中国近海典型区域粘性土工程地质特征的差异性及其成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋粘性土在我国近海分布广泛,其多数分布在经济高度发展,近海海洋工程比较密集的区域,然而由于其具有含水率高、压缩性大、抗剪切强度低等特征,是不良的地基土,极易形成海底的不稳定性,因此研究这些区域粘性土的工程地质特征具有重要的理论与实践意义。本文以莱州湾、南黄海中部、浙闽近岸三个区域不同成因的粘性土为研究对象,对粘性土的工程地质特征、微结构特征及其差异性进行了分析,并从地形特征、物质来源、水动力条件、物质组成等方面对工程地质特征差异性进行了成因分析。
     对三个区域粘性土工程地质特征及其差异性的分析,发现莱州湾粘性土以淤泥质粘土为主,含有少量的淤泥和粉质粘土,总体特征为含水率低、密度大、孔隙比小、塑性低、压缩性低、抗剪强度大、十字板剪切强度和微型贯入阻力大。南黄海中部粘性土以淤泥为主,含有部分淤泥质粘土及少量的粘土、粉质粘土,总体特征为含水率高、密度小、孔隙比大、塑性高、压缩性大、抗剪强度低、十字板剪切强度和微型贯入阻力小。浙闽近岸粘性土主要为淤泥,含有少量的淤泥质粘土、粘土及粉质粘土,其工程地质特征介于上述两个区域之间。
     通过主成分分析发现,影响三个区域粘性土工程地质特征的指标均可提取4个主成分。含水率、密度、孔隙比、液限和贯入阻力均以较高的荷载进入了第一主成分,其它主成分中占主要荷载的指标差别很大。对主成分综合评价函数的对比,发现莱州湾粘性土的工程性质主要受物理性质指标的影响,南黄海中部粘性土的工程性质主要受物理性质和压缩性指标的影响,浙闽近岸粘性土的工程性质主要受物理性质、压缩性指标及内摩擦角的影响。
     对三个区域粘性土微结构特征的定性分析结果显示:莱州湾粘性土具有粒状胶结、粒状链接和絮状链接3种结构类型,以絮状链接结构为主。黄海中部粘性土具有粒状链接、絮状链接和粘土基质3种结构类型,以粘土基质结构为主。浙闽近岸粘性土具有粒状链接、絮状链接和粘土基质3种结构类型,以絮状链接和粘土基质结构为主。三个区域粘性土主要的微结构类型存在一定的差异。
     利用IPP图像处理软件和Matlab图像处理功能对莱州湾和浙闽近岸粘性土的微结构图像进行了定量分析。对两个区域同种微结构类型的参数特征的差异性分析显示,莱州湾粒状链接结构粘性土的孔隙比浙闽近岸粒状链接结构粘性土的孔隙大,絮状链接结构粘性土的孔隙则比浙闽近岸絮状链接结构粘性土小。莱州湾粒状链接和絮状链接结构粘性土的颗粒均比浙闽近岸粘性土大。线性回归分析结果显示,除液限外,两个区域粘性土的工程性质均受相同的微结构参数影响,只是回归方程的系数存在一定差异。物理性质指标主要与表征孔隙大小和数量的参数有关,而力学性质指标除受孔隙的大小和数量影响外,还与几何形状有关。
     莱州湾对沉积物向外海的扩散起着限制作用,黄河源物质在该区大量沉积,沉积速率较快,且易遭受后期较强水动力的作用,沉积物中粉粒含量高,矿物成分以原生矿物为主,使得本区粘性土以淤泥质粘土为主,含水率较低,工程性质相对较好。南黄海中部离陆较远、水深较大、地势低洼,现代黄河、老黄河和少量长江来源的物质能够扩散至此的以极细的粘粒物质为主,沉积速率较低,加之水动力条件较弱为还原环境,沉积物中的粘粒和有机质含量高,沉积物不易受后期水动力的作用,粘性土的含水率极高,以淤泥为主,工程性质很差。浙闽近岸离陆较近,沿岸河流、岛屿众多,长江及近岸河流来源的物质能够扩散至此的也以细颗粒为主,在较弱的水动力条件下,发生絮凝沉降而形成,沉积速率较高,沉积物不易受后期较强水动力的作用,粘性土也以淤泥为主,但由于离陆相对较近,粘性土中粘粒、粘土矿物和有机质含量低于南黄海中部粘性土,水动力条件也较南黄海中部强,粘性土的工程性质比南黄海中部粘性土好。
Marine cohesive soil widely distributes in the offshore areas of China, mainly inarea with high developed marketing economy and intensive offshore marineengineering. However, because cohesive soil has the characteristics of high watercontent, high compressibility, and low shear strength, it is poor foundation soil andeasily causes the instability of seabed. Therefore, the study of geotechnical propertiesof cohesive soils in these areas has important theoretical and practical significance.This paper takes the cohesive soil in Laizhou Bay, the central South Yellow Sea,Zhejiang-Fujian coastal area as research object, studies about their geotechnicalproperties and differences, microstructure and the geneses of geotechnical properties.
     Through analysis of the geotechnical properties and their differences of cohesivesoil in the three areas, it is found that, the cohesive soil in Laizhou Bay is mainlymuddy clay, with a small amount of mud and silty clay. On the whole, cohesive soil inLaizhou Bay has the characteristics of low water content, high density, low void ratio,low plasticity, low compressibility, high shear strength, high vane shear strength, andhigh miniature penetration resistance. Cohesive soil in the central South Yellow Sea ismainly mud, contains some muddy clay and a small amount of clay, silty clay, and hasthe characteristics of high water content, low density, high void ratio, high plasticity,high compressibility, low shear strength, low vane shear strength, low miniaturepenetration resistance. Cohesive soil in Zhejiang-Fujian coastal area is mainly mud,with a small amount of muddy clay, clay and silty clay, its geotechnical properties isbetween the above two areas.
     The principal component analysis finds that, the physical and mechanical indexesthat influce geotechnical properties of cohesive soil in the three areas all can extractfour principal components, water content, density, void ratio, liquid limit andminiature penetration resistance all enter the first principal component with high load,the main loads of other principal components vary greatly. Through comparison of the evaluation function of the principal component, it is found that, the geotechnicalproperties of cohesive soil in Laizhou Bay mainly affect by physical property indexes.The geotechnical properties of cohesive soil in the central South Yellow Sea affect notonly by physical property indexes, but also compressibility indexes. The geotechnicalproperties of cohesive soil in Zhejiang-Fujian coastal area mainly affect by physicalproperty indexes, compressibility and internal friction angle.
