电针对APP转基因鼠脑Aβ水平及脑微血管病变影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(AD)是以记忆力减退、认知功能障碍为特征的渐进性中枢神经系统退行性疾病。由于其发病机制尚不完全明了,迄今也无肯定而有效的治疗措施,其相关研究已成为国内外医学研究的重点课题之一。AD的主要病理特征为脑神经细胞外β淀粉样蛋白(Aβ)沉积所形成的老年斑(SP)、神经细胞内的神经原纤维缠结(NFTs)、神经细胞及突触脱失以及脑血管淀粉样变(CAA)等。Aβ假说是目前公认度最高的AD发病机制学说,该学说认为脑内Aβ聚集及其神经毒性造成其一系列病理变化及临床表现;由于Aβ产生与清除失衡而导致脑内Aβ水平的增高。近年来,针对脑微血管Aβ清除途径的研究已成为探讨AD发病机制、选择治疗靶点的热点。
     中医认为AD病位在脑,与肾密切相关;病性属本虚表实,肾精亏虚致髓海不足,脑失充养;痰瘀浊毒阻络,蒙蔽脑窍。针刺可通经络、活气血,“百会、涌泉”配伍既可祛瘀通络化浊、开窍醒神,又可补肾填髓。针刺有可能通过对脑络——脑微血管的结构与功能的调节对脑内Aβ的清除产生影响,降低脑Aβ水平,减少Aβ毒性作用。为此,我们以针刺对脑内Aβ水平、对脑微血管结构及Aβ清除转运受体LRP1等的影响作为研究靶点,探讨揭示针刺治疗AD的相关作用机制。
     实验目的:
     通过观察脑内Aβ分布部位及水平、脑微血管壁结构变化及Aβ血脑屏障主动转运受体LRP1的表达水平,探索APP转基因鼠脑内Aβ水平升高的机制;同时观察电针对脑内Aβ水平及微血管病理变化的影响,探讨电针能否影响脑内Aβ水平,其机制是否与Aβ血管清除途径有关,为AD“毒阻脑络”理论及针刺“通络祛毒”理论提供实验依据。
     实验方法:
     本实验以13月龄APP695V717I转基因鼠为AD动物模型,将12只APP转基因鼠随机分入模型组(M)和电针治疗组(EA),每组6只;以6只同龄C57BL/6鼠为正常对照组(C)。电针治疗组针刺“百会”、“涌泉”穴3个月,模型组、正常对照组除不针刺外,其它处理与电针治疗组相同。采用LashleyⅢ水迷宫、Y-电迷宫测试APP转基因鼠的学习记忆行为学变化及电针影响;采用免疫组织化学(IH)、ThioflavinS染色、酶联免疫吸附测定(ELISA)、蛋白质免疫印记分析(WB)、透射电镜(EM)等技术和方法,观察脑内Aβ阳性表达部位及水平、Aβ清除转运受体LRP1阳性表达部位及水平,观察脑微血管Aβ沉积情况、超微结构变化及电针对其影响。
     实验结果:
     1) LashleyⅢ水迷宫测试结果显示,16月龄APP转基因鼠水迷宫游出时间、进入盲端次数皆多于正常对照组(P<0.05),而电针治疗组水迷宫游出时间、进入盲端次数皆少于模型组(P<0.05);Y-电迷宫测试显示,16月龄APP转基因鼠达标所需训练次数多于正常对照组(P<0.05),而电针治疗组达标所需训练次数少于模型组(P<0.05)。提示APP转基因鼠存在学习记忆行为学障碍,电针可有效改善APP转基因鼠的学习记忆能力。
     2)电镜超微结构(EM)显示,APP转基因鼠大脑皮层神经元出现明显变性,部分神经元颜色转暗,变形、萎缩,胞体及突起出现大量次级溶酶体,溶酶体内有大量囊胞样结构;脑微血管内皮细胞变薄,局部基底膜增厚,轮廓不清,基底膜外可见高电子密度物质,星形胶质细胞足突肿胀,内容物减少;而电针可在一定程度上改善APP转基因鼠的这些超微结构病理变化。
     3)免疫组织化学方法(IH)显示,Aβ表达于神经元胞浆及突起,Aβ1-40表达于大部分神经细胞,而Aβ1-42仅表达于部分神经细胞;APP转基因鼠皮层Aβ1-40、Aβ1-42阳性表达积分光密度(IOD)皆强于正常对照组(P<0.05,P<0.01);而电针治疗组皮层Aβ1-40、Aβ1-42表达弱于模型组(P<0.05,P<0.01)。脑微血管壁仅呈Aβ1-42阳性表达,ThioflavinS染色证实为脑血管淀粉样沉积,APP转基因鼠海马微血管壁Aβ1-42阳性表达强于正常对照组(P<0.01);电针组海马微血管壁Aβ1-42阳性表达弱于模型组(P<0.05)。免疫组织化学方法还显示,APP转基因鼠皮层及海马微血管Aβ转运受体LRP1阳性表达弱于正常对照组(P<0.01,P<0.01);电针治疗组皮层及海马微血管LRP1阳性表达强于模型组(P<0.05,P<0.05)。
     4)酶联免疫吸附测定(ELISA)显示,APP转基因鼠脑组织Aβ1-42水平高于正常对照组(P<0.01);电针治疗组脑组织Aβ1-42水平低于模型组(P<0.01)。结合免疫组化结果,提示电针可降低APP转基因鼠皮层Aβ1-40、A p 1-42免疫组化阳性表达,降低海马微血管Aβ1-42免疫组化阳性表达,降低脑内Aβ1-42水平。ELISA检测还显示,电针可降低APP转基因鼠脑脊液、血清Aβ1-42浓度(P<0.01,P<0.01)。
     5)蛋白质免疫印记分析(Western Blot)显示,APP转基因鼠脑组织匀浆LRP1水平明显低于正常对照组,而电针治疗组脑组织匀浆LRP1水平高于模型组。结合免疫组化结果,提示电针可增强APP转基因鼠皮层及海马微血管LRP1免疫组化阳性表达,增强APP转基因鼠脑组织匀浆LRP1水平。
     结论:
     1.脑神经细胞内Aβ产生增加、血管途径Aβ清除功能减退可能是APP转基因鼠脑组织Aβ水平升高、出现学习记忆功能障碍的主要机制。
     2.电针可改善APP转基因鼠的学习记忆行为学障碍,其机制可能是通过影响Aβ的产生及清除而降低脑内Aβ水平,从而减轻了其神经毒性作用。
     3.电针可能通过影响APP转基因鼠脑神经元紊乱的自我吞噬机制,减少细胞内Aβ的产生;通过提高脑微血管LRP1介导的Aβ血脑屏障主动转运,减少脑微血管壁Aβ的沉积及脑组织Aβ水平。
     4.改善脑微血管结构与功能,提高脑微血管Aβ清除能力,减少脑微血管壁Aβ沉积,可能是电针降低脑Aβ水平的主要机制之一。为针刺“通络祛毒”治疗AD提供了实验依据。
     本课题首次利用APP转基因鼠研究了针刺治疗AD的机制。我们发现,APP695V717I转基因鼠的脑微血管壁出现了淀粉样沉积,且脑微血管淀粉样沉积早于典型淀粉样斑块的形成,微血管淀粉样沉积的主要成分为Aβ1-42。在国内尚未见报道。
Alzheimer disease (AD) is a progressive cerebral neurodegenerative process with cognition impairment. Its pathogenesis is not so clear and there are not effective therapies for it now. The pathological hallmarks of AD are extracellelar AP containing senile plaques, intracellular neurofibrillary tangles, loss of neurons and synapses, and cerebrovascular amyloidosis. AP hypothesis is the most popular pathogenesis for AD, claiming the AP accumulation and its neurotoxicity result in the pathological changes and clinical symptoms. Cerebral AP level is associated with the Aβproduction and elimination in the brain; imbalance between AP production and elimination will lead to cerebral AP elevation. AP elimination across blood-brain barrier had been a hot topic in the study of AD pathogenesis and therapeutic targets.
