang SS, Chang SI, Kim HY. Protein kinase B inhibits endostatin-induced apoptosis in HUVECs. J Biochem Mol Biol,2006,39:97-104.
    95. Karlseder J, Rotheneder H, Wintersberger E. Interaction of Sp1 with the growth-and cell cycle-regulated transcription factor E2F. Mol Cell Biol,1996,16:1659-1667.
    96. Kennerdell J, Carthew R.Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell,1998,95: 1017-1026.
    97. Kisseleva MV, Wilson MP, Majerus PW. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem,2000,275:20110-20116.
    98. Kitamura T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, Konishi H, Matsuzaki H, Kikkawa U, Ogawa W, Kasuga M. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol,1999,19:6286-6296.
    99. Koch A, Mancini A, El Bounkari O, Tamura T. The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading. Oncogene,2005,24:3436-3447.
    100.Kong AM, Speed CJ, O'Malley CJ, Layton MJ, Meehan T, Loveland KL, Cheema S, Ooms LM, Mitchell CA. Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. J Biol Chem, 2000,275:24052-24064.
    101.Kovesdi I, Reichel R, Nevins JR. Identification of a cellular transcription factor involved in E1 A trans-activation. Cell,1986,45:219-228.
    102.Lamb P, McKnight SL. Diversity and specificity in transcriptional regulation:the benefits of heterotypic dimerization. Trends Biochem Sci,1991,16:417-422.
    103.Lassar AB, Skapek SX, Novitch B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol,1994,6: 788-794.
    104.Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, Miron A, Nevins JR. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol,2000,20:3626-3632.
    105.Letovsky J, Dynan WS. Measurement of the binding of transcription factor Sp1 to a single GC box recognition sequence. Nucleic Acids Res,1989,17:2639-2653.
    106.Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell,1992,69:915-926.
    107.Li R, Knight JD, Jackson SP, Tjian R, Botchan MR. Direct interaction between Spl and the BPV enhancer E2 protein mediates synergistic activation of transcription. Cell,1991,65:493-505.
    108.Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC. Cell cycle-regulated association of E2F1 and Spl is related to their functional interaction. Mol Cell Biol,1996,16:1668-1675.
    109.Lin Z, Lu MH, Schultheiss T, Choi J, Holtzer S, DiLullo C, Fischman DA, Holtzer H. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division:evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton,1994,29:1-19.
    110.Liu D, Black B, Derynck R. TGF- β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes & Development,2001, 15:2950-2966.
    111.Lukas J, Petersen BO, Holm K, Bartek J, Helin K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol,1996,16:1047-1057.
    112.Luo W, Chang A. Novel genes involved in endosomal traffic in yeast revealed by suppression of a targeting-defective plasma membrane ATPase mutant. J Cell Biol, 1997,138:731-746.
    113.Ma K, Cheung SM, Marshall AJ, Duronio V. PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity. Cell Signal,2008,20:684-694.
    114.MacAulay K, Blair AS, Hajduch E, Terashima T, Baba O, Sutherland C, Hundal HS. Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem,2005,280:9509-9518.
    115.Macleod D, Charlton J, Mullins J, Bird AP. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev,1994,8: 2282-2292.
    116.Maiti B, Li J, de Bruin A, Gordon F, Timmers C, Opavsky R, Patil K, Tuttle J, Cleghorn W, Leone G. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem,2005,280:18211-18220.
    117.Mann DJ, Jones NC. E2F-1 but not E2F-4 can overcome p16-induced G1 cell-cycle arrest. Curr Biol,1996,6:474-483.
    118.Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell,2007, 129:.1261-1274.
    119.Marion E, Kaisaki PJ, Pouillon V,Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S. The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes,2002,51:2012-2017.
    120.Martelli F, Cenciarelli C, Santarelli G, Polikar B, Felsani A, Caruso M. MyoD induces retinoblastoma gene expression during myogenic differentiation. Oncogene, 1994,9:3579-3590.
    121.Matthews KS. DNA looping. Microbiol Rev,1992,56:123-136.
    122.McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J,2005,24:1571-1583.
    123.Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol,2002,34:705-728.
