用户名: 密码: 验证码:
冬小麦高光谱特征及其生理生态参数估算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精准农业是现代农业生产中实现低耗、高效、优质和环境友好目标的根本途径,遥感技术可以快速获取农田作物生长状态的实时信息,为实施精确农业提供重要的技术支撑。高光谱遥感能在特定光谱范围内以高光谱分辨率同时获取连续的地物光谱曲线,从而可以构成独特的多维光谱空间,使得遥感应用着重于在光谱维上进行空间信息展开,获得目标物更多的光谱信息。因此,应用高光谱遥感可增强对植株生理生态参数的监测能力,提高作物生长监测的精度和准确性。本研究以冬小麦为研究对象,以系列大田试验以及区域采样试验为依托,综合运用高光谱遥感、生长分析、生理生态测试及数理统计、小波变换等技术手段,分析不同播种密度、不同水分处理条件下,不同品种、不同水氮条件下冬小麦冠层高光谱特征,分生育期建立了基于植被指数、光谱特征参数、小波能量系数、小波分形的冬小麦叶绿素含量、覆盖度以及叶面积指数的高光谱估算模型,最后将植被指数估算模型应用到ETM+遥感卫星影像中,验证所建立的基于高光谱冬小麦生理生态参数估算模型应用到遥感卫星影像的可能性,从而为动态监测冬小麦生长变化和精确管理提供理论基础和关键技术。研究取得了以下主要结果:
     (1)研究了不同品种、不同水氮条件下冬小麦叶绿素含量、叶面积指数的变化以及不同播种密度、不同水分处理条件下冬小麦覆盖度的变化,并分析了冬小麦冠层高光谱特征的响应。结果表明:从返青到成熟,可见光区冬小麦冠层光谱反射率先减少后增大,近红外区先增大后减少。覆盖度、叶面积指数、叶绿素含量越大,冬小麦光谱反射率在可见光波段越小,在近红外波段越大。不同种植密度下,适宜供水冬小麦在可见光波段的反射率依次小于轻度亏水、重度亏水条件下的冬小麦;在近红外波段,规律正好相反。在不同水分处理条件下,随着施氮量的增加,可见光部分反射率下降,近红外反射率呈上升趋势。此研究结果为进一步利用冬小麦冠层光谱信息监测冬小麦生长状况提供了理论基础。
     (2)研究了冬小麦冠层原始光谱、导数光谱与冬小麦叶片绿度SPAD值、覆盖度和叶面积指数的相关关系。在可见光波段,返青期、拔节期、抽穗期与灌浆期冬小麦原始光谱反射率与叶片SPAD值、覆盖度、叶面积指数负相关,在“红边”处,由负相关变成正相关;返青期、拔节期、抽穗期与灌浆期导数光谱与SPAD值、覆盖度、叶面积指数之间的相关系数在一些波段处高于原始光谱与SPAD值、覆盖度、叶面积指数的相关系数;成熟期冬小麦原始光谱、导数光谱与叶片SPAD值、覆盖度、叶面积指数相关性低,建立冬小麦叶片SPAD值、覆盖度、叶面积指数高光谱估算模型时,不能使用成熟期光谱数据。
     (3)应用2010年冬小麦冠层光谱与冬小麦叶片SPAD值、覆盖度、叶面积指数数据,分别建立了返青期、拔节期、抽穗期与灌浆期冬小麦基于植被指数(NDVI、RVI)、原始光谱特征参数(绿峰反射率、绿峰位置、绿峰面积、红谷反射率、红谷位置、红谷面积、绿峰反射率与红谷反射率比值与归一化值,绿峰偏度、绿峰峰度、红谷偏度、红谷峰度,绿峰偏度与红谷偏度比值与归一化值、绿峰峰度与红谷峰度比值与归一化值)、红边参数(红边位置、红边振幅、红边面积,红边峰度、红边偏度)、小波能量系数、小波分形维数的叶片SPAD、覆盖度、叶面积指数估算模型,并应用2011年冬小麦冠层光谱与冬小麦叶片SPAD值、覆盖度、叶面积指数数据对所建模型进行了精度检验。结果表明:运用NDVI、RVI植被指数反演冬小麦SPAD值时,NDVI植被指数预测精度更高。运用NDVI、RVI植被指数反演冬小麦覆盖度时,在返青期和拔节期,使用NDVI植被指数反演效果好,在抽穗期、灌浆期,使用RVI植被指数反演效果好。运用NDVI、RVI植被指数反演冬小麦叶面积指数时,优先考虑应用RVI植被指数;使用原始光谱特征参数反演冬小麦叶片SPAD值时,拔节期优先考虑红谷面积,返青期、抽穗期、灌浆期优先考虑红谷偏度。使用原始光谱特征参数反演冬小麦覆盖度时,优先考虑绿峰峰度。使用原始光谱特征参数反演冬小麦叶面积指数时,拔节期优先考虑绿峰反射率与红谷反射率比值,返青期、抽穗期、灌浆期优先考虑绿峰偏度;应用红边参数反演冬小麦叶片SPAD值时,优先考虑红边峰度。应用红边参数反演冬小麦覆盖度时,拔节期优先考虑红边峰度,其余时期优先考虑红边偏度。应用红边参数反演冬小麦叶面积指数时,优先考虑红边峰度;运用小波能量系数反演冬小麦叶片SPAD值时,优先考虑使用低频信息。运用小波能量系数反演冬小麦覆盖度时,优先考虑使用高频信息。运用小波能量系数反演冬小麦叶面积指数时,优先考虑使用低频信息。运用小波分形维数的低频信息可有效的反演返青期、拔节期、抽穗期与灌浆期冬小麦叶片SPAD值、覆盖度、叶面积指数。
     (4)探讨了基于冠层植被指数冬小麦叶片SPAD值、覆盖度、叶面积指数估算模型在ETM+遥感数据上应用的可能性。结果表明:当将基于冠层光谱构建的植被指数应用于ETM+遥感数据时,预测值与实测值间相关系数均通过了显著性检验。
Precision agriculture is the basic way to realize the aims of low consumption, highefficiency, good quality, and friendly environment. Real-time information of growth state offarmland crops can be quickly obtained by remote sensing, which can provide importanttechnical support for the implementation of precision agriculture. Hyperspectral remotesensing can detect the successive spectral curve of ground objects with hyperspectralresolution in some spectral region and form the unique multi-dimensional spectrum space.Remote sensing application focuses on spreading spatial information on spectrum dimension,thereby obtaining more spectral information of object. The application of hyperspectralremote sensing can strengthen the monitoring ability of physiological ecological parametersand improve the monitoring accuracy of crop growth. Based on field experiments andregional sampling of winter wheat, this study