     In the theory of Chinese medicine, brain and kidney are the most important organs to senile dementia; AD was caused by kidney essence deficiency, which failed to supply the brain, and cerebral collateral blockage due to blood stasis, phlegm and endogenetic toxin. Acupuncture has a good effect on disorders of central nervous system; DU 20 is the point connecting brain directly, and KI 1 is the source point of Kidney meridian; so acupuncture on DU 20 and KI 1 can dredge meridians and collaterals, promote qi and blood circulation, remove blood stasis, tonify kidney and brain, and recover cognitive impairment. Its effect regulating the function and structure of cerebrovasculature (cerebral collaterals) may promote cerebral Aβelimination across BBB, resulting in reduction of cerebral AP level and its neurotoxicity. So, we discuss the mechanism of acupuncture on AD by affecting cerebral Aβlevel, by promoting Aβelimination across BBB.
     OBJECTIVE:
     To study the mechanism of high cerebral Aβlevel in APP tg mice by investigating the positive site of Aβin cortex and hippocampus, by investigating the positive site of LRP1, the main Aβtransport receptor on BBB. At the same time, investigate the effect of EA on cerebral Aβlevel, on LRP1, on cerebrovascular amyloidosis to discuss the mechanism of reduction of cerebral Aβlevel by EA on APP tg mice, which may support the theory that AD was caused by cerebral collateral blockage, and acupuncture may dredge cerebral collateral, remove endogenetic toxin.
     METHOD:
     The present experiment assigned randomly APPV695717I transgenic mice (tg mice) aged 13 months to AD model group (M) and Electroacupuncture group (EA), and compared with same aged C57BL/6 mice. EA group were treated with EA on DU20 and KI1 for 3 months. Techniques and methods of immunohistochemistry (IH), ELISA, Western blot, and transmission electron microscopy were applied to study the effect of EA on cerebral Aβlevel, on LRP1, the main Aβtransport receptor on BBB, on ultrastructure of microvessels.
     RESULTS:
     1. Showed by Lashley III water maze test, APP tg mice experienced longer swimming time and much error times than control group did (P<0.05); Showed by Y-electric maze test, APP tg mice need much acquiring times than control group did (P<0.05); And EA can ameliorate cognitive impairment of APP tg mice tested by LashleyⅢwater maze (P<0.05) and by Y-electric maze (P<0.05).
     2. EA can ameliorate ultrastructure pathologic changes of APP tg mice, such as neuronal degeneration with abundant multivascula and lysosome, endothelium thinning, basement membrane thickening in cerebral microvasculature, and astroglial endfoot swelling.
     3. By immunohistochemistry imaging, Aβ1-40/Aβ1-42 immune positive were shown in neuron bodies and synapses, and walls of microvasculature were positive to Aβ1-42 antibody, which confirmed by Thioflavin S staining as microvascular amloidgenesis. Integrated optical densities (IOD) of Aβ1-40/Aβ1-42 in cortex of model group were higher than that in control group (P<0.05, P<0.01). And IOD of AP 1-42 in hippocampus of model group were also higher than that in control group (P<0.05). And EA could reduce immune positive expression of Aβ1-40/Aβ1-42 in cortex of APP tg mice (P<0.05, P<0.01); EA could reduce immune positive expression of Aβ1-42 in hippocampus microvasculae of APP tg mice (P<0.05). LRP1 immune positive expressions in cortex and hippocampus microvessels of model group were lower than that in control group (P<0.01, P<0.01); And EA could improve LRP1 immune positive expressions in cortex and hippocampus microvessels of APP tg mice (P<0.05, P<0.05).
     4. ELISA showed that cerebral Aβ1-42 levels of model group were higher than that in control group (P<0.01), and EA could reduce cerebral Aβ1-42 levels of APP tg mice (P<0.01). At the same time, EA could reduce AP 1-42 levels in cerebrospinal fluid and plasma of APP tg mice.
     5. Western Blot showed that cerebral LRP1 levels of model group were lower than that in control group, and EA could improve cerebral LRP1 levels of APP tg mice tested by WB.
     CONCLUSION:
     1. High cerebral Aβlevel, result from increased intracellular Aβproduction and decreased AP elimination by microvessels, is the right curse of AD manifesting cognitive impairment.