     The electron microscopic analysis of the microstructure of cohesive soil in thethree areas shows that, the cohesive soil of Laizhou Bay has three kinds ofmicrostructure: granular cementation structure, granular link-bond structure, floccu-lent link-bongd structure, the dominant types is flocculent link-bongd structure, soilwith this structure, medium to high strength, low to medium porosity, low to mediumcompressibility. The cohesive soil of the central South Yellow Sea also has three kindsof microstructure, they are granular link-bond structure, flocculent link-bongdstructure and clay matrix structure, the dominant types is clay matrix structure, soilwith this structure, low strength, high porosity, high compressibility. The cohesive soilof Zhejiang-Fujian coastal area has the structure of granular link-bond structure,flocculent link-bongd structure and clay matrix structure, flocculent link-bongdstructure and clay matrix structure are the main structures, cohesive soil in this area,medium strength, medium porosity, medium compressibility.
     By using IPP image processing software and Matlab image processing function,the microstructure images of cohesive soil in Layzhou Bay and Zhejiang-Fujiancoastal area are processed. The differences of parameters characteristics of differentmicrostructural types and regression analysis results between microstructuralparameters and geotechnical index of cohesive soil in the two area are analyed,analysis results are as follows: the average pore size of granular link-bond structure ofcohesive soil in Laizhou Bay are larger than cohesive soil in Zhejiang-Fujian coastalarea. The pore of flocculent link-bongd structure of cohesive soil in Laizhou Bay issmaller than cohesive soil in Zhejiang-Fujian coastal area. The particle of granularlink-bond and flocculent link-bongd structure of cohesive soil in Laizhou Bay are alllarger than cohesive soil in Zhejiang-Fujian coastal area. Multiple linear regression analysis on the microstructural parameters and geotechnical indexes of cohesive soilin the two area indicates that the physical indexes of cohesive soil in the two area aremainly related to the parameters that characterize pore size and number, themechanical indexes not only affect by the size, number of pore, but also the geometryof pore.
     Laizhou Bay is a semi-closed bay, it plays a limit role in the spread of sedimentto the open sea. Lager amount of Yellow River source material deposits in this areawith high rate, and is easy subjected to the late strong hydrodynamic conditions,sediment in this area usually has high silt content, mineral component is maily ofprimary mineral, this makes the cohesive soil in this area is mainly muddy clay withlow water content, and has relatively good geotechnical properties. The central SouthYellow Sea is far from the mainland, low-lying and has high water depth, materialfrom the Yellow River, old Yellow River and Yangtze River that can spread to thisarea is mainly clay material with smaller particle size, its deposition rate is very low,hydrodynamic conditions is weaker and for reductive environment, sediment in thisarea usually has high clay and organic matter content, and is not easy subjected to thelate hydrodynamic conditions. This makes the cohesive soil in this area has high watercontent, and is mainly of mud, geotechnical properties is poor. Zhejiang-Fujiancoastal area is relatively close to the mainland, coastal rivers and islands are numerous,material from the Yangtse River and coastal rivers that can spread to this area ismainly clay particle, under weaker conditions occurs flocculation and sedimentation,sedimentary speed is high, and is not easy subjected to the late strong hydrodynamicconditions, the cohesive soil is mainly of mud. But because of it is closer to themainland, the clay particle, clay minerals and organic matter content are lower thancohesive soil in the central South Yellow Sea. Its hydrodynamic conditions is alsostronger than the central South Yellow Sea, so geotechnical properties of cohesive soilin this area is better than soil in the central South Yellow Sea.
引文
[1]郑志昌,陈俊仁,朱照宇.南海海底土体物理力学特征及其地质环境初步研究[J].水文地质工程地质,2004,(4):50~65
    [2] Richards A F. Marine geotechnique: proceedings[M]. Illinois: university of Illions press,1967
    [3]郑继民.海洋科学的新领域-海洋工程地质学的理论研究与发展趋向[J].海洋通报,1981,(3):71~75
    [4]The engineering properties of sea-floor soils and their geophysical identification[C]. Theinternational symposium, Washington Uinv,1971
    [5]Deep-sea sediments physical and mechnical properties[C]. The international symposium,Washington Uinv,1973
    [6]中赖明男.海洋土力学问题[R].港湾技术研究报告第13卷,1974
    [7] Inderbitzen A L. Deep Sea Sediments: Physical and Mechanical Properties[M]. New York:Plenum Press,1974
    [8] Mitchell J K. Fundamentals of soil behavior[M]. New York: Wiley,1976