analyzed the hyperspectral characteristics ofwheat canopy by comprehensive application of hyperspectral remote sensing, growth analysis,physiological ecology test, mathematical statistics, and wavelet transform for different sowingdensities, water treatments, species, and water and nitrogen treaments. Then the hyperspectralestimation models of chlorophyll content, percentage vegetation cover, and leaf area index(LAI) were established on the basis of vegetation index, spectral characteristic parameters,wavelet energy coefficient, and wavelet fractal at different growth stages. Finally, theestimation model of vegetation index was used to the ETM+satellite images of remotesensing. Then the actual application probability was tested, which provided the theory basisand key technology for dynamic monitoring of growth change and precise management. Themain results are as follows:
     (1) Changes of chlorophyll content and LAI in different species and water and nitrogenlevels were studied as well as variation of percentage vegetation cover under different sowingdensities and water levels. Additionally, the response of hyperspectral characteristics of wheat canopy was analysed. The result showed that the spectral reflectance of visible spectrumreduced at first and then increased from wheat green-turning to maturation stage. However,the spectral reflectance of near infrared spectrum demonstrated an opposite tendency. Itdecreased under the visible spectrum and increased under near infrared spectrum as thepercentage vegetation cover, leaf area index and chlorophyll content became larger. Thespectral reflectance decreased with the increase of water shortage in the visible spectrum,while on the contrary it increased in near infrared spectrum. Following the increased nitrogenlevels, there is a declinen of spectral reflectance in visible spectrum and an increase in nearinfrared spectrum in different moisture conditions. This conclusion provides the theory basisfor monitoring the growth state of winter wheat through the canopy spectral information.
     (2) The correlationships between canopy original spectrum, derivative spectrum and leafSPAD value, percentage vegetation cover, LAI were analuzed respectively. The originalspectral reflectance of green-turning, jointing, heading, and pustulation stages was negativelycorrelated with leaf SPAD value, percentage vegetation cover, and LAI in visible spectrum. Inthe “red stage”, the negative correlation turns to a positive one. The correlation coefficients ofderivative spectrum and leaf SPAD value, percentage vegetation cover, LAI were higher thanthose of original spectrum and SPAD value in some wavebands in green-turning period,jointing, heading, and pustulation stages. There were low correlationship between originalspectrum, derivative spectrum and leaf SPAD value, percentage vegetation cover and LAI atmaturation stage. However, when generating the estimation models for leaf SPAD value,percentage vegetation cover and leaf area index, the spectral data in the maturation stagecould not be used.
