电子散斑与合成孔径雷达干涉测量中的等值线相关干涉法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子散斑干涉测量技术(Electronic Speckle Pattern Interferometry, ESPI)和合成孔径雷达干涉测量技术(Synthetic Aperture Radar Interferometry, InSAR)是非常相似又互相区别的两种技术。ESPI是一种对光学粗糙表面进行无损全场测量的技术,被广泛地应用于振动、位移、应变和医学诊断等各方面的测量中。InSAR是以合成孔径雷达复数据提取的相位信息为信息源获取地表的三维信息和变化信息的一项技术。它们都以干涉条纹为主要研究对象,并且通过对干涉条纹图的处理获取最后要测量的物理量。但无论是ESPI还是InSAR,其干涉条纹图中都存在比较严重的散斑噪声和去相关噪声,给它们的应用带来了很大的困难。
     本文分别对ESPI及InSAR干涉条纹图处理技术进行了深入研究,提出了系列等值线相关干涉(Contoured Correlation Interferometry,CCI)方法。创新点主要有以下四点:
     (1)提出了ESPI干涉条纹图的CCI生成方法。针对已有条纹图生成方法的主要弱点—乘性噪声严重,本文在大量实验及理论分析的基础上,提出了ESPI干涉条纹图的CCI生成方法。由于选取了最优的条纹等值线窗口,能生成高质量的干涉条纹图,几乎不含有任何散斑噪声。
     (2)提出了基于CCI条纹图的ESPI相位提取方法。利用CCI条纹图两个突出优点:不含有乘性散斑噪声和条纹正则性好,提出基于CCI条纹图的相位提取方法,包括条纹中心线法、从单幅条纹图提取相位场的方法、单步相移提取相位场的方法。
     (3)提出了三幅子图(Three Parts)的InSAR复图像对配准方法。该方法只需从复图像对的四个实虚部数据(四幅子图)里任取三个(三幅子图)就可以完成整个配准过程。由于精配准过程的相关运算窗口为条纹等值线窗口,配准精度亦得到了提高。
     (4)提出了InSAR干涉相位图的CCI生成方法。针对现有共轭相乘方法存在的缺陷,提出InSAR干涉相位图的CCI生成方法。该方法只需从复图像对的四个实虚部数据里任取三个就可以生成高质量的干涉条纹图。
     以上(3)和(4)一起构成了完整的三幅子图的InSAR数据处理方法,为InSAR干涉相位图处理提供了一种全新的途径。其主要优点有两个:
     ①只用到InSAR复图像对四个实虚部中的任意三个。若SAR成像过程在星上完成,则只需要将3/4的数据传回地面,即可以实现InSAR后续数据处理过程,从而大量节约传输时间并减少对带宽的占用。
     ②由于运算窗口为条纹等值线窗口,配准精度比原方法有提高,配准后复图像对的相干性增强。生成干涉相位图中的去相关噪声得到了有效的抑制,并且尽可能保持相位信息不受损害。这些都为下一步的相位解缠及数字高程的高精度提取创造了有利的条件。
     除了以上四个比较重要的创新点,本文的主要工作还体现在以下两个方面:
     (1)对条纹方向图的求取方法进行了深入的分析,详细介绍了本文中使用的两种条纹方向图的求取方法,对这两种方法的处理精度用模拟条纹做了精度分析与对比,为InSAR及ESPI条纹方向求取及计算窗口尺寸的选择提供了重要依据。
     (2)ESPI相位主值图滤波是相位解缠前必须进行的重要工作。中值滤波及均值滤波不宜直接用于相位主值图的去噪处理,它们会严重损害主值图的跳变信息。本文针对ESPI相位主值图解缠面临的主要困难,提出了将条纹等值线滤波方法与sine/cosine滤波方法相结合应用于ESPI相位主值图降噪处理的方法,取得了比较理想的滤波结果。
Electronic Speckle Pattern Interferometry (ESPI), and Interferometric Synthetic Aperture Radar (InSAR), are two closely related techniques. The former is a whole-field non-destructive technique to measure the optical rough surface, and it is widely used in the measuring of vibration, displacement, strain and medical diagnosis; the latter finds its application in measuring the topography of a surface, its changes over time, and changes of the characteristics of a surface. Both of them take interferogram as their main object of research, and both obtain the last physical values for measurement through interferomgram processing. However, either ESPI or InSAR encounters great difficulties in their applications due to the serious speckle noise and the decorrelation noise existing in the interferograms.
     This dissertation is based on a thorough exploration into interferograms processing techniques and proposes a method named Contoured Correlation Interferometry (CCI) as a solution to the problem mentioned. Its originality is observed in the following 4 aspects:
     (1) CCI Method to Generate ESPI Interferograms
     In order to overcome the major shortcoming of the existing fringe patterns generation methods, i.e., the inevitable accompanying serious multiplication noise, this dissertation puts forward a CCI method to generate ESPI fringe patterns. Because this method takes the optimal fringe-contoured window, the fringe patterns generated are of high quality and almost void of any speckle noise.