    [9] Francisca F, Yun T S, Ruppel C, et al. Geophysical and geotechnical Properties of nearfloorsediments in the northern Gulf of Mexico gas hydrate province[J]. Earth and planetary scienceletters,2005,237(3-4):924~939
    [10]William J W, Brandon D, Timothy S C. Physical properties of sediments from KeathleyCanyon, Atwater Valley. JIP Gulf of Mexico gas hydrate drilling program[J]. Marine andPetroleum Geology,2008,25:896~905
    [11]Silva A J, Brandes H G. Geotechnical properties and behavior of high-porosity, organic-richsediments in Eckernf rde Bay, Germany[J]. Continental shelf research,1998,18:1917~1938
    [12]Silva A J, Brandes H G, Veyera G E. Geotechnical properties of surficial high-porosity sedim-ents in Eckernf rde Bay[J]. Geo-Marine Letter,1996,16:167~174
    [13]Brandes H G. Predicted and measured geotechnical properties of Gas-charged sediments[J].1999,9(3):219~224
    [14]Yamamoto Koji. Methane Hydrate Bearing Sediments: a New Subject of Geomechanics[A].The12th International Conference of International Association for Computer Methods and Adva-nces in Geomechanics (IACMAG)[C]. India, Goa,2008:1~6
    [15]Nishio Shin’ya, Ogisako Eiji. Geotechnical properties of soil samples obtained from seabedground in deep sea[J]. Shimizu Corp. R224~P030
    [16]Hamilton E L. Sound speed and related physical properties of sediments from ExperimentalMohole(Guadalupe site)[J]. Gepphysics,1965,30:257~261
    [17]Anderson R S. Statistical correlation of physical properties and sound velocity in sediments
    [A]. Physical of Sound in Marine Sediment [C]. New York: Plenum Press,1974,481~518
    [18]C McCann, D M McCann. The attenuation of compressional waves in marine sediments[J].Geophysics,1969,34(6):882~892
    [19]Hamilton E L, Sound Velocity and Related Properties of Marine Sediments, North Pacific[J].Journal of Geophsical Research,1970,75(23):4423~4446
    [20]Hamilton E L. Compressional–wave Attenuation in Marine Sediments[J]. Journal of theAcoustic Society of America,1972,634~645
    [21]Hamilton E L. Sound Attenuation as a Function of Depth in the Sea Floor[J]. The Journal ofthe Acoustical Society of America,1976a,59(3):528~535
    [22]Hamilton E L. Geoacoustic modeling of the sea floor [J]. The Journal of the AcousticalSociety of America,1980,68(5):1313~1340
    [23]Hamilton E L. Attenuation of shear waves in marine sediments [J]. J. Acoust. Soc. Am,1976b,60(2):334~338
    [24]Thomas H Orsi, Dean A Dunn. Sound velocity and related physical properties of fine-grainedabyssal sediments from the Brazil Basin (South AtlanticOcean)[J]. Acoustical Society of America,1990,88(3):1536~1543
    [25]Thomas H Orsi, Dean A Dunn. Correlations between sound velocity and related properties ofglacio-marine sediments: Barents sea[J]. Geo-Marine Letters,1991,11(2):79~83
    [26]Lu Tiesong. Statistical analysis and correlation of physical and geotechnical properties ofmarine sediments in Eckernfoerde Bay, Baltic Sea[D]. Dallsa: Texas A&M University,1996
    [27]Buchan S, Dewes F C D, McCann D N, et al. Measurement of the acoustic and geotechnicalproperties of marine sediment cores. In Marine Géotechnique, Urbana: University of Illinois Press.1967.65~92
    [28]Buchan S, McCann D Mi, Smith D T. Relations between the acoustic and geotechnicalproperties of marine sediments[J]. Journal of Engineering Geology and Hydrogeology,1975,265~284
    [29]Richards A F, Parker A. Water content, void ratio, and specific gravity calculable from bulkdensity measurements of cohesive marine sediments (abstract)[J]. American Association ofPetroleum Geologists Bulletin,1971,55:359~360
    [30]Richards A F, Hirst T J, Parks J M. Bulk density-water content relationship in marine silts andclays[J]. Journal of Sedimentary Research,1974,44(4):004~1009
    [31]McClelland B. Progress of consolidation in delta front and prodelta clays of the MississippiRiver[J]. Urbana: Univ of Illinois Press,1967,22~23
    [32]Bryant W R, Hottman W, Trabant P. permeability of unconsolidated marine sediments: Gulf ofMexico[R]. Texas A&M University, College of geosciences,1974
    [33]Bryant W R, Cernock P J, Morelock J. Shear strength and consolidation characteristics ofmarine sediments from the western Gulf of Mexico. In: A.F. Richards (Editor), MarineGeotechnique. Univ. of Illinois Press, Urbana,1967, Ill:41~62
    [34]Yoon G L, B T Kim, S S Jeon. Empirical correlations of compression index for marine clayfrom regression analysis[J]. Canadian Geotechnical Journal,2004,41(6):1213~1221
    [35]Andreas Wetzel. Interrelationships between porosity and other geotechnical properties ofslowly deposited, fine-grained marine surface sediments[J]. Marine Geology,1990,92(1-2):105~113
    [36]Hulbert M, Richards A F. Investigation of geotechnical and geochemical relationships byparameter cross-correlation methods, Oslofjorden and Dramafjorden, Norway[J]. MarineGeotechnology,1980,4(2):163~180
    [37]Yang S L, Kvalstad T, Solhein A, Forsberg C F. Parameter studies of sediments in the Storeggaslide region[J]. Geo-Mar Lett,2006,26:213~224