     (3) The data including canopy spectrum of winter wheat, leaf SPAD value, percentagevegetation cover and LAI in2010, were used to establish the estimation models based onNDVI, RVI, original spectral characteristic parameters (green peak reflectance, green peakposition, green peak area, red ebb reflectance, red ebb position, red ebb area, the ratio andnormalization value of green peak reflectance and red ebb reflectance, green peak skewness,green peak kurtosis, red ebb skewness, red ebb kurtosis, the ratio and normalization value ofgreen peak skewness and red ebb skewness, the ratio and normalization value of green peakkurtosis and red ebb kurtosis), red edge parameters (red edge position, red edge amplitude,red edge area, red edge kurtosis, and red edge skewness), wavelet energy coefficient, leafSPAD of wavelet fractal dimension, percentage vegetation cover and LAI. The precision ofestablished models was tested by using the data of canopy spectrum, leaf SPAD, percentagevegetation cover and LAI in2011. The results showed that the estimation precision of leafSPAD retrieved by NDVI was greater than that retrived by RVI. The inversion effect of NDVI was better than that of RVI in the green-turning and jointing stages, when retrieving thepercentage vegetation cover of winter wheat. However, better inversion was obtained by RVIin heading and postulation stages. Therefore, RVI should have the top priority when retrievingthe LAI, but red ebb area should have the priority when retrieving the leaf SPAD inverted bythe original spectrum characteristics in the jointing stage. Red ebb skewness should be takeninto account first in reviving and heading, and postulation stages. Percentage vegetation coverinversion based on parameters of original spectrum characteristic should give priority to thegreen peak kurtosis. For the inversion of LAI, the ratio of green peak reflectance and red ebbreflectance should be the prior considerations in the jointing stage, but green peak skewnessshould be considered first in the green-turning, heading, and postulation stages. Wheninverting the leaf SPAD based on the red edge parameters, the red edge kurtosis should betaken into account preferentially. For the percentage vegetation cover inversion based on thered edge parameters, red edge kurtosis should be a prime consideration in the jointing stage.Red edge skewness should be preferentially considered at other growth stages. Red edgekurtosis should be considered first in the inversion of LAI. The inversion of leaf SPAD basedon the wavelet energy coefficients should give first consideration to low frequencyinformation. However, high frequency information should be considered first for thepercentage vegetation cover inversion. The inversion of LAI based on wavelet energycoefficients should consider low frequency information first. The leaf SPAD, percentagevegetation cover, and LAI of winter wheat could be inverted effectively by the low frequencyinformation of wavelet fractal dimension in green-turning, jointing, heading, and postulationstages.
     (4) The application of estimation model was evaluated based on leaf SPAD, percentagevegetation cover, and LAI of winter wheat in remote sensing data of ETM+. The resultsuggested that there was a significant correlationship between the predicted and measuredvalues when NDVI or RVI based on the constructed canopy spectrum was used to decode theremote sensing information of ETM+.
引文
艾天成,李方敏,周治安,张敏,吴海荣.2000.作物叶片叶绿素含量与SPAD值相关性研究.湖北农学院学报,20(1):6~8
    陈国庆,齐文增,李振,王纪华,董树亭,张吉旺,刘鹏.2010.不同氮素水平下超高产夏玉米冠层的高光谱特征.生态学报,30(22):6035-6043
    陈江鲁,王克如,李少昆,肖春华,陈兵,王方永,金秀良,吕银亮,刁万英,王琼.2011.基于光谱参数的棉花叶面积指数监测和敏感性分析.棉花学报,23(6):552~558
    陈江鲁,王克如,李少昆,肖春华,陈兵,王方永,金秀良,吕银亮,刁万英,王琼.2011.基于宽范围动态植被指数的棉花冠层覆盖度监测.棉花学报,23(3):265~271
    陈述彭,赵英时.1990.遥感地学分析.北京:测绘出版社:211
    陈述彭,童庆禧,郭华东.1998.遥感信息机理研究.北京:科学出版社:32
    陈维君.2006.水稻成熟度和收获时期的高光谱监测.[硕士学位论文].杭州:浙江大学
    程一松,胡春胜.2001.高光谱遥感在精准农业中的应用.农业系统科学与综合研究,17(3):193~195
    程一松,胡春胜,郝二波,于贵瑞.(2003).氮素胁迫下的冬小麦高光谱特征提取与分析.资源科学,25(1):86~93
    程正兴.1998.小波分析算法及应用.西安:西安交通大学出版社:20
    池宏康,周广胜,许振柱,肖春旺,袁文平.2005.表观反射率及其在植被遥感中的应用.植物生态学报,29(1):74~80
    杜华强,金伟,葛宏立,范文义,徐小军.2009.用高光谱曲线分形维数分析植被健康状况.光谱学与光谱分析,29(8):2136~2140
    方美红,刘湘南.2010.小波分析用于水稻叶片氮含量高光谱反演.应用科学学报,28(4):387~393
    冯伟,朱艳,田永超,马吉锋,庄森,曹卫星.2008.基于高光谱遥感的小麦冠层叶片色素密度监测.生态学报,28(10):4902~4911
    冯伟,朱艳,姚霞,田永超,曹卫星.2009.基于高光谱遥感的小麦叶干重和叶面积指数监测.植物生态学报,33(1):34~44
    冯伟.2007.基于高光谱遥感的小麦氮素营养及生长指标监测研究.[博士学位论文].南京:南京农业大学
    葛世荣,索双富.1997.表面轮廓分形维数计算方法的研究.摩擦学学报,17(4):354~362
    谷艳芳,丁圣彦,陈海生,高志英,邢倩.2008.干旱胁迫下冬小麦(Triticum aestivum)高光谱特征和生理生态响应.生态学报,28(006):2690~2697
    郭洋洋,张连蓬,王德高,马维维.2010.小波分析在植物叶绿素高光谱遥感反演中的应用.测绘通报,(8):31~33
    金林雪,李映雪,徐德福,郭建茂,张碧辉.2012.小麦叶片水分及绿度特征的光谱法诊断.中国农业气象,33(1):124~128.