    124.Miskevich F, Doench JG, Townsend MT, Sharp PA, Constantine-Paton M. RNA interference of Xenopus NMDAR NR1 in vitro and in vivo. J Neurosci Methods, 2006,152:65-73.
    125.Mitchell CA, Gurung R, Kong AM, Dyson JM, Tan A, Ooms LM. Inositol polyphosphate 5-phosphatases:lipid phosphatases with flair. IUBMB Life,2002,53: 25-36.
    126.Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O. RNAi microarray analysis in cultured mammalian cells. Genome Res,2003,13:2341-2347.
    127.Muller R. Transcriptional regulation during the mammalian cell cycle. Trends Genet, 1995,11:173-178.
    128.Munro S, Ceulemans H, Bollen M, Diplexcito J, Cohen PT. A novel glycogen-targeting subunit of protein phosphatase 1 that is regulated by insulin and shows differential tissue distribution in humans and rodents. FEBS J,2005,272: 1478-1489.
    129.Muraille E, Pesesse X, Kuntz C, Erneux C. Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement of SHIP-2 in negative signalling of B-cells. Biochem J,1999,342 Pt 3:697-705.
    130.Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone syrithase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell Online,1990,2:279-289.
    131.Nemoto Y, Arribas M, Haffner C, DeCamilli P. Synaptojanin 2, a novel synaptojanin isoform with a distinct targeting domain and expression pattern. J Biol Chem,1997, 272:30817-30821.
    132.Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T. Rb targets histone H3 methylation and HP1 to promoters. Nature,2001,412:561-565.
    133.Novitch BG, Mulligan GJ, Jacks T, Lassar AB. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol,1996,135:441-456.
    134.Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A,2002,99: 9213-9218.
    135.Panteleeva I, Boutillier S, See V, Spiller DG, Rouaux C, Almouzni G, Bailly D, Maison C, Lai HC, Loeffler JP, Boutillier AL. HP1 alpha guides neuronal fate by timing E2F-targeted genes silencing during terminal differentiation. EMBO J,2007, 26:3616-3628.
    136.Parker MH, Perry RLS, Fauteux MC, Berkes CA, Rudnicki MA. MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol Cell Biol,2006, 26:5771-5783.
    137.Paternotte N, Zhang J, Vandenbroere I, Backers K, Blero D, Kioka N, Vanderwinden JM, Pirson I, Erneux C. SHIP2 interaction with the cytoskeletal protein Vinexin. FEBS J,2005,272:6052-6066.
    138.Pedersen AG, Baldi P, Chauvin Y, Brunak S. The biology of eukaryotic promoter prediction--a review. Comput Chem,1999,23:191-207.
    139.Philipsen S, Pruzina S, Grosveld F. The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. EMBOJ,1993,12:1077-1085.
    140.Prasad N, Topping RS, Decker SJ. SH2-containing inositol 5'-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol Cell Biol,2001,21:1416-1428.
    141.Prasad NK, Decker SJ. SH2-containing 5'-inositol phosphatase, SHIP2, regulates cytoskeleton organization and ligand-dependent down-regulation of the epidermal growth factor receptor. J Biol Chem,2005,280:13129-13136.
    142.Ptashne M. Gene regulation by proteins acting nearby and at a distance. Nature,1986, 322:697-701.
    143.Ptashne M, Gann A. Transcriptional activation by recruitment. Nature,1997,386: 569-577.
    144.Qiu HF, Xu XW, Fan B, Rothschild MF, Martin Y, Liu B. Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Mol Biol Rep,2010,37:629-636.
    145.Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ, te Riele H, Dynlacht BD. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev,2002, 16:933-947.
    146.Rebbapragada A, Benchabane H, Wrana J, Celeste A, Attisano L. Myostatin signals through a transforming growth factor {beta}-like signaling pathway to block adipogenesis. Mol Cell Biol,2003,23:7230.
    147.Roncuzzi L, Brognara I, Baiocchi D, Amadori D, Gasperi-Campani A. Loss of heterozygosity at 17p13.3-ter, distal to TP53, correlates with negative hormonal phenotype in sporadic breast cancer. Oncol Rep,2005,14:471-474.
    148.Rosenvold K, Petersen JS, Lwerke HN, Jensen SK, Therkildsen M, Karlsson AH, Moller HS, Andersen HJ. Muscle glycogen stores and meat quality as affected by strategic finishing feeding of slaughter pigs. J Anim Sci,2001,79:382-391.