    [38]Yang S L, Forsberg C F, Solheim A, et al. Statistical analysis of well logs compared with thegeotechncal data in Storegga slide area[J]. Marine georesource and geotechnology,2006,24(4):237~250
    [39]Rajasekaran G. Influence of microfossils and pyrites on the behaviour of oceanbed sediments[J]. Ocean Engineering,2006,33:517~529
    [40]Shiwakoti D R, Tanaka H, Tanaka M, et al. Influences of diatom microfossils on engineeringproperties of soils[J]. Soils Found,2002,42(3):1~17
    [41]Khadge N H. Geotechnical properties of deep sea sediments from the Central Indian Basin[J].Indian Journal of Marine Science,1992,21:80~82
    [42]Khadge N H. Preliminary geotechnical properties of deep sea sediments from the CentralIndian Basin, Proceedings[J]. First ISOPE-Ocean Mining Symposium,1995,21~22
    [43]Khadge N H. Geotechnical properties of sediments. In: Report on benthic disturbance andimpact studies. National Institute of Oceanography report submitted to the Department of OceanDevelopment, New Delphi,1997,140~148
    [44]Khadge N H. Geotechnical properties of surface sediments in the INDEX Area[J]. MarineGeotechnology and Geotechnology,2000,18(3):251~258
    [45]Keller G H. Organic matter and the geotechnical properties of submarine sediments[J].Geo-Marine Letter,1982,2(3-4):191~198
    [46]Busch W H, Keller G H. The physical properties of Peru-Chile continental margin sediments-the influence of coastal upwelling on sediment properties[J]. Journal of Sedimentary Petrology,1981,51(3):705~719
    [47]Rao S M, Sridharan A, Chandrakaran S. Engineering behavior of uplifted smectite-richCochin and Mangalore marine clay[J]. Marine geotechnology,1990,9(4):243~259
    [48]Wit P J, Kranenburg C. The wave-induced liquefaction of cohesive sediment beds[J].Estuarine, coastal and shelf science,1997,45(2):261~271
    [49]Keller G H, Ye Y C. Geotechnical properties of surface and near-surface deposits in the EastChina Sea[J]. Continental Shelf Research,1985,4(1-2):159~174
    [50]Bennett R H, Nelson T A. Seafloor characteristics and dynamics affecting geotechnicalproperties at shelfbreaks. In The Shelfbreak: Critical Interface on Continental Margins, ed. D. J.Stannley and G. T. Moor, Society of Economic Paleontologists Mineralogists Special Publication1983,33:333~355
    [51]Richardson M D. The effects of bioturbation on sediment elastic properties[J]. Bull. Soc. Geol.Fr,1983,25:505~513
    [52]A A Rowden, C F Jago, S E Jones. Influence of benthic macrofauna on the geotechnical andgeophysical properties of surficial sediment, North Sea[J]. Continental Shelf Research,1998,18(11):1347~1363
    [53]Yang S L, Solheim A, Forsberg C F, et al. Geotechnical properties of river-fed sedimentscompared with glacier-fed sediments[J]. Marine georesource and geotechnology,2009,27(4):281~295
    [54]Mathai T, Chandran M S, Nair S B, et al. A comparative evaluation of the geotechnical indexproperties of clayey sediments along the west coast of Indian[J]. Marine georesource and geotech-nology,2007,25(3-4):151~165
    [55]郑继民.中国海洋工程地质研究[J].工程地质学报,1994,2(1):90~96
    [56]秦蕴珊,徐善民,李凡,等.渤海西部海底沉积物土工学性质的研究[J].海洋与湖沼,1983,14(4):305~314
    [57]夏真,贾培宏,朱大奎.海洋第四纪地质研究在工程建设中的应用[J].南海地质研究,2007,(00):86~95
    [58]周海鸥.从提升海洋意识走向全面开发海洋[J].海洋科学,2002,26(1):36~39
    [59]刁传芳.山东海洋学院与美国、加拿大合作调查“渤海中南部及黄河口海域沉积动力学”取得成果[J].海洋通报,1986,(04):82~82
    [60]郑继民.中美合作“渤海中南部及黄河口沉积动力学及工程地质研究”第三航次已开始[J].海岸工程,1987,6(02):64~64
    [61]郑继民.海洋工程地质调查研究新动态[J].海岸工程,1986,5(03):66~80
    [62]阵俊仁,黄志玮.南海珠江口盆地工程地质分区与评价[J].工程地质学报,1994,2(2):18~28
    [63]李西双,刘保华,郑彦鹏.黄东海灾害地质类型及声学反射特征[J].青岛海洋大学学报,2002,32(1):107~114
    [64]李碧,黄光庆.城市化对珠江河口的生态影响及对策[J].海洋环境科学,2008,27(5):543~546
    [65]郑继民,沈谓铨,陆念祖.黄河口及渤海中南部沉积物工程特性及其机理[J].青岛海洋学院学报,1994,24(2):231~238
    [66]冯秀丽,沈谓铨,杨荣民,杨中卿.现代黄河口区沉积环境与沉积物工程性质的关系[J].青岛海洋学院学报,1994,(增刊):21~28
    [67]冯秀丽,林霖,庄振业,等.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系[J].海岸工程,1999,(04):1~7
    [68]冯秀丽,杨荣民,沈谓铨,等.现代黄河三角洲东北部(埕北地区)晚更新世及全新世地层的物理力学性质[J].海洋湖沼通报,1990,(3):23~29
    [69]Keller G H,郑继民.中国黄河三角洲和渤海南部近表层沉积物的物理性质-黄河口水下坡底不稳定性[M].青岛:青岛海洋大学出版社,1991
    [70]许国辉,卫聪聪,孙永福,等.黄河水下三角洲浅表局部扰动地层工程特性与成因[J].海洋地质与第四纪地质,2008,28(6):19~25
    [71]贾永刚,周其健,马德翠.生物活动对海床沉积物工程地质特征改造研究[J].工程地质学报,2005,13(01):49~56
    [72]冯秀丽,沈谓铨,杨荣民,等.现代黄河水下三角洲软土沉积物工程地质特性[J].青岛海洋学院学报,1994,(专辑):132~137
    [73]冯秀丽,沈谓铨,等.海洋工程地质专论[M],青岛:中国海洋大学出版社,2006
    [74]吴建政.山东全新世滨海软土与工程地质灾害的研究[J].海洋地质与第四纪地质,1995,15(3):43~54
    [75]徐善民,栾作峰,徐文强.辽东湾表层沉积物天然湿容重和含水率的分布及其与粒度的关系[J].海洋科学集刊,1993,(34):73~78
    [76]闫章存.辽东湾北部细粒土抗剪强度指标的BP神经网络预测[D].青岛:国家海洋局第一海洋研究所,2008
    [77]刘爱江.双台子河口区工程地质特征及其工程适宜性分析[D].青岛:中国海洋大学,2009
    [78]梁元博,卢博.海洋沉积物及其声学物理性质的研究[J].海洋地质研究,1981,1(2):28~38
    [79]梁元博,卢博.某海区陆架低声速底质的声学物理参数[J].热带海洋,1983,2(3):191~200
    [80]Liang Yuanbo, Lu Bo. On the effect of physico-geotechnical characteristics upon sound velo-cities of sea floor sediments[J]. Acta Oceanologica Sinica,1984,3(3):313~320