     2. EA could ameliorate cognitive impairment of APP tg mice by its function reducing cerebral Aβlevel.
     3. Cerebral Aβproduction may be reduced by EA effect on lysosome autophagy mechanism; cerebral Aβelimination may be improved by EA effect on LRP1 BBB transport mechanism.
     4. Acupuncture may affect the structure and function of microvessels, improving AP elimination by microvessels, reducing Aβaccumulation around microvessels, which support the theory that AD was caused by cerebral collateral blockage, and acupuncture may dredge cerebral collateral, remove endogenetic toxin.
     It was the first time for APP tg mouse be applied to EA study on AD. And we found that cerebral microvascular amyloidosis existed in APP695V717I tg mice, and it appeared early than typical amyloid plaques did. Main constitute of cerebral microvascular amyloidosis in APP695V717I tg mice was Aβ1-42.
引文
1.盛树力主编.老年性痴呆及相关疾病.北京:科学技术文献出版社,2006:290-307.
    2. Spires TL, Hyman BT. Transgenic models of Alzheimer's disease:learning from animals. NeuroRx. 2005,2(3):423-437.
    3. Wong CW, Quaranta V, Glenner GG. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci U S A.1985,82(24):8729-8732.
    4. Hardy J. The Alzheimer family of diseases:many etiologies, one pathogenesis? Proc. Natl. Acad. Sci. U S A.1997 94(6):2095-2097.
    5. Tanzi RE, L Bertram. Twenty years of the Alzheimer's disease amyloid hypothesis:a genetic perspective. Cell,2005,120:545-555.
    6. Selkoe DJ. Defining molecular targets to prevent Alzheimer disease. Arch neurol.2005,62:192-195.
    7. Howlett DR, Richardson JC. The pathology of APP transgenic mice:a model of Alzheimer's disease or simply overexpression of APP? Histol Histopathol.2009,24(1):83-100.
    8. Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice. Science,1996; 274(5284):99-102
    9. Moechars D, Dewachter I, Lorent K,et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem,1999,274(10):6483-6492.
    10. Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A.1997,94(24):13287-13292.
    11. M. Azhar Chishti, Dun-Shen Yang, Christopher Janus, et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing adouble mutant form of amyloid precursor protein 695. JBC,2001,276,(24):21562-21570.
    12. Pugh PL, Vidgeon-Hart MP, Ashmeade T, et al. Repeated administration of the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) modulates neuroinflammation and amyloid plaque load in mice bearing amyloid precursor protein and presenilin-1 mutant transgenes. J Neuroinflammation.2007,4:8.
    13. Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles:intracellular Abeta and synaptic dysfunction. Neuron.2003,39(3):409-21.
    14. Kawarabayashi T, Younkin LH, Saido TC, et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J Neurosci.2001, 21(2):372-81.
    15. Reisuke H,Takahashi, Teresa A. Milner, et al. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol,2002,161(5):1869-1879.
    16. Gyure KA, Durham R, Stewart WF, et al. Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med.2001,125(4):489-492.
    17. Dominique Langui. Subcellar topography of neuronal Aβ peptide in APP×PS1 transgenic mice. Am J Pathol,2004,165(5):1465-1477.
    18. Johnson-Wood K, Lee M, Motter R,et al. Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A.1997,94(4):1550-1555.
    19. Dewachter I, Van Dorpe J, Smeijers L, et al. Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilinl. J Neurosci.2000,20(17):6452-6458.
    20. Johnson-Wood K, Lee M, Motter R, et al. Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A. 1997,94(4):1550-1555.
    21. Reilly JF, Games D, Rydel RE, et al. Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci U S A.2003,100(8):4837-42.
    22.贾建平主编.临床痴呆病学.北京:北京大学医学出版社,2008:170-174.
    23. Masliah E, Sisk A, Mallory M, et al.Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease. J Neurosci.1996,16(18): 5795-811.
    24. Masliah E, Sisk A, Mallory M, et al. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol.2001,60(4):357-68.
    25. Kurt M.A., Davies D.C., Kidd M., et al. Hyperphosphorylated tau and paired helical filament-like structures in the brains of mice carrying mutant amyloid precursor protein arid mutant presenilin-1 transgenes. Neurobiol. Dis.2003,14(1),89-97.
    26. Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles:intracellular Abeta and synaptic dysfunction. Neuron.2003,39(3):409-21.
    27. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A. 1999,96(24):14088-14093.
    28. Van Dorpe J, Smeijers L, Dewachter I, et al. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol,2000,157(4):1283-1298.
    29. Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem.2004,279(19):20296-306.
    30. McGowan E, Pickford F, Kim J, et al. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron.2005,47(2):191-199.
    32. Samir Kumar-Singh, Daniel Pirici, Eileen McGowan, et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol.2005,167(2):527-543.
    33. Rutten BP, Van der Kolk NM, Schafer S, et al. Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice. Am J Pathol.2005,167(1):161-73.
    34. Hsia AY, Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A.1999,96(6):3228-33.
    35. Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice:synaptotoxicity without plaque formation. J Neurosci.2000, 20(11):4050-4058.
    36. RE Tanzi. Editorial:Novel therapeutics for Alzheimer's disease. Neurotherapeutics.2008,5(3):377-380.
    37. Dong H, Martin MV, Chambers S, et al. Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. J Comp Neurol.2007,500(2):311-21.
    38. Dickson DW. Building a more perfect beast:APP transgenic mice with neuronal loss. Am J Pathol. 2004,164(4):1143-6.
    39. Irizarry MC, Soriano F, McNamara M, et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci.1997,17:7053-7059.
    40. Hsia AY, Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci USA.1999,96:3228-3233
    41. Irizarry MC, McNamara M, Fedorchak K, et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol.1997, 56:965-973
    42. Bondolfi L, Calhoun M, Ermini F, et al. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci.2002,22(2):515-522.
    43. Schmitz C, Rutten BP, Pielen A, et al.Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. Am J Pathol.2004,164(4):1495-1502.
    44. Casas C, Sergeant N, Itier JM, et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol.2004, 165:1289-1300.
    45. Urbanc B, Cruz L, Le R, et al. Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer's disease. Proc Natl Acad Sci USA.2002,99:13990-13995.