     (2) ESPI Phase Retrieval Methods Based on CCI Fringe Patterns
     It takes advantage of the two prominences of the CCI fringe patterns: a. Being free of multiplication speckle noise; b. Good normalization, to propose several phase retrieval methods based on CCI fringe patterns, i.e., fringe centerline method, single-fringe-pattern phase field extraction method, and single-phase-step phase field extraction method.
     (3) Co-registration Based on Three Parts of Two Complex Images for InSAR
     It only needs three arbitrary parts of the two complex images instead of four parts which are necessary for the existing co-registration methods. Furthermore, the co-registration precision is improved due to the fringe-contoured window used.
     (4) CCI Method to Generate InSAR Phase Images
     It also takes only three parts of the two complex images instead of four for the conventional method to generate high-quality phase images. It proves an efficient tool that reduces speckle noise while preserving the phase derived, which solves one of most difficult problems in InSAR data processing.
     Among the above mentioned points, (3) and (4) together piece up a full picture of InSAR data processing method using only three arbitrary parts of the two complex images, which provides a totally novel approach to conduct InSAR data processing. It has two major advantages:
     ①It requires only three arbitrary parts among the four parts of the InSAR complex image pair. Suppose the SAR image formation is fulfilled on the satellite, it asks only 3/4 of the data to be transmitted to the earth for the consequent InSAR data processing and thus to save transmission time to a large extent.
     ②Coherence of the co-registered complex image pair gets enhanced because the fringe-contoured window is adopted as computation window and the co-registration precision is increased compared with the previous practice. Consequently, the decorrelation noise of the phase images generated is suppressed effectively and it is made possible that the phase information stays intact. All these are favorable to the phase unwrapping and the highly precise Digital Elevation Model (DEM) retrieval which come next.
     Apart from the forgoing four aspects, there are other two important jobs done in this dissertation:
     (1) An intense analysis is made on the methods to obtain the fringe orientation map, and two of them (which are adopted in this research) are given a close introduction. Furthermore, a precision analysis using simulated fringes is carried out to make a comparison of the processing precision of the two methods, which could serve as an important reference for the InSAR and ESPI fringe orientation computation and window size determination.
     (2) In ESPI, the saw-tooth phase map obtained by the phase-shifting technique is inherently full of speckle noise. The high-level noise of the map must be suppressed before it is unwrapped. In accordance with the feature of the saw-tooth phase maps, an adaptive filter is developed by combining the classical sine/cosine filter and the fringe orientation information of the saw-tooth phase map. Compared with existing filters, it has a better performance on phase jump information preservation and produces no blurring effect on the phase distribution provided the filtering is implemented on the equal-phase window. Moreover, its capability of noise reduction is more powerful.
引文
[1] 于起峰, 陆宏伟, 刘肖琳. 基于图像的精密测量与运动测量[M], 科学出版社, 2002.
    [2] 于光 , 王树国 , 于俊华 . 数字散斑干涉术及应用 [J]. 激光技术 . 2002, 26(3):237-240.
    [3] Rastogi P K. Optical measurement techniques and applications[M], Artech House, 1997.
    [4] Rastogi P K. Digital speckle pattern interferometry and related techniques[M], John Wiley & Sons Ltd, 2001.
    [5] Robert K.Erf. 散斑计量学[M], 中国计量出版社, 1990.
    [6] Sirohi R S. Speckle metrology[M], Marcel Dekker, 1993.
    [7] Chen D J, Chiang P F. Computer-aided speckle interferometry[J]. Applied Optics. 1993, 32(2):225-236.
    [8] Wang J, Grant I. Electronic speckle interferometry, phase-mapping, and nondestructive testing techniques applied to real-time, thermal loading[J]. Applied Optics. 1995, 34(19):3620-3627.
    [9] Hung Y Y. Shearography: a novel and practical approach for nondestructive testing[J]. Journal of Non-destructive Testing. 1998, 8(2):55-67.
    [10] 姜力军, 刘伟, 谭玉山. 散斑计量技术-走向工程实用化的技术[J]. 物理. 1995, 24(3):154-160.
    [11] 秦玉文, 戴嘉彬, 陈金龙. 电子散斑方法的进展 [J]. 实验力学. 1996, 11(4):410-416.
    [12] 王昊, 史红民, 段振广, 孙其正, 黄晓明. 电子散斑干涉技术及应用[J]. 激光集锦. 1995, 5(3):25-29.
    [13] 姜力军. 激光电视全息实用化中的关键技术及质量优化研究[D]. 西安交通大学. 1996.