    [81]梁元博,卢博.海底沉积物力学性质影响声速的物理机制[J].海洋学报,1985,7(1):111~119
    [82]卢博,梁元博.海洋沉积物声速与其物理-力学参数的相关性[J].热带海洋,1991,10(3):96~100
    [83]梁元博,卢博.海洋沉积物声学物理和土力学[J].地球科学进展,1991,6(6):42~43
    [84]卢博,梁元博.浙江北仑港海陆相沉积物物理力学与声学参数的对比研究[J].海洋通报,1991,10(5):37~44
    [85]Lu Bo, Liang Yuanbo. Statistical correlation of physical parameters with sound velocity inmarine sediments of South and East China Sea[J]. Science in China(Series B),1995,38(5):613~618
    [86]卢博,梁元博.南海某海区海底沉积物物理、声学和弹性性质[J].海洋科学,1995,23(3):42~45
    [87]卢博.海底浅层沉积物声速与物理性质[J].科学通报,1994,39(5):435~437
    [88]卢博.东沙群岛海域沉积物及其物理学性质的研究[J].海洋学报,1996,18(6):82~89
    [89]Lu Bo. Elementary study of physical properties on surface sediments in Nansha Islands seaarea[J]. Science in China,1997,40(5):547~552
    [90]卢博.南沙群岛海域浅层沉积物物理性质的初步研究[J].中国科学(D辑),1997,27(1):77~81
    [91]Lu Bo, Li Ganxian, Huang Shaojian. Acoustic-physical properties of calcareous seafloor soilsand their significance in engineering geology[J]. China Ocean Engineering,2000,14(3):361~370
    [92]卢博,李赶先,黄韶健,等.南海北部大陆架海底沉积物物理性质研究[J].海洋工程,2004,22(3):48~55
    [93]卢博,李赶先,黄韶健,等.中国黄海、东海和南海北部海底浅层沉积物声学物理性质之比较[J].海洋技术,2005,24(2):28~33
    [94]卢博,李赶先,黄韶健.在轴向应力-应变下海底沉积物声速及其变化[J].海洋学报,2006,28(2):93~100
    [95]卢博,李赶先,孙东怀,等.中国东南近海海底沉积物声学物理性质及其相关关系[J].热带海洋学报,2006,25(2):12~17
    [96]卢博,李赶先,刘强,等.海南岛东南外海海底沉积物特征及其升学物理性质研究[J].海洋学报,2007,29(4):34~42
    [97]牛作民.渤海湾海相淤泥土工程物理性质的初步研究[J].海洋地质与第四纪地质,1986,6(3):35~42
    [98]牛作民.南海海底细粒土的工程地质性质基本特征[J].海洋地质与第四纪地质,1992,12(1):15~25
    [99]牛作民.海洋细粒沉积物工程地质性质的研究[J].中国科学(B辑),1992,(4):434~440
    [100]杨木壮,梁修权,王宏斌,等.南海北部湾海洋工程地质特征[J].海洋地质与第四纪地质,2000,20(4):47~52
    [101]刘勇健,李彰明,伍四明,等.南沙地区软土物理力学性质指标与微结构参数的统计分析[J].广东工业大学学报,2010,27(2):21~26
    [102]魏巍.南海中沙天然气水合物资源远景区海底沉积物的物理力学性质研究[J].海岸工程,2006,25(3):33~38
    [103]Chen Junren, Li Tinghuan. Charaeteristies of Engineering Geology in the Pearl River MonthBasin[C]. Proeeedings of6th IAEG, A.A.Balkema Publishers, Rotterdam.1990,2837~2842
    [104]陈俊仁,李廷桓.南海珠江口盆地工程地质分层与土的基本性质[C].中国第六届土力学及基础工程学术会议选文集.上海:同济大学出版社、中国建筑工业出版社,1991,887~891
    [105]陈俊仁.珠江口盆地海底稳定性分析[J].热带海洋,1991,10(2):49~56
    [106]杨位洸,温耀霖,卢博.珠江口外浅海区底质的工程性质研究[J].华南理工大学学报(自然科学版),1995,23(1):135~143
    [107]卢博,李传荣.珠江口外海沉积物(原状样)微结构特征及其物理性质[J].海洋学报,2002,24(2):94~100
    [108]石要红,曾宁烽,陈太浩,等.珠江口内伶仃岛以北水域海底工程地质条件评价[J].地质通报,2005,24(10-11):1052~1059
    [109]Chen Minpen. Geotechnical properties of sediments off the coast of Hsinchu-northwestTaiwan related to sedimentary environment[J]. Acta Oceanographica Taiwanica,1981,12:28~53
    [110]Chen Minpen, TianW M. Marine geotechnical properties and stability of the continentalmargin deposits off Hua-Lien, northeast of Taiwan [J]. Acta Oceanographica Taiwanica,1982,13:23~68
    [111]Chen Minpen, Shieh Y T, Chyan J M. Acoustic and physical properties of surface sedimentsin northern Taiwan Strait[J]. ActaOceanographica Taiwanica,1988,21:92~118
    [112]Chen M P. Physical properties and depositional environments of continental slope sediments,southern Taiwan Strait[J]. Acta Oceanogr Taiwan,1983,14:42~53
    [113]钱正明.台湾东南外海海底沉积物物理、土力学和声学特性研究[D].台北:台湾大学,1989
    [114]卢博,黄韶健,李赶先,等.台湾海峡及其邻近海区海底沉积物声学物理性质[C].2005年全国水声学学术会议论文集,2005:75~78
    [115]Yin J H. Properties and behaviour of Hong Kong marine deposits with different clay contents[J]. Canadian Geotechnical Journal,1999b.36:1085~1095
    [116]徐善民.南黄海表层沉积物夭然湿容重和含水率的分布及其与粒度之间的关系[J].海洋科学,1991,(3):38~41
    [117]李萍,李培英,刘乐军,等.南黄海油气资源区海底沉积物的工程地质特征[J].海洋地质与第四纪地质,2001,21(3):37~41
    [118]李萍,李培英,徐兴永,等.南黄海油气资源区粘性土物理力学性质及微结构特征[J].海洋科学进展,2005,23(4):482~486
    [119]黄慧珍.东海西部海域工程地质条件评价[J].海洋地质与第四纪地质,1993,13(1):47~64
    [120]曹成效,李培英,刘乐军,等.东海油气资源区海底沉积物的工程地质特征[J].海岸工程,2005,24(1):39~47
    [121]陈培雄,潘国富,许建灵,等.东海陆架海底浅表层土静力触探参数与物理力学指标相关性分析[J].工程勘察,2009,(6):34~37
    [122]叶银灿,来向华.杭州湾粉质土动强度特性研究[J].海洋科学,2003,27(2):56~59
    [123]吕小飞,叶银灿,潘国富.杭州湾浅层粘性土物理力学指标的统计分析[J].海洋学研究,2005,23(4):8~14
    [124]Terzaghi Karl. Erdbaumechanik auf Bodenphysikalischer Grundlage[M]. Vienna: FranzDeuticke,1925,370
    [125]Casagrande A. The structure of clay and its importance in foundation engineering[J].Boston Society Civil Engineers Journal,1932,19:168~208
    [126]Collins K, McGown A. The Form and Function of Microfabric features in a Variety ofNatural soil[J]. Geotechnique,1974,24(2):223~254
    [127]Yong R N, Benno P, Warkentin. Soil Properties and Behaviour[M]. Amsterdam and NewYork: Elsevier Seientific Publishing ComPany,1975
    [128]Hamilton E L, Bachman R T. Sound velocity and related properties of marine sediments[J].Journal of the Acoustical Society of America,1982,72(6):1891~1904
    [129]Rack F R, Bryant W R, Julson A P. Microfabric and physical properties of deep-sea highlatitude carbonates oozes. In: Rzak, R., Lavoie, D.L.(Eds), Carbonate Microfacies. Springler,New York,1993,129~147
    [130]Frederick A Bowles, William R Bryant, Charles Wallin. Microstructure of unconsolidatedand consolidated marine sediments[J]. Journal of Sedimentary Research,1969,39(4):1546~1551