    金铭,刘湘南.2012.基于高光谱分形分析的水稻镉污染动态监测.中国环境监测,27(6):68~73
    瞿瑛,刘素红,夏江周.2010.照相法测量冬小麦覆盖度的图像处理方法研究.干旱区地理,33(6):997~1003
    李存军,赵春江,刘良云,王纪华,王人潮.红外光谱指数反演大田冬小麦覆盖度及敏感性分析.农业工程学报,20(5):159~164
    李向阳.2007.烟草高光谱特性与农艺、生理、品质指标关系和估测模型研究.[博士学位论文].郑州:河南农业大学
    李晓松.2008.干旱地区稀疏植被覆盖度高光谱遥感定量反演研究.[博士学位论文].北京:中国林业科学研究院
    梁亮,杨敏华,张连蓬,林卉.2011.小麦叶面积指数的高光谱反演.光谱学与光谱分析,31(6):1658~1662
    刘良云,张兵,郑兰芬,童庆禧,刘银年,薛永祺,杨敏华,赵春江.2002.利用温度和植被指数进行地物分类和土壤水分反演.红外与毫米波学报,21(4):269~273
    刘良云.2002.高光谱遥感在精准农业中的应用研究.[博士后出站报告].北京:中国科学院
    刘小军,田永超,姚霞,曹卫星,朱艳.2012.基于高光谱的水稻叶片含水量监测研究.中国农业科学,45(3):435~442
    罗菊花,黄木易,赵晋陵,黄文江,张竞成,董莹莹,王锦地.2011.冬小麦灌浆期蚜虫危害高光谱特征研究.农业工程学报,27(7):215~219
    梅安新,彭望琭,秦其明,刘慧平.2001.遥感导论.北京:高等教育出版社:46
    牛志春,倪绍祥.2003.青海湖环湖地区草地植被生物量遥感监测模型.地理学报,58(5):695~702
    浦瑞良,宫鹏.2000.高光谱遥感及其应用.北京:高等教育出版社:3
    秦伟,朱清科,张学霞,李文华,方斌.2006.植被覆盖度及其测算方法研究进展.西北农林科技大学学报(自然科学版),34(009):163~170
    裘正军,宋海燕,张学霞,李文华,方斌.2007.应用SPAD和光谱技术研究油菜生长期间的氮素变化规律.农业工程学报,23(7):150~154
    宋开山,张柏,王宗明,刘焕军,段洪涛.2006.大豆叶绿素含量高光谱反演模型研究.农业工程学报,22(8):16~21
    宋开山,张柏,王宗明,张渊智,刘焕军.2006.基于人工神经网络的大豆叶面积高光谱反演研究.中国农业科学,39(6):1138~1145
    宋开山,张柏,王宗明,李方,刘焕军.2006.小波分析在大豆叶绿素含量高光谱反演中的应用.中国农学通报,22(9):101~108
    宋开山,张柏,王宗明,刘殿伟,刘焕军.2008.基于小波分析的大豆叶绿素a含量高光谱反演模型.植物生态学报,32(1):152~160
    孙红,李民赞,赵勇,张彦娥,王晓敏,李修华.2010.冬小麦生长期光谱变化特征与叶绿素含量监测研究.光谱学与光谱分析,30(1):192~196
    孙家抦.2003.遥感原理与应用.武汉:武汉大学出版社:44
    唐延林,黄敬峰.2001.农业高光谱遥感研究的现状与发展趋势.遥感技术与应用,16(4):248~251
    唐延林,黄敬峰,王秀珍,王人潮,王福民.2004.水稻、玉米、棉花的高光谱及其红边特征比较.中国农业科学,37(1):29~35
    田国良,杨希华.1992.冬小麦旱情遥感监测模型研究.环境遥感,7(2):83~89
    田庆久,闵祥军.1998.植被指数研究进展.地球科学进展,13(4):327~333
    童庆禧,郑兰芬,王晋年,王向军,董卫东,胡远满,党顺行.1997.湿地植被成象光谱遥感研究.遥感学报,1(1):50~57
    童庆禧.1990.中国典型地物波谱及其特征分析.北京:科学出版社:98
    王长耀,牛铮,唐华俊.2001.遥感研究,对地观测技术与精细农业.北京:科学出版社:42
    王纪华,赵春江,郭晓维,田庆久.2001.用光谱反射率诊断小麦叶片水分状况的研究.中国农业科学,34(1):104~107
    王进,李新建,白丽,杜红,向导,白书军.2012.干旱区棉花冠层高光谱反射特征研究.中国农业气象,33(1):114~118
    王静,郭铌,白丽,杜红,向导,白书军.2007.半湿润雨养农业区油菜冠层反射光谱与覆盖度的相关分析.干旱地区农业研究,25(4):230~234
    王人潮,陈铭臻,蒋亨显.1993.水稻遥感估产的农学机理研究-Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江大学学报(农业与生命科学版),19(Sup.):7~14
    王小平,郭铌,张凯,杨嘉,张荣,董珑丽.2008.黄土高原不同种植密度下春小麦冠层和叶片高光谱反射特征.生态学杂志,27(7):1109~1114
    王秀珍,王人潮.2002.微分光谱遥感及其在水稻农学参数测定上的应用研究.农业工程学报,18(1):9~13
    王秀珍,黄敬峰,李云梅,王人潮.2004.水稻叶面积指数的高光谱遥感估算模型.遥感学报,8(1):81~88
    王圆圆,陈云浩,李京,黄文江.2007.指示冬小麦条锈病严重度的两个新的红边参数.遥感学报,11(6):875~881
    吴长山,项月琴.2000.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感学报,4(3):228~232
    吴素业.1999.一年生植被覆盖度的简化测试方法.水土保持科技情报,(1):44~47
    谢瑞芝,周顺利,王纪华,蒋海荣.2006.玉米叶片高光谱反射率、吸收率与色素含量的关系比较分析.玉米科学,14(3):70~73
    徐涵秋.2008. Landsat遥感影像正规化处理的模型比较研究.地球信息科学,10(3):294~301
    闫永忠.2002.延河流域优势植物光谱指数分析.国土资源遥感,(1):47~52
    杨飞,张柏,宋开山,王宗明,刘殿伟,刘焕军,李方,李凤秀,国志兴,靳华安.2009.大豆叶面积指数的高光谱估算方法比较.光谱学与光谱分析,28(12):2951~2955
    杨峰,范亚民,李建龙,钱育蓉,王艳,张洁.2010.高光谱数据估测稻麦叶面积指数和叶绿素密度.农业工程学报,26(2):237~243
    姚云军,秦其明,张自力,李百寿.2008.高光谱技术在农业遥感中的应用研究进展.农业工程学报,24(7):301~306
    张丰,熊桢,寇宁.2002.高光谱遥感数据用于水稻精细分类研究.武汉理工大学学报,24(10):36~39
    赵春江.2010.对我国未来精准农业发展的思考.农业网络信息,(4):5~8
    郑兰芬,王晋年.1992.成像光谱遥感技术及其图像光谱信息提取的分析研究.遥感学报,7(1):49~59
    周冬琴.2007.基于冠层反射光谱的水稻氮素营养与籽粒品质监测.[博士学位论文].南京:南京农业大学
    周子勇,李朝阳.2005.高光谱遥感数据光谱曲线分形特征研究.中北大学学报(自然科学版),26(6):451~454
    朱蕾,徐俊锋,黄敬峰,王福民,刘占宇,王渊.2008.作物植被覆盖度的高光谱遥感估算模型.光谱学与光谱分析,28(8):1827~1831
    朱雨杰,周学秋.1996.不同灌溉条件下小麦冠层的反射光谱特征及其模糊聚类研究.激光生物学,5(3):874~877
    Adams M L, Philpot W D, Norvell W A.1999. Yellowness index: an application of spectral secondderivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of RemoteSensing,20(18):3663~3675
    Al-Abbas A H, Barr R, Hall J D, Crane F L, Baumgardner M. F.1972. Spectra of normal andnutrient-deficient maize leaves. Agron J,66:16~20