    [14] 金观昌. 相位测量技术的新进展及应用[J]. 物理. 1993, 22(6):374-377.
    [15] 彭翔, 姚建铨. 一种新的多波长数字散斑干涉技术[J]. 光学学报. 1994, 14(7):758-761.
    [16] Ennos A E. Visual observation of surfaces vibration model pattern[J]. Nature. 1966, 212:652-660.
    [17] 方强, 陈家璧. 全息散斑计量学[M], 科学出版社, 1995.
    [18] Butters J N. Holography and video techniques applied to engineering measurements[J]. JMeasControl. 1971, 4(2):349-354.
    [19] Macovski A. Time-lapse interferometry and conturing using television systems[J].Applied Optics. 1971, 10(3):2722-2727.
    [20] 伍小平, 何世平, 李志超. 空间散斑的运动规律[J]. 物理学报. 1980, 29(9).
    [21] Robinson D W, Reid G T. Interferogram analysis[M], Institute of Physis Publishing, 1993.
    [22] Yamaguchi I. A laser-speckle strain gange[J]. Journal of Physics E: Scientific Instruments. 1981, 14:1270-1273.
    [23] Peter W H, Ranson W F. Digital imaging technique in experimental stress analysis[J]. Optical Engineering. 1982, 21(3):427-431.
    [24] Hung Y Y. Shearography: a new optical method for strain measurement and nondestructive testing[J]. Optical Engineering. 1982, 21(3):391-395.
    [25] 张熹. 新的剪切散斑干涉法及其在检测残余应力中的应用[J]. 舰船科学技术. 1992, (3):27-32.
    [26] 李喜德. 散斑检测技术及其应用[J]. 理化检验-物理分册. 2004, 40(5):245-251.
    [27] 廖明生, 林珲. 雷达干涉测量—原理与信号处理基础[M], 测绘出版社, 2003.
    [28] Rosen P A, Hensley S, Joughin I R, Li F K, Madsen S N, Rodriguez E, Goldstein R M. Synthetic aperture radar interferometry[C]. Proceedings of the IEEE. 2000:333-382.
    [29] 王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M], 科学出版社, 2002.
    [30] Rogers A E, Ingalls R P. Venus: Mapping the surface reflectivity by radar interferometry[J]. Science. 1969, 65:797-799.
    [31] 保铮, 邢孟道, 王彤. 雷达成像技术[M], 电子工业出版社, 2005.
    [32] 舒宁. 雷达影像干涉测量原理[M], 武汉大学出版社, 2003.
    [33] Richard Bamler, Philipp Hartl. Synthetic aperture radar interferometry[J]. Inverse Problems. 1998, 14:R1-R54.
    [34] 郭华东. 雷达对地观测理论与应用[M], 科学出版社, 2000.
    [35] Olaf Hellwich. SAR interferometry: principles, processing, and perspectives.
    [36] 刘国祥. 合成孔径雷达遥感新技术—InSAR 介绍[J]. 四川测绘. 2004, 27(2):92-95.
    [37] 郭春生. InSAR 成像算法研究[D]. 南京航空航天大学. 2002.
    [38] 陶鹍. 干涉合成孔径雷达数据处理及仿真研究[D]. 中国科学院电子学研究所. 2003.
    [39] 毛建旭. 合成孔径雷达干涉(INSAR)三维成像处理技术研究[D]. 湖南大学. 2002.
    [40] 李新武. 极化干涉 SAR 信息提取方法及应用研究[D]. 中国科学院遥感应用研究所. 2002.
    [41] Fernando M S, Andrew J M, John R T, Noe A O. Noise reduction in twin-pulsed addition electronic speckle pattern interferometry fringe patterns[J]. OpticalEngineering. 1994, 33(5):1712-1716.
    [42] Yu Q F. Fringe multiplication methods for digital interferometric fringes[J]. Applied Optics. 1989, 28(20):4323-4327.
    [43] Liu X L, Yu Q F. Improvement on digital interferometric fringe multiplication methods[J]. Experimental Techniques. 1993, (1):26-29.
    [44] Creath K. Speckle: signal or noise?[C]. Fringe 93. Berlin, 1993:97-102.
    [45] Liu J B, Ronney P D. Modified fourier transform method for interferogram fringe pattern analysis[J]. Applied Optics. 1997, 36(25):6231-6241.
    [46] Robinson D W. Automatic fringe analysis with a computer image-processing system[J]. Applied Optics. 1983, 22(14):2169-2176.
    [47] Kaufmann G H. Numerical processing of speckle photography data by Fourier transform[J]. Applied Optics. 1981, 20(24):4277-4280.
    [48] Rastogi P K, Barillot M, Kaufmann G H. Comparative phase shifting holographic interferometry[J]. Applied Optics. 1991, 30(7):722-728.