    [131]Silva A J, Sadd M H, Veyera G E, et al. Variability of seabed sediment microstructure andstress-strain-time behavior in relation to acoustic characterization [R]. In: Richardson, M.D.(Ed.),The Coastal Benthic Boundary Layer Special Program: A Review of the First Year. Naval Resea-rch Laboratory Report,1994,181~270
    [132]Bennett R H, Bryant W R, Keller G H. Clay fabric and geotechnical properties of selectedsubmarine sediment cores from the Mississippi delta [D]. Texas: Texas A&M University,1976
    [133]Bennett R H, Bryant W R, Keller G H. Clay fabric of selected submarine sediments: funda-mental properties and models[J]. Journal of Sedimentary Research,1981,51(1):217~232
    [134]Hiroyuki Tanaka, Jacques Locat. A microstructural investigation of Osaka Bay clay: theimpact of microfossils on its mechanical behaviour[J]. Canadian Geotechnical Journal,1999,36(3):493~508
    [135]Yashima H, Shigematsu, J Nagaya. Microstructure and geotechnical properties of Pleistoceneclay[A]. Eleventh Asian reginal conference on soil mechnics and geotechnical engineering[C],Korea: Seoul,1999:7~10
    [136]Reynolds S, Gorsline S S. Clay microfabric of deep-sea, detrital muds (stone), CaliforniaContinental Borderland[J]. Journal of Sedimentary Research,1992,62(1):41~53
    [137]Stephan A Klapp, Gerhard Bohrmann, Werner F Kuhs, et al. Microstructures of structure Iand II gas hydrates from the Gulf of Mexico[J]. Marine and Petroleum Geology,2010,27(1):116~125
    [138]Rajasekaran G, Murali K, Srinivasaraghavan R. Microfabric, chemical and mineralogicalstudy of Indian marine clays[J]. Ocean Engineering,1998,26(5):463~483
    [139]Bennett R H, Bryant W R, Hulbert M H. Microstructure of fine-grained sediments(from mudto shale)[M]. New York: Springer Verlag,1991,73~92
    [140]Jin Wook Kim, Yir Dere Lee, Thomast Tieh, et al. Effects of laboratory consolidation onpetrophysical properties of fine-grained marine sediments: Electron microscopic observations[J].Marine georesource and geotechnology,2000,18:347~360
    [141]Kiichiro Kawamura, Yujiro Ogawa. Progressive microfabric changes in unconsolidatedpelagic and hemipelagic sediments down to180mbsf, northwest Pacific, ODP Leg185, Site1149[J]. Proceedings of the Ocean Drilling Program, Scientific result,2002,185:1~29
    [142]A. Anandarajah, Dawn Lavoie. Numerical simulation of the microstructure and compressionbehavior of Eckernf rde Bay sediments[J]. Marine Geology,2002,182(1-2):3~27
    [143]Gao Guorui. Microstructure of marine soils in China and their engineering properties[J].Scientia Sinica (Series B),1984, XXⅦ(11):1203~1212
    [144]高国瑞.中国海洋土微结构特征[J].Scientia Sinica (Series B),1984,XXⅦ(11):1203~1212
    [145]高国瑞.微结构分析在滨海软土地基勘察中的初步应用[J].勘察科学技术,1985,(2):14~19
    [146]高国瑞.中国近海海相沉积物的物质成分、微结构及与工程性质的关系[J].海洋学报,1986,8(5):581~589
    [147]卢博.南海陆架沉积物微结构研究[J].热带海洋研究,1986,(2):45~50
    [148]卢博,李传荣,黄韶健,等.海底沉积物在应力-应变过程前后的微区变化特征[J].海洋学报,2000,22(4):130~136
    [149]李赶先,卢博,黄韶健,等.应力-应变过程中海底沉积物微结构变化对其声速的影响[J].海洋学报,2002,24(3):75~80
    [150]Lu Bo, Li Gan xian. Physical and mechanical characteristics of seabed sediment micro-structures in northern shelf of the South China Sea[J]. Marine Georesources and Geotechnology,2003,21:1~13
    [151]卢博,刘强.海底沉积物声学响应中的颗粒与孔隙因素[J].热带海洋研究,2008,27(3):23~29
    [152]孔令伟,吕海波,汪稔,等.海口某海域软土工程特性的微观机制浅析[J].岩土力学,2002,23(1):36~40
    [153]孔令伟,吕海波,汪稔,等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报,2002,(9):82~88
    [154]单红仙,刘媛媛,贾永刚,等.水动力作用对黄河水下三角洲粉质土微结构改造研究[J].岩土工程学报,2004,26(5):654~658
    [155]徐元芹,李萍,李培英,等.闽浙沿岸沉积物的工程地质特性及其成因简析[J].海洋学报,2010,32(1):107~113
    [156]柴寿喜,王沛,魏丽,等.土样真空冷冻升华干燥仪研制中的一些问题[J].工程勘察,2007,(2):6~9
    [157]王国欣,黄宏伟,肖树芳.软土微结构特征的试验研究[J].水利学报,2005,36(2):1~9
    [158]杨为民,赵建红,聂明军.动力加固地基土的微结构特征及其变形机理[J].煤炭工程,2006,(10):79~81
    [159]吴云凯.莱州湾海洋环境变化趋势及管理措施研究[J].海洋开发与管理,2011,(09):90~92
    [160]中国海湾志编纂委员会.中国海湾志第三分册(山东半岛北部和东部海湾)[M].北京:海洋出版社,1991
    [161]邓兆青,周良明,吴伦宇,等.渤海重现期波高的数值计算[J].海洋湖沼通报,2007,(增刊):8~14
    [162]程义吉,高菁.莱州湾海域水文特征及冲淤变化分析[J].海岸工程,2006,25(3):1~6
    [163]房宪英,姜太良.莱州湾的潮流特征[J].海岸工程,1991,10(3):44~49
    [164]http://baike.baidu.com/view/148740.htm
    [165]中国科学院海洋研究所海洋地质研究室.渤海地质[M].北京:科学出版社,1985
    [166]山东省地质局.山东省前晚第三纪基岩地质图说明书[M].北京:地质出版社,1983,1~10
    [167]蔡东升,罗毓晖,姚长华.渤海莱州湾走滑拉分凹陷的构造研究及其石油勘探意义[J].石油学报,2001,22(2):19~25
    [168]何起祥.中国海洋沉积地质学[M].北京:海洋出版社,2006
    [169]许东禹,刘锡清,张训华,李唐根,阵邦彦.中国近海地质[M].北京:地质出版社,1997
    [170]秦蕴珊,赵一阳,陈丽蓉,等.黄海地质[M].北京:海洋出版社,1989
    [171]冯士笽,李凤歧,李少菁.海洋科学导论[M].北京:高等教育出版社,1996
    [172]杨慧良,王保军,桑向国.南黄海中部海区海底地貌特征[J].海洋地质动态,2004,20(8):10~13
    [173]刘忠臣,刘保华,黄振宗,等.中国近海及邻近海域地形地貌[M].海洋出版社,2005
    [174]姚永坚,冯志强,王嘹亮,等.南黄海构造样式的特征及含油气性[J].海洋地质动态,2002,18(11):30~32
    [175]陈沪生.扬子准地台下扬子盆地HQ-13线地球物理一地质综合解释纲要[A].见:中国南方油气勘探新领域探索论文集(第2辑)[C].1988,239~249
    [176]邓红婴.中下扬子区震旦纪一中三叠世海相盆地类型及后期改造[J].海相油气地质,1999,4(3):38~45
    [177]姚永坚,夏斌,冯志强,等.南黄海古生代以来构造演化[J].海相油气地质,1999,4(3):38~45
    [178]邢涛,张训华,张维冈.南黄海区域地质构造研究进展[J].海洋地质动态,2005,21(12):6~9
    [179]郝天珧,Suh Mancheol.根据重力数据研究黄海周边断裂带在海区的延伸[J].地球物理学报,2002,45(3):385~397.