    149.Saffer JD, Jackson SP, Annarella MB. Developmental expression of Spl in the mouse. Mol Cell Biol,1991,11:2189-2199.
    150.Sartorelli V, Webster KA, Kedes L. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev, 1990,4:1811-1822.
    151.Sasaoka T, Hori H, Wada T, Ishiki M, Haruta T, Ishihara H, Kobayashi M. SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia,2001,44:1258-1267.
    152.Sasaoka T, Kikuchi K, Wada T, Sato A, Hori H, Murakami S, Fukui K, Ishihara H, Aota R, Kimura I, Kobayashi M. Dual role of SRC homology domain 2-containing inositol phosphatase 2 in the regulation of platelet-derived growth factor and insulin-like growth factor Ⅰ signaling in rat vascular smooth muscle cells. Endocrinology,2003,144:4204-4214.
    153.Schabort EJ, van der Merwe M, Loos B, Moore FP, Niesler CU. TGF-beta's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Exp Cell Res,2009,315:373-384.
    154.Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R. Type Ⅱ phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett,2004,576:9-13.
    155.Schneider JW, Gu W, Zhu L, Mahdavi V, Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/-muscle cells. Science,1994,264: 1467-1471.
    156.Schultz DC, Vanderveer L, Berman DB, Hamilton TC, Wong AJ, Godwin AK. Identification of two candidate tumor suppressor genes on chromosome 17p 13.3. Cancer Res,1996,56:1997-2002.
    157.Sears R, Ohtani K, Nevins JR. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol Cell Biol,1997,17:5227-5235.
    158.Seet LF, Cho S, Hessel A, Dumont DJ. Molecular cloning of multiple isoforms of synaptojanin 2 and assignment of the gene to mouse chromosome 17A2-3.1. Biochem Biophys Res Commun,1998,247:116-122.
    159.Shao Z, Robbins PD. Differential regulation of E2F and Spl-mediated transcription by G1 cyclins. Oncogene,1995,10:221-228.
    160.Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO, Garcia K, Stitt TN, Yancopoulos GD, Wiegand SJ, Glass DJ. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med,2005,11:199-205.
    161.Smale ST. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta,1997,1351:73-88.
    162.Somerville C, Dangl. Genomics. Plant biology in 2010. Science,2000,290: 2077-2078.
    163.Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med,2005,9:59-71.
    164.Srinivasan S, Seaman M, Nemoto Y, Daniell L, Suchy SF, Emr S, De Camilli P, Nussbaum R. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol,1997,74:350-360.
    165.Stephens L, Anderson K, Stokoe D,Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science,1998,279:710-714.
    166.Stolz LE, Huynh CV, Thorner J, York JD. Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics,1998a,148: 1715-1729.
    167.Stolz LE, Kuo WJ, Longchamps J, Sekhon MK, York JD. INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem, 1998b,273:11852-11861.
    168.Su W, Jackson S, Tjian R, Echols H. DNA looping between sites for transcriptional activation:self-association of DNA-bound Spl. Genes Dev,1991,5:820-826.
    169.Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, Birnbaum MJ. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem,1999,274:17934-17940.
    170.Sun Q, Zhang Y, Yang G, Chen X, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res,2008,36:2690-2699.
    171.Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo:distinct E2F proteins mediate activation and repression. Genes Dev,2000,14:804-816.
    172.Takenawa T, Itoh T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta,2001,1533:190-206.
    173.Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A. PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem,2005,280:22523-22529.
    174.Taylor GS, Maehama T, Dixon JE. Inaugural article:myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A,2000,97: 8910-8915.
    175.Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JC. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J Anim Sci,2004,82:2213-2228.
    176.Timmons L, Fire A. Specific interference by ingested dsRNA. Nature,1998,395: 854.
    177.Toker AS, Macnab RM. Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol,1997,273:623-634.
    178.Tomas A, Casellas J, Ramirez 0, Munoz G, Noguera JL, Sanchez A. High amino acid variation in the intracellular domain of the pig prolactin receptor (PRLR) and its relation to ovulation rate and piglet survival traits. J Anim Sci,2006,84:1991-1998.