    46. Howlett DR, Bowler K, Soden PE, et al. Abeta deposition and related pathology in an APP x PS1 transgenic mouse model of Alzheimer's disease. Histol Histopathol.2008,23(1):67-76.
    47. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflam. 2005,2:22.
    48. Matsuoka Y, Picciano M, Malester B, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer's disease. Am J Pathol.2001,158:1345-1354.
    49. Schwab C, Hosokawa M, McGeer PL. Transgenic mice overexpressing amyloid beta protein are an incomplete model of Alzheimer disease. Exp Neurol.2004,188(1):52-64.
    1. Selkoe DJ. Clearing the brain's amyloid cobwebs. Neuron.2001,32(2):177-180.
    2. Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer's A beta peptide:the many roads to perdition. Neuron.2004,43(5):605-608.
    3.盛树力主编.老年性痴呆及相关疾病.北京:科学技术文献出版社,2006:179-181.
    4. Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis:a genetic perspective. Cell.2005,20(4):545-555.
    5. Irizarry MC, Locascio JJ, Hyman BT. beta-site APP cleaving enzyme mRNA expression in APP transgenic mice:anatomical overlap with transgene expression and static levels with aging. Am J Pathol. 2001,158(1):173-177.
    6. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathol.2009,118(1):103-13.
    7. Garcia-Alloza M, Ferrara BJ, Dodwell SA, et al. A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Dis.2007,28(3):286-292.
    8. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective P-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci.2008; 28(33):8354-8360.
    9. Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome:sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun.1984,122(3):1131-1135.
    10. Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A.1985,82(12):4245-4249.
    11. Kumar-Singh S. Hereditary and sporadic forms of abeta-cerebrovascular amyloidosis and relevant transgenic mouse models. Int J Mol Sci.2009,10(4):1872-1895.
    12. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-β(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest.2000,106(12):1489-1499.
    13. Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev.2008,88(4):1277-1340.
    14. Wilcock DM, Colton CA. Immunotherapy, vascular pathology, and microhemorrhages in transgenic mice. CNS Neurol Disord Drug Targets.2009,8(1):50-64.
    15. Zlokovic BV. New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeuti-cs.2008,5(3):409-414.
    16. Guo S, Lo EH.Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease.Stroke.2009,40(3 Suppl):S4-7.
    17. Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease. Indian J Psychiatry. 2009,51(1):55-61.
    18. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A.1999,96(24): 14088-14093.
    19. Van Dorpe J, Smeijers L, Dewachter I, et al. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol,2000,157(4):1283-1298.
    20. Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem.2004,279(19):20296-306.
    21. Weller RO, Massey A, Newman TA, et al. Cerebral amyloid angiopathy:amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease. Am J Pathol.1998,153(3):725-733.
    22.孙永安.阿尔茨海默病患者BBB结构的病理改变及其对AD发病的影响.国外医学神经病学神经外科分册,2004,31(2):111-114.
    23. Stopa EG, Butala P, Salloway S, et al. Cerebral cortical arteriolar angiopathy, vascular beta-amyloid, smooth muscle actin, Braak stage, and APOE genotype. Stroke.2008,39(3):814-21.
    24. Matsubara E, Shoji M, Abe K, et al. Vascular Amyloidosis in Neurodegenerative Conditions. Drug News Perspect.2002,15(7):439-444.
    25. Keage HA, Carare RO, Friedland RP, et al. Population studies of sporadic cerebral amyloid angiopathy and dementia:a systematic review. BMC Neurol.2009,9:3.
    26. Vinters HV, Wang ZZ, Secor DL:Brain parenchymal and microvascular amyloid in Alzheimer's disease. Brain Pathol 1996,6:179-195.
    27. Wisniewski HM, Wegiel J. Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol.1994,87(3):233-241.
    28. Weller RO, Boche D, Nicoll JA. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer's disease and their potential impact on therapy. Acta Neuropathol.2009,118(1):87-102.
    29. Attems J, Lintner F, Jellinger KA. Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol.2004,107(4):283-291.
    30. Yamaguchi H, Yamazaki T, Lemere CA. Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer's disease. An immunoelectron microscopic study. Am J Pathol.1992,141(1):249-259.
    31. Jeynes B, Provias J. The possible role of capillary cerebral amyloid angiopathy in Alzheimer lesion development:a regional comparison. Acta Neuropathol.2006,112(4):417-427.
    32. Zlokovic BV, Yamada S, Holtzman D, et al. Clearance of amyloid beta-peptide from brain:transport or metabolism? Nat Med 2000,6:718.
    33. Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol.2006,112(4):405-415.
    34. DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A.2001,98(15):8850-8855.
    35. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest.2000,106(12):1489-99.
    36. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, et al. LDL receptor-related protein 1:unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev.2008,88(3):887-918.
    37.李颖莉.低密度脂蛋白受体相关蛋白与动脉粥样硬化的关系.中国分子心脏病学杂志,2003,3(3):167-173.
    38.尹志农.人低密度脂蛋白受体家族成员的研究进展.国外医学临床生物化学与检验学分册,2001,22(1):10-11.
    39. Herz J, Strickland DK. LRP:a multifunctional scavenger and signaling receptor. J. Clin. Invest.2001, 108:779-784.
    40. Tanzi RE, L Bertram. Twenty years of the Alzheimer's disease amyloid hypothesis:a genetic perspective. Cell,2005,120:545-555.
    41. Ulery PG, Beers J, Mikhailenko I, et al. Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J Biol Chem.2000,275(10):7410-5.
    42. Deane R, Sagare A, Hamm K, et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest.2008,118(12):4002-4013.
    43. Narita M, Holtzman DM, Schwartz AL et al. Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem.1997,69(5):1904-1911.
    44. Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron.2004,43(3):333-344.
    45. Herz J. LRP:a bright beacon at the blood-brain barrier. J Clin Invest.2003,112(10):1483-1485.
    46.郭军红,蒲传强.不同月龄大鼠大脑中低密度脂蛋白受体相关蛋白的表达.中华老年心脑血管病杂志,2005,7(1):56-58.
    47. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem.1992,267(21):14998-15004.