    [180]李家彪主编.东海区域地质[M].北京:海洋出版社,2008
    [181]中国海岸带地貌编写组.中国海岸带地貌[M].北京:海洋出版社,1995
    [182]刘光鼎主编.中国海区及邻域地球物理系列图(1:5M)[M].北京:地质出版社,1992
    [183]冯晓杰,蔡东升.东海陆架盆地中新生代构造演化对烃源岩分布的控制作用[J].中国海上油气,2006,18(6):372~375
    [184]冯晓杰,蔡东升,王春修,等.东海陆架盆地中新生代构造演化特征[J].中国海上油气(地质),2003,17(1):33~37
    [185]侯方辉,张志珣,张训华,等.东海陆架盆地北部新构造运动特征[J].海洋地质动态,2010,26(11):1~6
    [186]秦蕴珊,赵一阳,陈丽蓉,等.东海地质[M].北京:地质出版社,1992
    [187]Holtz R D, Kovacs W D. Sheahan T C. An introduction to geotechnical engineering[M].New Jersey: Prentice-Hall Press,1981
    [188]唐大雄,刘佑荣,张文殊,等.工程岩土学(第二版)[M].北京:地质出版社,1999
    [189]水电部.土工试验规程SDS01-79(上册).水利出版社,1980
    [190]王正宏,李生林.介绍《土工试验规程》1978年修改稿中的土的分类法[J].岩土工程学报,1979,(01):75~80
    [191]李生林.国外土质分类情况简介[J].勘查技术,1979,(01):57~62
    [192]李生林.关于我国土质分类的几个问题和意见[J].勘察技术,1979,(06):1~4
    [193]唐大雄.关于塑性图的探讨[J].岩土工程学报,1981,3(2):77~81
    [194]马俊杰.机器人原型制造技术基础研究[D].武汉:华中科技大学,2007
    [195]朱银红,黄英娣.提高土工试验成果准确性的探讨[J].陕西建筑,2009,(10):71~72
    [196]Jolliffe I T. Principal Component Analysis[M]. New York: Springer-Verlag Inc,1986,85
    [197]Draper H. Applied Regression Analysis[M]. New York: Springer-Verlag Inc,1981,251
    [198]Anderson T. Introduction to Multivariate Statistical Analysis[M]. New York: Wilely,1984,136
    [199]Lindsay I. A Tutorial on Principal Components Analysis[M]. New York: Springer-Verlag Inc,2002
    [200]杜红磊,计永华,陈建.主成分分析在施工方案优选中的应用[J].硅谷,2010,(04):119
    [201]李振红,宋述刚,余运君.湖北农产品指标的主成分分析[J].太原师范学院学报(自然科学版),2008,7(4):38~40
    [202]李靖荣.基于主成分分析和聚类分析的水泥类上市公司经营业绩评价[J].南开大学,2007
    [203]王延涛.常规物理力学性质指标在湿陷机理上的体现[J].铁道工程学报,2007,(3):1~5
    [204]盛卫宁.区域竞争力的综合评价与提升策略探究-以山东省为例[D].济南,山东大学,2007
    [205]张文霖.主成分分析在SPSS中的操作应用[J].市场研究,2005,(12):31~34
    [206]刘桂宏.我国上市公司资产结构与企业绩效的相关性实证分析[D].重庆,重庆大学,2007
    [207]胡瑞林,李向全,官国琳,等.粘性土微结构定量模型及其工程地质特征研究[J].北京:地质出版社,1995,1~2
    [208]高国瑞.中国海洋土的微结构特征[J].工程勘察,1984,(4):32~36
    [209]冯秀丽,周松望,林霖,等.现代黄河三角洲粉土触变性研究及其应用[J].中国海洋大学学报(自然科学版),2004,34(6):1053~1056
    [210]Zhang Jiru, Tao Gaoliang, Huang Li, et al. Porosity models for determining the pore-sizedistribution of rocks and soils and their applications[J]. Chinese Science Bulletin,2010,55(34):3960~3970
    [211]胡昕,洪宝林,孙秋,等.岩土材料微结构图像预处理方法[J].河海大学学报,2009,37(1):91~95
    [212]刘晓璇.软粘土等向固结过程中微观孔隙结构演化机制的定量研究[D].硕士论文,武汉:武汉理工大学,2010,39~44
    [213]黄丽.饱和软粘土微观孔隙的定量分析及其分形研究[D].硕士论文,武汉:武汉理工大学,2007,11~22
    [214]张季如,祝杰,黄丽,等.土壤微观结构定量分析的IPP图像技术研究[J].武汉理工大学学报,2008,30(4):80~83
    [215]马立平.多元线性回归分析—现代统计分析方法的学与用(十)[J].北京统计,2000,(10):38~39
    [216]张忠尧,陈德良.基于多元线性回归的湖南省物流需求分析[J].物流科技,2010,(9):65~66
    [217]杨永忠.影响成人高校理论课教学质量的多元线性回归分析[J].教育教学论坛,2011,(20):112~114
    [218]常盛,朱亚玲.基于spss的多元线性回归算法建模的实例研究[J].数字技术与应用,2010,(10):1
    [219]吴燕开,刘松玉,洪振舜.土层工程性质与其沉积环境关系分析研究[J].工程地质学报,2003,12(03):263~267
    [220]郎晓辉,李悦,孔范龙,等.莱州湾环境存在的问题及保护对策[J].现代农业科技,2011,(3):296~297
    [221]蓝先洪,张训华,张志珣.南黄海沉积物的物质来源及运移研究[J].海洋湖沼通报,2005,(4):53~60
    [222]国家海洋局第一海洋研究所.CJ06区块海底底质调查与研究报告[R].2010
    [223]蓝先洪,申顺喜.南黄海中部沉积岩芯的地球化学特征[J].海洋地质与第四纪地质,2000,20(2):3~38
    [224]王昆山,石学法,蔡善武,等.黄河口及莱州湾表层沉积物中重矿物分布与来源[J].海洋地质与第四纪地质,2010,30(6):1~8
    [225]李凤业,史玉兰.渤海南部现代沉积物堆积速率和沉积环境[J].黄渤海海洋,1995,13(2):33~37
    [226]山东省科学技术委员会编.山东省海岸带和海涂资源综合调查报告集-综合调查报告
    [R].北京:中国科学技术出版社,1990
    [227]叶青超.黄河流域环境演变与水秒运行规律研究[M].济南:山东科学技术出版社,1994,220
    [228]熊怡,张家桢.中国水文区划[M].北京:科学出版社,1995.206
    [229]陈静生,李元惠,乐嘉祥,等.我国河流的物理与化学侵蚀作用[J].科学通报,1984,15:932~936
    [230]张经.盆地的风化作用对河流化学成分的控制[A].见:张经主编.中国主要河口的生物地球化学研究[M].北京:海洋出版社,1996.1~l8
    [231]范德江,杨作升,毛登,等.长江与黄河沉积物中粘土矿物及地化成分的组成[J].海洋地质与第四纪地质,2001,21(4):7~12
    [232]刘东生.黄土与环境[M].北京:科学出版社,1985.192~201
    [233]陈骏,仇纲,杨杰东.黄土碳酸盐Sr同位素组成与原生次生碳酸盐识别[J].自然科学进展,1997,7(6):731~734
    [234]蓝先洪,张宪军,赵广涛,等.南黄海NT1孔沉积物稀土元素组成与物源判别[J].地球化学,2009,38(2):123~132
    [235]刘敏厚,吴世迎,王永吉.黄海晚第四纪沉积[M].北京:海洋出版社,1987.69~178
    [236]Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea[J]. MarGeol,1989,87(2-4):195~205
    [237]郑光膺,孙岩.黄海第四纪地质[M].北京:科学出版社,1991.31~64
    [238]杨子赓,林和茂.中国第四纪地层与国际对比[M].北京:地质出版社,1996.31~35