    [49] Kao C C, Yeh G B, Lee S S, Lee C K, Yang C S, Wu K C. Phase-shifting algorithms for electronic speckle pattern interferometry[J]. Applied Optics. 2002, 41(1):46-54.
    [50] Tay C J, Quan C Q, Chen L J. Phase retrieval with a three-frame phase-shifting algorithm with an unknown phase shift[J]. Applied Optics. 2005, 44(8):1401-1409.
    [51] Kaufmann G H, Galizzi G E. Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods[J]. Applied Optics. 2002, 41(34):7254-7263.
    [52] Marroquin J L, Rivera M, Botello S, Rodriguez-Vera, Servin M. Regularization methods for processing fringe-pattern images[J]. Applied Optics. 1999, 38(5):788-794.
    [53] 雷志辉, 苏明照. 用二维 FFT 滤波消除 ESPI 条纹中的散斑颗粒噪声[J]. 实验力学. 1992, 7(2):177-180.
    [54] 张东升, 佟景伟. 频域滤波及相移技术在 ESPI 中的应用[J]. 实验力学. 1992, 7(2):166-170.
    [55] 戴嘉彬, 王金起, 秦玉文. 电子散斑滤波处理的一种新方法[C]. 第七届全国实验力学会议. 1992:602-606.
    [56] 何小元, 衡伟, 徐铸. 数字散斑条纹处理的频域法和空域法[J]. 实验力学. 1995, 10(4):302-308.
    [57] Davila A, Kaufmann G H, Kerr D. Scale-space filter for smoothing electronic speckle pattern interferometry fringes[J]. Optical Engineering. 1996, 35(12):3549-3554.
    [58] Ruiz P D, Kaufmann G H. Evaluation of a scale-space filter for speckle noisereduction in electronic speckle pattern interferometry[J]. Optical Engineering. 1998, 37(8):2395-2401.
    [59] Federico A, Kaufmann G H. Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes[J]. Optical Engineering. 2001, 40(11):2698-2604.
    [60] 缪泓, 束方军, 冯传玉. 基于小波分析的条纹图滤波方法[J]. 实验力学. 1999, 14(3):354-358.
    [61] Rajesh K, Shashi K S, Chandra S. Wavelet filtering applied to time-average digital speckle pattern interferometry fringes[J]. Optics & Laser Technology. 2001, 33(8):567-571.
    [62] Kaufmann G H, Galizi G E. Speckle noise reduction in televison holography fringes using wavelet thresholding[J]. Optical Engineering. 1996, 35(1):9-14.
    [63] Yu Q F. Spin filtering processes and automatic extraction of fringe center-lines from interferometric patterns[J]. Applied Optics. 1988, 27(18):3782-3784.
    [64] Yu Q F, Liu X L, Andresen K. New spin filters for interferometric fringe patterns and grating patterns[J]. Applied Optics. 1994, 33(17):3705-3711.
    [65] Yu Q F, Liu X L, Sun X Y. Generalized Spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons[J]. Applied Optics. 1998, 37(20):4504-4509.
    [66] Andresen K, Yu Q F. Robust phase unwrapping by spin filtering combining with a phase direction map[J]. Optik. 1993, 94(4):145-149.
    [67] 于起峰, 张小虎, 贺云. 用改进的旋滤波消除散斑条纹图的散斑噪声[J]. 现代力学测试技术. 1998:336-339.
    [68] 孙祥一, 于起峰. 一种通过条纹方向图提取散斑条纹中心线的方法[J]. 实验力学. 2001, 16(4):427-432.
    [69] 孙祥一, 于起峰. 用曲线大窗口平滑散斑条纹图的方法研究[J]. 力学学报. 2002, 34(3):458-462.
    [70] Yu Q F, Sun X Y, Liu X L. Spin filter with curve windows for interometric fringe patterns[J]. Applied Optics. 2002, 41(14):2650-2654.
    [71] Sun X Y, Yu Q F. Adaptive algorithm for estimating fringe orientation of speckle patterns[C]. The 3rd international conference on experimental mechanics. 2001.
    [72] Yu Q F, Liu X L. Removing speckle noise from speckle fringe patterns by spin filtering with curve surface windows[C]. Machine Vision Applications in Industrial Inspection X. 2002:73-79.
    [73] Sun X Y, Yu Q F. A method of smoothing a series of speckle fringe patterns[C]. Optical technology and image processing for fluids and solids diagnostics. 2002.
    [74] Yu Q F, Sun X Y. Removing speckle noise and extracting the skeletons from a single speckle fringe pattern by spin filtering with curved-surface window[J].Optical Engineering. 2003, 41(1):68-74.
    [75] Annalisa Capanni, Luca Pezzati, Duilio Bertani, Maurizio Cetica, Franco Francini. Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping[J]. Optical Engineering. 1997, 36(9):2466-2472.