    48. Schmidt AM, Vianna M, Gerlach M,et al.Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface.J Biol Chem.1992,267(21):14987-97.
    49. Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer disease. Nature.1990,382:685-691.
    50.孔卫娜,安胜军,柴锡庆.晚期糖基化终产物受体与p淀粉样蛋白的相互作用促进阿尔采末病的发展.中国药理学通报,2009,25(4):424-428.
    51. Schmidt AM, Yan SD, Yan SF, et al.The multiligand receptor RAGE as a progression factor amplifying immune a nd inflammatory responses.J Clin Invest.2001,108(7):949-955.
    52. Miller MC, Tavares R, Johanson CE, et al. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer's disease. Brain Res.2008,1230:273-280.
    53. Mackic JB, Stins M, McComb JG, et al. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.J Clin Invest.1998,102(4):734-743.
    54. Arancio O, Zhang HP, Chen X, et al. RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice.EMBO J.2004,23(20):4096-4105.
    55.姬汴生.血脑屏障上的P-糖蛋白及其转运功能研究进展.河南大学学报(医学版),2008,27(1):8-13.
    56.叶靖宇,黄玉芳.P-糖蛋白的生理作用及中药对其影响的研究进展.江西中医学院学报,2008,20(2):88-91.
    57. Loscher W, Potschka H. Blood-brain barrier active efflux transporters:ATP-binding cassette gene family. NeuroRx.2005,2(1):86-98.
    58. Cirrito JR, Deane R, Fagan AM, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest.2005,115(11):3285-3290.
    59.朱长庚主编.神经解剖学.北京:人民卫生出版社,2002:994-997.
    60.柏树令主编.系统解剖学.北京:人民卫生出版社,2001:461-462.
    61. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease.Acta Neuropathol.2009,118(1):103-113.
    62. Johnston M, Papaiconomou C. Cerebrospinal fluid transport:a lymphatic perspective. News Physiol Sci. 2002,17(12):227-30.
    63. Mollanji R, Bozanovic-Sosic R, Silver I, et al. Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics.Am J Physiol Regul Integr Comp Physiol.2001,280(5):Rl 573-81.
    64. Osaka K, Handa H, Matsumoto S, et al. Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Child's Brain,1980,6(1):26-38.
    65. Johnston M, Zakharov A, Papaiconomou C, et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res.2004,1(1):2.
    66. Bradbury MW, Westrop RJ. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol.1983,339:519-534.
    67. Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992,2(4):269-276.
    68. Boulton M, Young A, Hay J, et al. Drainage of CSF through lymphatic pathways and arachnoid villi in sheep:measurement of 1251-albumin clearance. Neuropathol Appl Neurobiol 1996,22(4):325-333.
    69. Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries:significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol.2008,34(2):131-144.
    70. Johnston M, Zakharov A, Papaiconomou C, et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res.2004,1(1):2.
    71. Weller RO, Djuanda E, Yow HY, et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol.2009,117(1):1-14.
    72. Thal DR, Griffin WS, de Vos RA, et al. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol.2008,115(6):599-609.
    73. Weller RO, Subash M, Preston SD, et al. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol,2008,18:253-266
    74. Zlokovic BV, Yamada S, Holtzman D, et al. Clearance of amyloid beta-peptide from brain:transport or metabolism? Nat Med.2000,6(7):718-719.
    75.薛卫国,张忠,许红,等.电针对APP转基因鼠海马微血管淀粉样沉积的影响及其与了LRP1的关系.中国科技论文在线,201001-1313.
    76. Wilcock DM, Rojiani A, Rosenthal A, et al. Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation.2004,1(1):24.
    77. Schroeter S, Khan K, Barbour R, et al. Immunotherapy reduces vascular amyloid-beta in PDAPP mice. J Neurosci.2008,28(27):6787-6793.
    78. Babak Nazer, Soyon Hong, DJ Selkoe. LRP promotes endocytosis and degradation, but not transcytosis,of the amyloid-β peptide in a blood-brain barrier in vitro model. Neurobiol Dis.2008,30(1): 94-102.
    1.韩景献,李平,刘庆忠,等.针刺对快速老化痴呆模型小白鼠行为学影响的实验研究.中医杂志,1998,3(4):239-241.
    2.杨增瑞,来丽萍,李平,等.针刺对快速老化痴呆模型小白鼠脑内ACH含量及ACHE活性影响的实验研究.天津中医,1999,16(3):20-21.
    3.王彤,庞莹,丁晓蓉,等.调补气血针法对SAM P10脑中枢神经递质含量影响的研究.辽宁中医杂志,2003,30(8):663-664.
    4.王旭慧,董承超,韩景献.针刺对快速老化痴呆小白鼠脑组织CA神经递质的影响.上海针灸杂志,2003,22(1):21-23.
    5.石学敏,韩景献,李平,等.针刺对老化痴呆鼠脑兴奋性氨基酸水平影响的实验研究.中国针灸,1998,11:689-692.
    6.刘庆忠,刘一凡,郑灏泳,等.针刺对SAM-P/10小鼠脑组织CAT、GSH-PX活性的影响.针灸临床杂志,2001,17(4):51-53.
    7.张月峰,于建春,李谈,等. “益气调血,扶本培元”针法对快速老化小鼠SAM P8海马和颞叶皮质神经元数量及形态的影响.上海针灸杂志,2005,24(9):40-43.
    8.彭静,曾芳,何宇恒,等.电针对SAMP8小鼠海马线粒体作用的研究.针刺研究,2007,32(6):364.
    9.韩景献,杨增瑞,郑灏泳,等.针刺对快速老化小白鼠(SAM-P/10)脑组织凋亡阳性细胞数的影响.针刺研究,1998,4:266-267.
    10.于建春,彭永康,韩景献.双向电泳分析快速老化痴呆鼠脑蛋白质的异常表达及针刺的影响.针刺研究,2006,31(2):73.
    11.于建春,陆明霞,于涛,等.用DDRT-PCR技术分析快速老化模型鼠衰老相关基因的差异表达及针刺的作用.中医杂志,2002,43(6):431.