    Allen W A, Gayle T V, Richardson A J.1970. Plant-canopy irradiance specified by the duntley equations. JOpt Soc Am,60(3):372~376
    Araus J, Casadesús J, Royo C, Aparicio N, Villegas D.2002. Relationship between growth traits andspectral vegetation indices in durum wheat. Crop science,42(5):1547~1555
    Bach H, Mauser W.1997. Improvements of plant parameter estimations with hyperspectral data comparedto multispectral data. Proc. SPIE,2959,59
    Bannari A, Pacheco A, Staenz K, McNairn H, Omari K.2006. Estimating and mapping crop residues coveron agricultural lands using hyperspectral and IKONOS data. Remote Sensing of Environment,104(4):447~459
    Blackburn G A.1998. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation ofsome hyperspectral approaches. Remote Sensing of Environment,66(3):273~285
    Blackmer T M, Schepers J S, Varvel G E.1994. Liight reflectance compared with other nitrogen stressmeasurements in corn leaves. Agronomy-Faculty Publications,86:934~938
    Bonham-Carter G.1988. Numerical procedures and computer program for fitting an inverted gaussianmodel to vegetation reflectance data. Computers&Geosciences,14(3):339~356
    Boochs F, Kupfer G. Dockter K. Kühbauch W.1990. Shape of the red edge as vitality indicator for plants.Remote Sensing,11(10):1741~1753
    Bouman B, Van Kasteren H, Uenk D.1992. Standard relations to estimate ground cover and LAI ofagricultural crops from reflectance measurements. European Journal of Agronomy,4:249~262
    Broge N, Mortensen H J V.2002. Deriving green crop area index and canopy chlorophyll density of winterwheat from spectral reflectance data. Remote Sensing of Environment,81(1):45~57
    Bruce L M, Li J.2001. Wavelets for computationally efficient hyperspectral derivative analysis.Geoscience and Remote Sensing, IEEE Transactions on,39(7):1540~1546
    Bunnik N J J.1978. The multispectral reflectance of shortwave radiation by agricultural crops in relationwith their morphological and optical properties. H. Veenman&Zonen. Wageningen, The Netherlands,172~178
    Carter G A.1991. Primary and secondary effects of water content on the spectral reflectance of leaves.American Journal of Botany,916~924
    Chappelle E W, Kim M S, McMurtrey J E.1992. Ratio analysis of reflectance spectra (RARS): analgorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, andcarotenoids in soybean leaves. Remote Sensing of Environment,39(3):239~247
    Collins W.1978. Remote sensing of crop type and maturity. Photogrammetric Engineering and RemoteSensing,44(1),43~55
    Colwell J E.1974. Vegetation canopy reflectance. Remote Sensing of Environment,3(3):175~183
    Costa C, Dwyer L M, Dutilleul P, Stewart D W, Ma B L, Smith D L.2001. Inter-relationships of appliednitrogen, SPAD, and yield of leafy and non-leafy maize genotypes. Journal of Plant Nutrition,24(8):1173~1194
    Curran P J.1989. Remote sensing of foliar chemistry. Remote Sensing of Environment,30(3):271~278
    Danson F, Plummer S.1995. Red-edge response to forest leaf area index. Remote Sensing,16(1):183~188
    Demetriades-Shah T H, Steven M D, Clark J A.1990. High resolution derivative spectra in remote sensing.Remote Sensing of Environment,33(1):55~64
    Dobrowski S, Pushnik J, Zarco-Tejada P J, Ustin S.2005. Simple reflectance indices track heat and waterstress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing ofEnvironment,97(3):403~414