    [76] Huang M J, Sheu W H. Histogram-data-orientated filter for inconsistency removal of interferometric phase maps[J]. Optical Engineering. 2005, 44(4).
    [77] F.Qian, X.Wang, Y.Bu. Adaptive filter for unwrapping noisy phase image in phase-stepping interferometry[J]. Opt Laser Technol. 2001, 33(7):479-486.
    [78] Aebischer H A, Waldner S. A simple and effective method for filtering speckle-interferometric phase fringe patterns[J]. Optics Communications. 1999, 162:205-210.
    [79] Palacios F, Goncalves E, Ricardo J, Valin J J. Adaptive filter to improve the performance of phase-unwrapping in digital holography[J]. Optics Communications. 2004, 238:245-251.
    [80] Creath K. Phase-measurement interferometry techniques[C]. Progress in Optics. North-Holland Amsterdam, 1988:351-393.
    [81] Takeda M, Hideki I, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. J Opt Soc Am. 1982, 72:156-160.
    [82] Roddier C, Roddier F. Interferogram analysis using Fourier transform techniques[J]. Applied Optics. 1987, 26:1668-1673.
    [83] 金观昌, 唐寿鸿. 同步相位算法及其应用于自动条纹图分析[J]. 应用激光. 1991, 10(2):63-66.
    [84] Yu Q F, Liu X L, Sun X Y. Double image and single image phase-shifting methods for phase measurement[J]. Optik. 1998, 109(2):89-95.
    [85] Marroquin J L, Rodriguez-Vera R, Servin M. Local phase from local orientation by solution of sequence of linear systems[J]. J Opt Soc Am. 1998, 15(6):1536-1544.
    [86] Marroquin J L, Servin M, Rodriguez-Vera. Adaptive quadrature filters for multiple phase-stepping images[J]. Optics Letters. 1998, 23(4):238-240.
    [87] Marroquin J L, Figueroa J E. Robust quadrature filters[J]. J Opt Soc Am. 1997, 14(4):779-791.
    [88] Marroquin J L, Servin M, Rodriguez-Vera. Adaptive quadrature filters and the recovery of phase from fringe pattern images[J]. J Opt Soc Am. 1997, 14(8):1742-1753.
    [89] 杨福俊, 孙平, 云大真. 自适应统计滤波的单幅干涉条纹图相位解调研究[J]. 光学技术. 2002, 28(3):241-244.
    [90] 杨福俊, 云大真. 基于统计滤波的单幅散斑条纹图的相位恢复技术[J]. 光学学报. 2002, 22(8):952-956.
    [91] Rodriguez E, Martin J M. Theory and design of interferometric synthetic aperture radars[C]. IEE PROCEEDINGS-F. 1992:147-159.
    [92] Lee J S, Papathanassiou K P, Ainsworth T L, Grunes M R, Reigber A. A new technique for noise filtering of SAR interfereometric phase images[J]. IEEE Trans Geosci Remote Sens. 1998, 36(5):1456-1465.
    [93] Trouve E, Nicolas J, Maitre H. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Trans Geosci Remote Sens. 1998, 36(6):1963-1972.
    [94] Nan Wu, Da-Zheng Feng, JunXia Li. A locally adaptive filter of interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters. 2006, 3(1):73-77.
    [95] Qifeng Yu, Xia Yang, Sihua Fu, Xiaolin Liu, Zhihui Lei. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters. Accepted.
    [96] R.M.Goldstein, C.L.Werner. Radar interferomgram filtering for geophysical applications[J]. Geophys Res Lett. 1998, 25(21):4035-4038.
    [97] Lanari R, Fornaro G, Riccio D, Migliaccio M, Papathanassiou K P, Moreira J R, Schwabisch M, Dutra L, Puglisi G. Generation of digital elevation models by using SIR-C/X-SAR multifrequency Two-Pass interferometry: The Etna case study[J]. IEEE Trans Geosci Remote Sens. 1996, 34(5):1097-1114.
    [98] 于晶涛, 陈鹰. 一种新的 INSAR 干涉条纹图滤波方法[J]. 测绘学报. 2004, 33(2):121-126.
    [99] 廖明生, 林珲, 张祖勋, 杨文, 张力. INSAR 干涉条纹图的复数空间自适应滤波[J]. 遥感学报. 2003, 7(2):98-105.
    [100] 朱岱寅, 朱兆达, 谢求成. 一种基于局部频率估计的地形自适应干涉图滤波器[J]. 电子学报. 2002, 30(12):1853-1856.
    [101] Li F K, Goldstein R M. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radars[J]. IEEE Trans Geosci Remote Sens. 1990, 28(1):88-97.
    [102] Gabriel A K, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIB-B[J]. Int J Remote Sensing. 1988, 9(5):857-872.