    12.陆明霞,于建春,于涛,等.SAM-P/10衰老相关性能量代谢障碍的分子因素及针刺干预作用.针刺研究,2003,28(4):258.
    13.丁晓蓉,于建春,于涛,等.利用基因芯片研究针刺对快速老化小鼠海马基因表达的影响.天津中医药,2005,22(5):394.
    14.于涛,于建春,陆明霞,等.针刺对快速老化小鼠生长因子及受体基因表达的影响.中国临床康复,2004,8(22):4528.
    15.张志雄,原淑娟,吴定宗.电针对半乳糖所致大鼠空间学习记忆障碍及海马齿状回LTP诱导的干预作用.针刺研究,2001,(4):247-252.
    16.原淑娟,张志雄,邱虹,等.电针对半乳糖致大鼠学习记忆障碍及突触改变的干预作用.江苏中医,2001,22(7):39-41.
    17.原淑娟,张志雄,邱虹,等.电针对D-半乳糖所致衰老模型大鼠神经细胞凋亡的影响.中国临床康复,2005,9(25):132-134.
    18.刘雨星,梁繁荣,余曙光,等.电针对窍隆海马伞损伤老年性痴呆人鼠学习记忆行为影响的实验研究.中国康复医学杂志2004,19(3):188-190.
    19.余曙光,刘雨星,唐勇,等.大鼠学习记忆能力的NO-cGMP信号通路机制.中国老年学杂志,2004,24(7):626-628.
    20.唐勇,余曙光,罗松,等.电针对老年性痴呆大鼠胆碱能神经元损伤的保护作用.中西医结合学报,2006,4(4):374-377.
    21.唐勇,余曙光,刘旭光,等.电针激活老年痴呆大鼠海马蛋白激酶信号通路的作用.中国临床康复,2005,9(1):124-125.
    22.余曙光,罗松,韩婷,等.电针对老年性痴呆大鼠海马神经元突触形态可塑性的影响研究.中国神经医学杂志,2006,5(4):369-371.
    23.张卫,刘来虎.针灸对老年痴呆模型小鼠防治作用的实验研究.陕西中医,2001,22(10):633-635.
    24.余曙光,周奇志,张新如,等.针刺对老年痴呆模型大小鼠AchE活性影响的实验研究.针灸临床杂志,2002,18(9):43-45.
    25.余曙光,王宗勤,周奇志,等.针刺对老年痴呆大鼠海马、皮层电图的影响.中国中医基础医学杂志,2002,8(12):48-50.
    26.王少锦,李爱英,张雪静.针刺督脉穴对拟AD大鼠海马区AchE,ChAT活性的影响.南京中医药大学学报,2004,20(5):289-291.
    27.乔石英.针刺对A1C13致痴呆大鼠脑组织A β及CAT活性的影响. 山西中医学院学报,2006,7(1):25-27.
    28.王少锦,赵志国,李爱英.针刺对拟痴呆大鼠中枢一氧化氮活性和胆碱能系统功能的影响.中国行 为医学科学,2004,13(5):488-490.
    29.包永欣,吕冠华.针刺对痴呆小鼠记忆障碍和单胺神经递质的影响.上海针灸杂志,2003,22(7):23-25.
    30.王少锦,康锁彬,李爱英,等.针刺对拟AD大鼠脑内自由基氧化损伤的影响,上海针灸杂志,2005,24(4):35-37.
    31.王少锦,康锁彬,李爱英.针刺拟痴呆大鼠对脑内自由基系统与胆碱能系统功能影响相关性的分析.针刺研究,2004,29(2):102-106.
    32.赵立刚,马莉,郑祖艳,等.针刺“百会”“四神聪”对老年性痴呆大鼠认知行为及脑内超氧化物歧化酶的影响.针刺研究,2005,30(1):26-29.
    33. 董洪涛,白英.针刺对多因素AD模型海马ChE活性影响的实验研究.实用老年医学,2002,16(2):85-87.
    34.董洪涛.多因素AD动物模型的建立及针刺对其学习记忆功能的影响.上海中医药杂志,2002(5):43-36.
    35.徐强,韩玉生,姜国华,等.针刺对多因素AD大鼠乙酰胆碱酯酶和超氧化物歧化酶的影响.针灸临床杂志,2004,20(9):45-46.
    36.张迪,张洁玉,刘丹.电针“百会”“风府”穴对学习记忆障碍大鼠模型的认知行为及脑内生长抑素的影响.中医药信息,2007,24(1):52-53.
    37.曾芳,赵纪岚,周奇志,等.电针对老年性痴呆模型大鼠海马线粒体酶活性的影响.中国老年学杂志,2006(26):68-70.
    38.郭小溪,金红姝,霍丽,等.针灸治疗老年性痴呆的Meta-分析.中国针灸,2008,28(2):140-144.
    1.李忠仁主编.实验针灸学.北京:中国中医药出版社,2003:327-328.
    2.盛树力主编.老年性痴呆及相关疾病.北京:科学技术文献出版社,2006:290-307.
    3.张秀池,保毓书.介绍一种水迷宫实验方法.卫生毒理学杂志,1991,5(1):63.
    4.王跃春.大鼠Y-型迷宫测试法的筛选与优化.中国行为医学科学,2005,14(1):50-52.
    5.王跃春.Y型电迷宫在大鼠学习记忆功能测试中的合理运用.中国行为医学科学,2005,14(1):69-70.
    6.赵崇侃,程光,陈启盛.一种智能化的Y-型迷宫.中国应用生理学杂志,1997,13(4):363-365.
    7.常洋,秦川,尹红星,等.建立阿尔茨海默症的转基因动物模型.解剖学报,2000,31(2):144-147.
    8.秦川,朱华,张兵林,等.阿尔茨海默症转基因动物模型脑组织病理学及免疫组化研究.中国实验动物学报,2000,8(4):214-217.
    9.黄澜,朱华,高虹,等.不同月龄人APP老年痴呆病转基因小鼠行为学观察比较.中国老年学杂志,2004,24(12):1185-1186.
    10.楚晋,李林,叶翠飞,等.淫羊藿黄酮对APP转基因小鼠学习记忆及β-amyloid生成的影响.中国科学技术大学学报,2008,38(4):439-448.