    Dong P.2008. Fractal signatures for multiscale processing of hyperspectral image data. Advances in SpaceResearch,41(11):1733~1743
    Elvidge C D, Chen Z, Groeneveld D P.1993. Detection of trace quantities of green vegetation in1990AVIRIS data. Remote Sensing of Environment,44(2-3):271~279
    Ferrier G, Trahair N.1995. Evaluation of apparent surface reflectance estimation methodologies.International Journal of Remote Sensing,16(12):2291~2297
    Filella I, Penuelas J.1994. The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status. International Journal of Remote Sensing,15(7):1459~1470
    Fitzgerald G J, Pinter P J, Hunsaker D J, Clarke T R.2005. Multiple shadow fractions in spectral mixtureanalysis of a cotton canopy. Remote Sensing of Environment,97(4):526~539
    Friedl M, Schimel D, Michaelsen J, Davis F, Walker H.1994. Estimating grassland biomass and leaf areaindex using ground and satellite data. International Journal of Remote Sensing,15(7):1401~1420
    Gitelson A A, Kaufman Y J, Stark R, Rundquist D.2002. Novel algorithms for remote estimation ofvegetation fraction. Remote Sensing of Environment,80(1):76~87
    Gitelson A A, Merzlyak M N.1996. Signature analysis of leaf reflectance spectra: algorithm developmentfor remote sensing of chlorophyll. Journal of plant physiology,148(3):494~500
    H rig B, Kühn F, Oschütz F, Lehmann F.2001. HyMap hyperspectral remote sensing to detecthydrocarbons. International Journal of Remote Sensing,22(8):1413~1422
    Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I B.2004. Hyperspectral vegetation indicesand novel algorithms for predicting green LAI of crop canopies: Modeling and validation in thecontext of precision agriculture. Remote Sensing of Environment,90(3):337~352
    Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L.2002. Integrated narrow-bandvegetation indices for prediction of crop chlorophyll content for application to precision agriculture.Remote Sensing of Environment,81(2):416~426
    Hansen P, Schjoerring J.2003. Reflectance measurement of canopy biomass and nitrogen status in wheatcrops using normalized difference vegetation indices and partial least squares regression. RemoteSensing of Environment,86(4):542~553
    Horler D, Dockray M, Barber J.1983. The red edge of plant leaf reflectance. International Journal ofRemote Sensing,4(2):273~288
    Hu B, Qian S E, Haboudane D, Miller J R, Hollinger A B, Tremblay N, Pattey E.2004. Retrieval of cropchlorophyll content and leaf area index from decompressed hyperspectral data: the effects of datacompression. Remote Sensing of Environment,92(2):139~152
    Huete A R.1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,25(3):295~309
    Hunt G R.1980. Electromagnetic radiation: the communication link in remote sensing. Remote sensing ingeology,2:5~45
    Inoue Y.2003. Synergy of remote sensing and modeling for estimating ecophysiological processes in plantproduction. Plant production science,6(1):3~16
    Jago R A, Cutler M E J, Curran P J.1999. Estimating canopy chlorophyll concentration from field andairborne spectra. Remote Sensing of Environment,68(3):217~224
    Johnson L F, Hlavka C A, Peterson D L.1994. Multivariate analysis of AVIRIS data for canopybiochemical estimation along the oregon transect. Remote Sensing of Environment,47(2):216~230
    Kanemasu E.1974. Seasonal canopy reflectance patterns of wheat, sorghum, and soybean. Remote Sensingof Environment,3(1):43~47
    Kaufman Y J. Tanre D.1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS.Geoscience and Remote Sensing, IEEE Transactions on,30(2):261~270