    [103] Lin Q, Vesecky J F, Zebker H A. New Approaches in Interferometric SAR Data Processing[J]. IEEE Trans Geosci Remote Sens. 1992, 30(3):560-567.
    [104] 廖明生. 由 INSAR 影像高精度自动生成干涉图的关键技术研究[D]. 武汉测绘科技大学. 2000.
    [105] 云日升, 彭海良, 王彦平. 干涉合成孔径雷达复图像配准精度分析和方法[J]. 测试技术学报. 2003, 17(1):10-14.
    [106] 陶鹍. 利用残余点衡量干涉复图像配准质量[J]. 测绘学报. 2003, 32(1):63-66.
    [107] Costantini M. A phase unwrapping method based on network programming[C]. Fringe'96 Workshop ERS SAR interferometry. Switzerland, 1996.
    [108] Mssonnet D, Vadon H, Rossi M. Reduction of the need for phase unwrapping in radar interferometry[J]. IEEE Trans Geosci Remote Sens. 1996, 34(2):489-497.
    [109] 于起峰. 光测条纹图处理中免除噪声的正则化条纹法[J]. 实验力学. 1999, 14(3):294-301.
    [110] 彭德艳. 数字散斑干涉技术及在多功能光电测试仪中的应用[D]. 浙江大学. 2002.
    [111] 张澄波. 综合孔径雷达—原理、系统分析与应用[M], 科学出版社, 1989.
    [112] 孙祥一. 散斑干涉条纹图噪声平滑技术及从单幅散斑条纹图提取信息的方法研究[D]. 国防科学技术大学. 2003.
    [113] 金观昌. 计算机辅助光学测量[M], 清华大学出版社, 1997.
    [114] 孙平. 三维位移场检测及其时间与空间相移技术在船用柴油机上的应用研究[D]. 上海 711 所. 2003.
    [115] 何玉明. 线性相关计算法形成数字剪切散斑相关条纹图[J]. 光子学报. 1995, 24(1):13-17.
    [116] Noe Alcala Ochoa, Fernando Mendoza Santoyo, Carlos Perrez Lopez, Bernardino Barrientos. Multiplicative electronic speckle-pattern interferometry fringes[J]. Applied Optics. 2000, 39(28):5138-5141.
    [117] 钱克矛. 光学干涉计量中的位相测量方法研究[D]. 中国科学技术大学. 2000.
    [118] Crane R. Interference phase measurement[J]. Applied Optics. 1969, 8(3):538-542.
    [119] Qifeng Yu. Calculation of strain from a single moire image by filtering and normalizing an interferogram[D]. Bremen UniversityDoctor 学位论文. 1996.
    [120] Qifeng Yu, Andresen K. Noise-free normalized fringe patterns and local pixel transforms for strain extraction[J]. Applied Optics. 1996, 35(20):6873-6878.
    [121] 王朝阳, 戴福隆. 条纹图象的数字化自动分析处理技术之二:相位分析法[J]. 光子学报. 1999, 28(13):996-1001.
    [122] 乔书波, 李金岭, 孙付平, 边少锋. InSAR 技术现状与应用[J]. 天文学进展. 2003, 21(1):11-25.
    [123] Yu Q F, Klaus A. Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method[J]. Applied Optics. 1994, 33(29):6873-6878.
    [124] Xiang Zhou, John P. Baird, John F. Arnold. Fringe-orientation estimation by use of a Gaussian gradient filter and neighboring-direction averaging[J]. Applied Optics. 1999, 38(5):795-804.
    [125] 马笑潇, 黄席樾, 周欣, 黎昱, 刘涛. 指纹自动识别系统中的关键技术-方向图[J]. 重庆大学学报. 2001, 24(3):91-94.
    [126] Kass M, Witkin A. Analyzing oriented patterns[J]. Computer Vision Graphics Image Process. 1987, 37(1):362-385.
    [127] Rao A R, Schunck B G. Computing oriented texture fields[J]. CVGIP Graph Models Image process. 1991, 53(1):157-185.
    [128] Ratha N K, Karu K, Chen S Y. A real-time matching system for large fingerprint databases[J]. Pattern Analysis and Machine Intelligence. 1996, 18(8):799-813.
    [129] Canabal H, Quiroga J A, Bernabeu E. Automatic processing in moire deflectometry by local fringe direction calculation[J]. Applied Optics. 1998, 37(25):5894-5901.
    [130] Crespo D, Quiroga J A, Gomez-Pedrero J A. Fast algorithm for estimation of the orientation term of a general quadrature transform with application to demodulation of an n-dimensional fringe pattern[J]. Applied Optics. 2004, 43(33):6139-6146.
    [131] Mehtre B M, Chatterjee B. Segmentation of fingerprint image - a composite method[J]. Pattern Recognition. 1989, 22(4):381-385.
    [132] Rao A R. A taxonomy for texture description and identification[M], Springer-Verlag, 1990.