    11.闵嵘,秦川,赵志炜,等.APP17肽对APP转基因小鼠突触相关蛋白表达的影响.中国药理学通报,2006,22(6):710-714.
    12.邢颖,张兰,李林.参乌胶囊对APP转基因小鼠学习记忆能力及脑尽淀粉样肽含量的影响.中国康复理论与实践,2005,11(5):324-326.
    13.张建民,胡愉,王红,等.中药复方CHP Ⅱ对PDAPPV717I转基因小鼠脑组织病变的影响.解剖学报,2004,35(6):622-625.
    14.李国彰主编.神经生理学.北京:人民卫生出版社,2007:335-348.
    1.盛树力主编.老年性痴呆及相关疾病.北京:科学技术文献出版社,2006:179-182.
    2. Weller RO, Subash M, Preston SD, et al. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol,2008,18:253-266.
    3. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathol.2009,118(1):103-13.
    4.李忠仁主编.实验针灸学.北京:中国中医药出版社,2003:327-328.
    5.贾建平主编.临床痴呆病学.北京:北京大学医学出版社,2008:170-174.
    6. Walsh DM, Selkoe DJ. A beta oligomers-a decade of discovery. J Neurochem.2007,101(5):1172-1184.
    7. RE Tanzi. Editorial:Novel therapeutics for Alzheimer's disease. Neurotherapeutics.2008,5(3):377-380.
    8. Koistinaho M, Ort M, Cimadevilla JM, et al. Specific spatial learning deficits become severe with age in β-amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques. PNAS,2001,98(25):14675-680.
    9. Townsend M, Shankar GM, Mehta T, et al. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity:a potent role for trimers.J Physiol,2006,572(2):477-492.
    10. Lacor PN, Buniel MC, Furlow PW, et al. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci.2007, 27(4):796-807.
    11. Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res.2008,192(1):106-113.
    12. Manczak M, Anekonda TS, Henson E, et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons:implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet,2006,15(9):1437-1449.
    13. Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science,2004,304(5669):448-452.
    14. Chen JX, Yan SD. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis.2007,12(2):177-184.
    15. Masliah E, Sisk A, Mallory M, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717Fβ-amyloid precursor protein and Alzheimer disease. J Neurosci,1996,16(18):5795-5811.
    16. Yamaguchi H, Nakazato Y, Hirai S, et al. Electron micrograph of diffuse plaques. Am J Pathol,1989,135(4): 593-597.
    17. Moechars D, Dewachter I, Lorent K, et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem.1999,274(10):6483-6492.
    18. Van Dorpe J, Smeijers L, Dewachter I, et al. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol.2000,157(4):1283-1298.
    19. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation.2005, 7(2):22.
    20. Hsia AY, Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci USA.1999,96:3228-3233
    21. Langui D, Girardot N, El Hachimi KH, et al. Subcellular topography of neuronal Abeta peptide in APPxPS 1 transgenic mice. Am J Pathol.2004,165(5):1465-1477.
    22. Yang DS, Kumar A, Stavrides P, et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol.2008,173(3):665-681.
    23. Chui DH, Tanahashi H, Ozawa K, et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 1999,5:560-564.
    24. Kurt MA, Davies DC, Kidd M, et al. Neurodegenerative changes associated with beta-amyloid deposition in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Exp Neurol 2001,171(1):59-71.
    25.成令忠,钟翠平,蔡文琴.现代组织学.上海:上海科学技术文献出版社,2003:467-470.
    26. Takahashi RH, Milner TA, Li F, et al. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol,2002,161(5):1869-1879.
    27. Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy-a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol.2005,171(1):87-98.
    28. Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci.2007,120(Pt 23):4081-91.
    29. Cataldo AM, Barnett JL, Pieroni C, et al. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease:neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. JNeurosci.1997,17(16):6142-51.
    30.余曙光,罗松,韩婷,等.电针对老年性痴呆大鼠海马神经元突触形态可塑性的影响研究.中华神经医学杂志,2006,5(4):369-371.
    31.武强,李露斯,范文辉,等.APP/PS1双转基因AD小鼠学习记忆功能与超微结构的对照研究.重庆医学,2007,36(9):818-822.
    32.李玉玲.电针对大鼠脑可塑性影响的研究进展.江西中医学院学报,2007,19(4):42-44.
    33.王彤,庞莹,丁晓蓉,等.调补气血针法对SAM P10脑中枢神经递质含量影响的研究.辽宁中医杂志,2003,30(8):663-664.
    34. Samir Kumar-Singh, Daniel Pirici, Eileen McGowan, et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol.2005,167(2):527-543.
    35. Deane R, Wu Z, Zlokovic BV. RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid P-peptide clearance through transport across the blood-brain barrier. Stroke,2004,35(11 Suppl 1):2628-2631.
    1. Walsh DM, Selkoe DJ. A beta oligomers-a decade of discovery. J Neurochem.2007,101(5):1172-1184.
    2.李忠仁主编.实验针灸学.北京:中国中医药出版社,2003:327-328.
    3.盛树力主编.老年性痴呆及相关疾病.北京:科学技术文献出版社,2006:179-182.
    4. Giuffrida ML, Caraci F, Pignataro B, et al. Beta-amyloid monomers are neuroprotective. J Neurosci. 2009,29(34):10582-7.
    5. D.R. Howlett,J.C. Richardson. The pathology of APP transgenic mice:a model of Alzheimer's disease or simply overexpression of APP? Histol Histopathol,2009,24:83-100.
    6.常洋,秦川,尹红星,等.建立阿尔茨海默症的转基因动物模型.解剖学报,2000,31(2):144-147.
    7. Moechars D, Dewachter I, Lorent K, et al. Early phenotypic changes in transgenic mice that overexpress diffferent mutants of amyloid precursor protein in brain. J Biol Chem,1999,274(10):6483-6492.
    8. Takahashi RH, Milner TA, Li F, et al. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol,2002,161(5):1869-1879.
    9. Yang DS, Kumar A, Stavrides P, et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol.2008,173(3):665-681.
    10. Almeida CG, Takahashi RH, Gouras GK. Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci.2006,26(16):4277-4288.
    11. Kawarabayashi T, Younkin LH, Saido TC, et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease.J Neurosci.2001,21(2):372-381.