    Kokaly R F, Clark R N.1999. Spectroscopic determination of leaf biochemistry using band-depth analysisof absorption features and stepwise multiple linear regression. Remote Sensing of Environment,67(3):267~287
    Kucharik C J, Norman J M, T-Gower S.1998. Measurements of leaf orientation, light distribution andsunlit leaf area in a boreal aspen forest. Agricultural and Forest Meteorolog,91(1-2):127~148
    Li X, Strahler A H.1985. Geometric-optical modeling of a conifer forest canopy. Geoscience and RemoteSensing, IEEE Transactions on,(5):705~721
    Lichtenthaler H K.1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.Methods in enzymology,148:350~382
    Lichtenthaler H K, Gitelson A, Lang M.1996. Non-destructive determination of chlorophyll content ofleaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of plantphysiology,148(3):483~493
    Liu Z Y, Huang J F, Wu X H, Dong Y P.2007. Comparison of vegetation indices and red-edge parametersfor estimating grassland cover from canopy reflectance data. Journal of Integrative Plant Biology,49(3):299~306
    Luscier J D, Thompson W L, Wilson J M, Gorham B E, Dragut, L D.2006. Using digital photographs andobject-based image analysis to estimate percent ground cover in vegetation plots. Frontiers in Ecologyand the Environment,4(8):408~413
    Malthus T J, Andrieu B, Danson F M, Jaggard K W, Steven M D.1993. Candidate high spectral resolutioninfrared indices for crop cover. Remote Sensing of Environment,46(2):204~212
    Markham B L, Barker J L.1986. Landsat MSS and TM post calibration dynamic ranges, exoatmosphericreflectances and at-satellite temperature. Earth Observation Satellite Landsat Technical Notes,1:328~343
    Miller J, Hare E, Wu J.1990. Quantitative characterization of the vegetation red edge reflectance1. aninverted-gaussian reflectance model. Remote Sensing,11(10):1755~1773
    Moshou D, Bravo C, Wahlen S, West J, McCartney A, De-Baerdemaeker J, Ramon H.2006. Simultaneousidentification of plant stresses and diseases in arable crops using proximal optical sensing andself-organising maps. Precision agriculture,7(3):149~164
    Nguyen H T, Lee B W.2006. Assessment of rice leaf growth and nitrogen status by hyperspectral canopyreflectance and partial least square regression. European Journal of Agronomy,24(4):349~356
    Otterman J.1981. Reflection from soil with sparse vegetation. Advances in Space Research,1(10):115~119
    Park J, Deering D.1982. Simple radiative transfer model for relationships between canopy biomass andreflectance. Applied Optics,21(2):303~309
    Patel N, Patnaik C, Dutta S, Shekh A, Dave A.2001. Study of crop growth parameters using airborneimaging spectrometer data. International Journal of Remote Sensing,22(12):2401~2411
    Pearson R L, Miller L D.1972. Remote mapping of standing crop biomass for estimation of theproductivity of the shortgrass prairie. In “Proceedings of the8th tnternational Symposium on RemoteSensing of Environment,” University of Michigan
    Penuelas J, Baret F, Filella I.1995. Semiempirical indexes to assess carotenoids chlorophyll-a ratio fromleaf spectral reflectance. Photosynthetica,31(2):221~230
    Penuelas J, Filella I, Gamon J A.1995. Assessment of photosynthetic radiation-use efficiency with spectralreflectance. New Phytologist,131(3):291~296
    Pinar A, Curran P.1996. Technical Note Grass chlorophyll and the reflectance red edge. InternationalJournal of Remote Sensing,17(2):351~357