    [133] Jain A, Hong L, Bolle R. On-line fingerprint verification[J]. IEEE Trans Pattern Analysis and Machine Intelligence. 1997, 19(4):302-314.
    [134] Michael M S, Tan H N, Liu J. Geometric framework for fingerprint image classification[J]. Pattern Recognition. 1997, 30(9):1475-1488.
    [135] 王曙光. 指纹识别技术的若干问题研究[D]. 中国科学院自动化研究所. 2002.
    [136] Strobel B. Processing of interferometric phase maps as complex-valued phasor images[J]. Applied Optics. 1996, 35:2192-2198.
    [137] 戴福隆, 王朝阳. 条纹图象的数字化自动分析处理技术之一:条纹中心法[J]. 光子学报. 1999, 28(8):700-706.
    [138] 何玉明. 数字剪切散斑相关条纹图的形成及其分析[J]. 实验力学. 1995, 10(1):17-24.
    [139] Y.M. He, C.J. Tay, H.M. Shang. A new method for generating and analysing digital speckle shearing correlation fringe patterns[J]. Optics & Laser Technology. 1998, 30:27-31.
    [140] Y.M. He, C.J. Tay, H.M. Shang. A new method for generating high visibility digital speckle shearing fringe pattern[J]. Optik. 1999, 110(2):86-88.
    [141] Douglas R. Schmitt, R.W. Hunt. Optimization of fringe pattern calculation with direct correlations in speckle interferometry[J]. Applied Optics. 1997, 36(34):8848-8857.
    [142] J.C. 丹蒂. 激光斑纹及有关现象[M], 科学出版社, 1981.
    [143] 盛骤, 谢式千, 潘承毅. 概率与数理统计(第三版)[M], 高等教育出版社, 2003.
    [144] 内部教材. 激光散斑干涉计量[M], 南京航空学院, 1984.
    [145] 孙即祥. 数字图象处理[M], 河北教育出版社, 1993.
    [146] Kaufmann D, Davila A, Kerr D. Interview-Smoothing of speckle interferometry fringe-patterns[J]. Optical Testing Digest. 1997, 2(4).
    [147] Yu R, Allen A. R., Watson J. An optimal wavelet thresholding method for speckle noise reduction.
    [148] Rajesh Kumar, Shashi Kumar Singh, Chandra Shakher. Wavelet filtering applied to time-average digital speckle pattern interferometry fringes[J]. Optics & Laser Technology. 2001, 33(8):567-571.
    [149] Kaufmann GH, Galizi GE. Speckle noise reduction in television holography fringes using wavelet thresholding[J]. Optical Engineering. 1996, 35(1):9-14.
    [150] 成礼智, 王红霞, 罗永. 小波的理论与应用[M], 出版社, 2005.
    [151] Qifeng Yu, Sihua Fu, Xia Yang, Xiangyi Sun, Xiaolin Liu. Extraction of phase field from a single contoured correlation fringe pattern of ESPI[J]. Optics Express. 2004, 12(1):75-83.
    [152] 王朝阳, 戴福隆. 条纹图像的数字化自动分析处理技术之二:相位分析法[J]. 光子学报. 1999, 28(11):996-1001.
    [153] Eric Robin, Valery Valle. Phase demodulation from a single fringe pattern based on a correlation technique[J]. Applied Optics. 2004, 43(22):4355-4361.
    [154] 蔡靖, 杨晋生, 丁润涛. 模糊加权均值滤波器[J]. 中国图象图形学报(A 版). 2000, 5(1):52-56.
    [155] Giovanni Nico. Noise-residue filtering of interferometric phase images[J]. J Opt Soc Am A. 2000, 17(11):1962-1974.
    [156] Wang Feng, Prinet V, Songde M A. A vector filtering technique for SAR interferometric phase images[C]. Proc. IASTED International Symposia. 2001:566-570.
    [157] R. Bamler, M. Eineder. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems[J]. Geoscience and Remote Sensing Letters, IEEE. 2005, 2(2):151-155.
    [158] 杨清友, 王超. 干涉雷达复图像配准与干涉纹图的增强[J]. 遥感学报. 1999, 3(2):122-127.
    [159] 陈鹰, 于晶涛. INSAR 复数影像配准方法研究[J]. 计算机工程与应用. 2005, 41(8):13-15.
    [160] R. G. Keys. Cubic convolution interpolation for digital image processing[J]. IEEE Trans Acoust Speech Signal Processing. 1981, ASSP(29):1153-1160.
    [161] R. Hanssen, R. Bamler. Evaluation of interpolation kernels for SAR interferometry[J]. IEEE Trans Geosci Remote Sens. 1999, 37(1):318-321.
    [162] S. K. Park, R. A. Schowengerdt. Image reconstruction by parametric cubic convolution[J]. Computer Vision Graphics Image Process. 1983, 23(3):258-272.