    179.Tsujishita Y, Guo S, Stolz LE, York JD, Hurley JH. Specificity determinants in phosphoinositide dephosphorylation:crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell,2001,105:379-389.
    180.Tureckova J, Wilson E, Cappalonga J, Rotwein P. Insulin-like growth factor-mediated muscle differentiation collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J Biol Chem,2001,276: 39264-39270.
    181.Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev,1999,13:3191-3197.
    182.Valderrama-Carvajal H, Cocolakis E, Lacerte A, Lee E, Krystal G, Ali S, Lebrun J. Activin/TGF-(?)A induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nature cell biology,2002,4:963-969.
    183.van den Heuvel S, Dyson NJ. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol,2008,9:713-724.
    184.Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem,2001,70:535-602.
    185.Wada T, Sasaoka T, Funaki M, Hori H, Murakami S, Ishiki M, Haruta T, Asano T, Ogawa W, Ishihara H, Kobayashi M. Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity. Mol Cell Biol,2001,21: 1633-1646.
    186.Wang Y, Keogh RJ, Hunter MG, Mitchell CA, Frey RS, Javaid K, Malik AB, Schurmans S, Tridandapani S, Marsh CB. SHIP2 is recruited to the cell membrane upon macrophage colony-stimulating factor (M-CSF) stimulation and regulates M-CSF-induced signaling. J Immunol,2004,173:6820-6830.
    187.Weintraub H. The MyoD family and myogenesis:redundancy, networks, and thresholds. Cell,1993,75:1241-1244.
    188.Weintraub H, Davis R, Lockshon D, Lassar A:MyoD binds cooperatively to two sites in a target enhancer sequence:occupancy of two sites is required for activation. Proc Natl Acad Sci U S A,1990,87:5623-5627.
    189.Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et al. The myoD gene family:nodal point during specification of the muscle cell lineage. Science,1991,251:761-766.
    190.Weintraub H, Genetta T, Kadesch T. Tissue-specific gene activation by MyoD: determination of specificity by cis-acting repression elements. Genes Dev,1994,8: 2203-2211.
    191.Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A,1989,86:5434-5438.
    192.Whisstock JC, Romero S, Gurung R, Nandurkar H, Ooms LM, Bottomley SP, Mitchell CA. The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J Biol Chem,2000,275:37055-37061.
    193.Whisstock JC, Wiradjaja F, Waters JE, Gurung R. The structure and function of catalytic domains within inositol polyphosphate 5-phosphatases. IUBMB Life,2002, 53:15-23.
    194.Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A, Crackower M, Suzuki A, Mak TW, Kahn CR, Klip A, Woo M. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol,2005,25:1135-1145.
    195.Wimmers K, Fiedler I, Hardge T, Murani E, Schellander K, Ponsuksili S. QTL for microstructural and biophysical muscle properties and body composition in pigs. Bmc Genet,2006,7:1-15.
    196.Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, Greenberg ME, Orkin S, Nevins JR, Robinson ML, Leone G. The E2F1-3 transcription factors are essential for cellular proliferation. Nature,2001, 414:457-462.
    197.Xiao ZX, Ginsberg D, Ewen M, Livingston DM. Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. Proc Natl Acad Sci U S A,1996,93:4633-4637.
    198.Xiong Q, Deng CY, Chai J, Jiang SW, Xiong YZ, Li FE, Zheng R. Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C.1.2 myoblasts. Bmb Rep,2009,42:119-124.
    199.Xu X, Bieda.M, Jin VX, Rabinovich A, Oberley MJ, Green R, Farnham PJ. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res,2007,17: 1550-1561.
    200.Yun K, Wold B. Skeletal muscle determination and differentiation:story of a core regulatory network and its context. Curr Opin Cell Biol,1996,8:877-889.
    201.Zhang MQ. A discrimination study of human core-promoters. Pac Symp Biocomput, 1998:240-251.
    202.Zhao H, Zeng S, Zhu X, Zuo Z, Zeng Q, Chao W. Effects on telomerase activity and associated-protein of hRPE cells by TGF-beta 1. Yan Ke Xue Bao,2003,19:60-64.
    203.Zwicker J, Liu N, Engeland K, Lucibello FC, Muller R. Cell cycle regulation of E2F site occupation in vivo. Science,1996,271:1595-1597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700