    Price J C.1985. On the analysis of thermal infrared imagery: the limited utility of apparent thermal inertia.Remote Sensing of Environment.18(1):59~73
    Purevdorj T, Tateishi R, Ishiyama T, Honda Y.1998. Relationships between percent vegetation cover andvegetation indices. International Journal of Remote Sensing,19(18):3519~3535
    Qi J, Chehbouni A, Huete A, Kerr Y, Sorooshian S.1994. A modified soil adjusted vegetation index.Remote Sensing of Environment,48(2):119~126
    Qiu H, Lam N S N, Quattrochi D A, Gamon J A.1999. Fractal characterization of hyperspectral imagery.Photogrammetric Engineering and Remote Sensing,65(1):63~71
    Ross J, Marshak A.1987. Estimation by means of the Monte Carlo method the influence of the canopyarchitecture parameters on the bidirectional reflectance. Sov J Remote Sens,4:86~93
    Rouse J, Haas R, Schell J, Deering D.1973. Monitoring vegetation systems in the great plains with ERTS.NASA SP-351,309~317
    Rouse J, Haas R, Schell J, Deering D, Harlan J.1974. Monitoring the vernal advancement of retrogradationof natural vegetation. Greenbelt, MD: NASA/GSFC (Type III, Final Report),(16):787~795
    Sandholt I, Rasmussen K, Andersen J.2002. A simple interpretation of the surface temperature/vegetationindex space for assessment of surface moisture status. Remote Sensing of Environment,79(2):213~224
    Satterwhite M B, Ponder-Henley J.1987. Spectral characteristics of selected soils and vegetation innorthern Nevada and their discrimination using band ratio techniques. Remote Sensing of Environment,23(2):155~175
    Serrano L, Penuelas J, Ustin S L.2002. Remote sensing of nitrogen and lignin in Mediterranean vegetationfrom AVIRIS data: decomposing biochemical from structural signals. Remote Sensing of Environment,81(2):355~364
    Shibayama M, Akiyama T.1989. Seasonal visible, near-infrared and mid-infrared spectra of rice canopiesin relation to LAI and above-ground dry phytomass. Remote Sensing of Environment,27(2):119~127
    Shibayama M, Akiyama T.1991. Estimating grain yield of maturing rice canopies using high spectralresolution reflectance measurements. Remote Sensing of Environment,36(1):45~53
    Thomas J, Gausman H.1977. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eightcrops. Agronomy Journal,69(5):799~802
    Vaesen K, Gilliams S, Nackaerts K, Coppin P.2001. Ground-measured spectral signatures as indicators ofground cover and leaf area index: the case of paddy rice. Field Crops Research,69(1):13~25
    Vane G, Goetz A F H.1993. Terrestrial imaging spectrometry: current status, future trends. Remote Sensingof Environment,44(2):117~126
    Verhoef W.1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAILmodel. Remote Sensing of Environment,16(2):125~141
    Warner T A, Shank M C.1997. Spatial autocorrelation analysis of hyperspectral imagery for featureselection. Remote Sensing of Environment,60(1):58~70
    Wiegand C, Maas S, Aase J, Hatfield J, Pinter P J, Jackson R, Kanemasu E, Lapitan R.1992. Multisiteanalyses of spectral-biophysical data for wheat. Remote Sensing of Environment,42(1):1~21
    Yang K.2008. Spectral information detection and extraction of wheat stripe rust based on hyperspectralimage. Acta Photonica Sinica,37(1):145-152
    Zhou Q, Robson M.2001. Automated rangeland vegetation cover and density estimation using grounddigital images and a spectral-contextual classifier. International Journal of Remote Sensing,22(17):3457~3470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700