    [163] A. M. Guarnieri. Residual SAR focusing: an application to coherence improvement[J]. Geoscience and Remote Sensing, IEEE Transactions on. 1996, 34(1):201-211.
    [164] A. M. Guarnieri, C. Prati. SAR interferometry: a “Quick and dirty” coherence estimator for data browsing[J]. Geoscience and Remote Sensing, IEEE Transactions on. 1997, 35(3):660-669.
    [165] R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon. Coherence estimation for SAR imagery[J]. Geoscience and Remote Sensing, IEEE Transactions on. 1999, 37(1):135-149.
    [166] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli. Coherence estimation from multilook incoherent SAR imagery[J]. Geoscience and Remote Sensing, IEEE Transactions on. 2003, 41(11):2531-2539.
    [167] Lee Jong-Sen, S. R. Cloude, K. P. Papathanassiou, M. R. Grunes, I. H. Woodhouse. Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications[J]. Geoscience and Remote Sensing, IEEE Transactions on. 2003, 41(10):2254-2263.
    [168] C. H. Gierull. Unbiased coherence estimator for SAR interferometry with application to moving target detection[J]. Electronics Letters. 2001, 37(14):913-915.
    [169] O. Besson, F. Gini, H. D. Griffiths, F. Lombardini. Estimating ocean surface velocity and coherence time using multichannel ATI-SAR systems[J]. Radar, Sonar and Navigation, IEE Proceedings -. 2000, 147(6):299-308.
    [170] T. Flynn, M. Tabb, R. Carande. Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry[C] 2002:2596-2598 vol.2595.
    [171] G. Vasile, E. Trouve, M. Ciuc, P. Bolon, V. Buzuloiu. Improving coherence estimation for high-resolution polarimetric SAR interferometry[C] 2004:1796-1799 vol.1793.
    [172] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli. Coherence estimation from multilook detected SAR images[C] 2003:200-202 vol.201.
    [173] H. Yamada, K. Sato, Y. Yamaguchi, W. M. Boerner. Interferometric phase and coherence of forest estimated by ESPRIT-based polarimetric SAR interferometry[C] 2002:829-831 vol.822.
    [174] Lee Hoonyol, Liu Jian Guo. Topographic phase corrected coherence estimationusing multi-pass differential SAR interferometry: differential coherence[C] 2000:776-778 vol.772.
    [175] R. Touzi. Estimation of stationary and nonstationary coherence in SAR imagery[C] 1998:2659-2661 vol.2655.
    [176] R. Touzi, A. Lopes, J. Bruniquel, P. Vachon. Unbiased estimation of the coherence from multi-look SAR data[C] 1996:662-664 vol.661.
    [177] L. Shemer, M. Marom. Application Of The Interferometric Sar To Estimation Of The Ocean Scene Coherence Time[C] 1991:2025-2025.
    [178] M. F. Griffin, E. C. Boman, I. Metal, L. P. Orwig. Estimating ocean-scene coherence-time with a multi-aperture SAR[C] 1993:461-464 vol.465.
    [179] M. Cattabeni, A. Monti-Guarnieri, F. Rocca. Estimation and improvement of coherence in SAR interferograms[C] 1994:720-722 vol.722.
    [180] Pratti C., F. Rocca, A. Monti-Guarnieri, Pasquali P. (1994). Report on ERS-1 SAR interferometric techniques and applications. In ESA report 10179/93/YT/I/SC, pp. 122.
    [181] Lopez-Martinez Carlos, Fabregas Xavier, Pottier Eric. A New Alternative for SAR Imagery Coherence Estimation.
    [182] H. A. Zebker, K. Chen. Accurate estimation of correlation in InSAR observations[J]. Geoscience and Remote Sensing Letters, IEEE. 2005, 2(2):124-127.
    [183] R. M. Goldstein, H. A. Zebker, C. L. Werner. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science. 1988, 23(4):713-720.
    [184] 孙造宇, 梁甸农. 星载分布式SAR干涉信号仿真及相干性分析[J]. 现化雷达. 2005, 27(4):10-11.
    [185] Wu Nan, Feng Da-Zheng, Li Junxia. A locally adaptive filter of interferometric phase images[J]. Geoscience and Remote Sensing Letters, IEEE. 2006, 3(1):73-77.
    [186] Chenggen Quan, Cho Jui Tay, Lujie Chen. Fringe-density estimation by continuous wavelet transform[J]. Applied Optics. 2005, 44(12):2359-2365.
    [187] Li Zhenfang, Bao Zheng, Li Hai, Liao Guisheng. Image autocoregistration and InSAR interferogram estimation using joint subspace projection[J]. Geoscience and Remote Sensing, IEEE Transactions on. 2006, 44(2):288-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700