    12. Jan A, Gokce O, Luthi-Carter R,et al. The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem.2008, 283(42):28176-89.
    13. Castano EM, Prelli F, Soto C, et al. The length of amyloid-beta in hereditary cerebral hemorrhage with amyloidosis, Dutch type. Implications for the role of amyloid-beta 1-42 in Alzheimer's disease. J Biol Chem. 1996,271:32185-32191.
    14. Attems J, Lintner F, Jellinger KA. Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol.2004,107 (4):283-291.
    15. Attems J, Jellinger KA. Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology-a pilot study. Acta Neuropathol 2004; 107(2):83-90.
    16. Thal DR, Griffin WS, de Vos RA, et al. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol.2008,115(6):599-609.
    17. Hayashi H, Kimura N, Yamaguchi H, et al. A seed for Alzheimer amyloid in the brain. J Neurosci.2004, 24(20):48944902.
    18. Roher AE, Lowenson JD, Clarke S, et al. β-Amyloid(1-42) is a major component of cerebrovascular amyloid deposits:implications for the pathology of Alzheimer's disease. Proc Natl Acad Sci USA 1993, 90(22):10836-40.
    19. McGowan E, Pickford F, Kim J, et al. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron.2005,47(2):191-199.
    20. Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron.2004,43(3):333-344.
    21. Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol.2006,112(4):405-415.
    22. Raddel R, Bolmontl T, Kaeserl SA, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO reports.2006,(7),940-946.
    23. Moechars D, Dewachter I, Lorent K,et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem,1999,274(10):6483-6492.
    24. Samir Kumar-Singh, Daniel Pirici, Eileen McGowan, et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol.2005,167(2):527-543.
    25. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A.1999,96(24): 14088-14093.
    26. Weller RO, Massey A, Newman TA, et al. Cerebral amyloid angiopathy:amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease. Am J Pathol.1998,153(3):725-733.
    27. Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem.2004,279(19):20296-306.
    28. Van Dorpe J, Smeijers L, Dewachter I, et al. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol,2000,157(4):1283-1298.
    1. Selkoe DJ. Clearing the brain's amyloid cobwebs. Neuron.2001,32(2):177-180.
    2. Ulery P G, Strickland DK. LRP in Alzheimer's disease:friend or foe? J Clin Invest.2000,106(9):1077-1079.
    3. Weller RO, Djuanda E, Yow HY, et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol.2009,117(1):1-14.
    4. Van Dorpe J, Smeijers L, Dewachter I, et al. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the london mutant of human APP in neurons. Am J Pathol.2000,157(4):1283-1298.
    5. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, et al. LDL receptor-related protein 1:unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev.2008,88(3):887-918.
    6. Herz J, Strickland DK. LRP:a multifunctional scavenger and signaling receptor. J Clin Invest. 2001,108(6):779-784.
    7. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid-β(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest.2000,106(12):1489-1499.
    8. Deane R, Wu Z, Zlokovic BV. RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke.2004,35(11 Suppl 1):2628-2631.
    9. Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004,43(3):333-344.
    10. Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol.2006,112(4):405-415.
    11.肖晓华.头针治疗中风病的机理研究进展.针灸临床杂志,2004,20(12):56-57.
    12.王允娜,赵海红,郑魁山.针灸治疗血管性痴呆研究进展.2007,23(2):199-201.
    13.李忠仁主编.实验针灸学.北京:中国中医药出版社,2003:327-328.
    14. Liu L, Duff K. A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. J Vis Exp.2008,(21).
    15. DeMattos RB, Bales KR, Parsadanian M, et al. Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer's disease. J Neurochem.2002,81(2):229-236.
    16.Howlett DR, Richardson JC. The pathology of APP transgenic mice:a model of Alzheimer's disease or simply overexpression of APP? Histol Histopathol.2009,24(1):83-100.
    17. Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem.2004,279(19):20296-20306.
    18. Levy E, Carman MD, Fernandez-Madrid IJ, et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science.1990,248(4959):1124-1126.
    19. Moechars D, Dewachter I, Lorent K, et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 1999,274:6483-6492.
    20. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 1999, 96:14088-93.
    21. Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis:a genetic perspective. Cell.2005,120:545-555.
    22. Zlokovic BV. New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeutics.2008,5(3):409-414.
    23. Dewachter I, Van Dorpe J, Smeijers L, et al. Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant Presenilinl. J Neurosci,2000, 20(17):6452-6458.
    24. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathol.2009,118(1):103-113.
    25. Mackic JB, Stins M, McComb JQ et al. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest.1998,102(4):734-743.
    26. DeMattos RB, Bales KR, Cummins DJ, et al. Brain to plasma amyloid-beta efflux:a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science.2002,295(5563):2264-2267.
    27. DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2001,98(15):8850-8855.
    28.常洋,秦川,尹红星,等.建立阿尔茨海默症的转基因动物模型.解剖学报,2000,31(2):144-147.
    29. Attems J, Jellinger KA. Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology-a pilot study. Acta Neuropathol 2004,107(2):83-90.
    30.魏翠柏,田金洲,贾建平.老年痴呆中医病因病机理论的认识与思考.中华中医药杂志,2005,20(8):496-498.
    31.刘存志,于建春,韩景献.试述韩景献对老年期痴呆基本病机的认识—肾虚痰瘀浊毒论.湖北中医杂志,2004,26(1):15-16.
    32.崔德芝,张恭新,朱振铎.老年性痴呆的中医理论探讨.山东中医杂志.2006,25(10):655-657.
    33.李忠仁.针药防治“呆病”研究的策略.上海针灸杂志,2005,24(3):28-29.
    34. Roher AE, Lowenson JD, Clarke S, et al.β-Amyloid(1-42) is a major component of cerebrovascular amyloid deposits:implications for the pathology of Alzheimer's disease. Proc Natl Acad Sci USA 1993, 90:10836-40.
    35. Kawarabayashi T, Younkin LH, Saido TC, et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J Neurosci.2001,21 (2):372-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700