    [239]李绍全,刘健,王圣洁,等.南黄海东侧陆架冰消期以来的海侵沉积特征[J].海洋地质与第四纪地质,1997,17(4):1~12
    [240]蓝先洪,申顺喜.南黄海中部沉积岩芯的微体古生物组合特征及古环境演化[J].海洋湖沼通报,2004,(3):16~21
    [241]Milliman J D, Shen Huang-Ting, Yang Zuo-Sheng, et al. Transport and deposition of riversediment in the Changjiang Estuary and adjacent continental shelf[J]. Continent Shelf Res,1985,4(1/2):37~44
    [242]赵一阳,李凤业,秦朝阳,等.试论南黄海中部泥的物源及成因[J].地球化学,1991,20(2):112~117
    [243]赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994:46~89
    [244]Kim G, Yang H S, Church T M. Geochemistry of alkaline earth elements(Mg, Ca, Sr, Ba)inthe surface sediments of the Yellow Sea[J]. Chem Geol,1999,153(1-4):1~10
    [245]陈志华,石学法,王湘芹.南黄海表层沉积物碳酸盐及Ca、Sr、Ba分布特征[J].海洋地质与第四纪地质,2000,20(4):9~16
    [246]庄丽华,阎军,常凤鸣,等.南黄海EY02-02孔碳酸盐含量特征与沉积物来源[J].海洋科学,2004,28(1):8~10
    [247]蓝先洪,王红霞,李日辉,等.南黄海沉积物常量元素组成与物源分析[J].地学前缘,2007,14(4):197~203
    [248]刘振夏.黄海表层沉积物的分布规律[J].海洋通报,1982,(1):43~51
    [249]郑光膺.南黄海第四纪层型地层对比[M].科学出版社,1989
    [250]吴世迎.黄海沉积特征综合研究[J].海洋学报,1981,3(3):460~471
    [251]王中波,杨守业,李从先.南黄海中部沉积物岩芯常量元素组成与古环境[J].地球化学,2004,33(5):483~490
    [252]徐刚,刘健,孔祥淮,等.南黄海中部泥质沉积成因和物源研究综述[J].海洋地质动态,2010,26(2):8~12
    [253]魏建伟,石学法,辛春英,等.南黄海粘土矿物分布特征及其指示意义[J].科学通报,2001,46(增刊):30~33
    [254]李凤业,杨永亮,何丽娟,等.南黄海东部泥区沉积速率和物源探讨[J].海洋科学,1999,(5):37~39
    [255]Yang S Y, Youn J S. Geochemical compositions and provenance discrimination of the centralsouth Yellow Sea sediments[J]. Marine Geology,2007,243:229~241
    [256]蓝先洪,王红霞,张志珣,等.表层沉积物稀土元素分布与物源关系[J].中国稀土学报,2006,26(6):745~749
    [257]蔡德陵,石学法,周卫健,等.南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据[J].科学通报简报,2001,46(supp.):16~23
    [258]国家海洋局第一海洋研究所.CJ08区块海底底质调查与研究报告[R].2010
    [259]胡日军.舟山群岛海域泥沙运移及动力机制分析[D].青岛:中国海洋大学,2009
    [260]Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelfclinform deposit in the East China Sea[J]. Continental Shelf Research,2006,26:2141~2156
    [261]Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the EastChina Sea[J]. Geomorphology,2007,85:208~22
    [262]肖尚斌,李安春,蒋富清,等.近2ka闽浙沿岸泥质沉积物物源分析[J].沉积学报,2005,23(2):268~274
    [263]杜建华.石拱桥防风化材料研发理论及试验方案研究[D].重庆:重庆交通大学,2011
    [264]牛军利,杨作升,李云海,等.长江与黄河河口沉积物环境磁学特征及其对比研究[J].海洋科学,2008,32(4):24~30
    [265]杨作升,赵晓辉,乔淑卿,等.长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价[J].中国海洋大学学报(自然科学版),2008,38(2):244~250
    [266]陈静生.河流水质原理及中国河流水质[M].北京:科学出版社,2006
    [267]刘明,范德江.长江、黄河入海沉积物中元素组成的对比[J],海洋科学进展,2009,27(1):42~50
    [268]毕乃双.黄河三角洲毗邻海域悬浮泥沙扩散和季节性变化及冲淤效应[D].青岛:中国海洋大学,2009
    [269]Hainbucher D, Wei Hao, Pohlmann T, et al. Variability of the Bohai Sea circulation based onmodel calculations[J]. Journal of Marine System,2004,44(3~4):153~174
    [270]赵保仁,庄国文,曹德明,等.渤海的环流、潮余流及其对沉积物分布的影响[J].海洋与湖沼,1995,26(5):466~473
    [271]赵光磊.现代黄河三角洲沿岸泥沙运移与岸滩侵蚀态势研究[J].海岸工程,2006,25(2):29~38
    [272]臧启运.黄河三角洲近岸泥沙[M].北京:海洋出版社,1996:102~127
    [273]胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散[J].泥沙研究,1996,(4):1~10
    [274]Martin J M, Zhang J, Shi M C, et al. Actual flux of the Huanghe(Yellow River)sediment tothe Western Pacific Ocean[J]. Netherlands Journal of Sea Research,1993,31:243~254
    [275]Jiang W, Pohlmann T, Sündermann J, et al. A modelling study of SPM transport in the BohaiSea[J]. Journal of Marine Systems,2000,24(3-4):175~200
    [276]江文胜.渤海悬浮物输运的动力模型和数值研究[D].青岛:中国海洋大学,1997,15~17
    [277]吴永胜,王兆印.渤海动力对黄河入海泥沙输移的影响[J].黄渤海海洋,2002,20(2):22~30
    [278]李东风.黄河河口二维泥沙有限元数学模型及应用-潮流和泥沙输运沉积过程模拟分析[J].海洋科学进展,2004,22(3):284~291
    [279]苏健,江文胜,孙文心.渤海中南部悬浮物海洋调查资料分析[J].青岛海洋大学学报,2001,31(5):647~652
    [280]江文胜,苏键,杨华,等.渤海悬浮物浓度分布和水动力特征的关系[J].海洋学报,2002,24(S1):212~217
    [281]江文胜,王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系[J].海洋与湖沼,2005,36(2):97~103
    [282]栾锡武,刘凤,孙钿奇,等.渤海构造收缩与沉积充填[J].现代地质,2011,25(3):429~439
    [283]吴鹏.东、黄海典型海域初级生产力和氮、磷营养要素的近代沉积记录[D].青岛:中国海洋大学,2007
    [284]尹秀珍,刘万洙,蓝先洪,等.南黄海表层沉积物的碎屑矿物、地球化学特征及物源分析[J].吉林大学学报(地球科学版),2007,37(3):491~499
    [285]申顺喜,陈丽蓉,高良,等.南黄海冷涡沉积和通道沉积的发现[J].海洋与湖沼,1993,24(6):563~570
    [286]毛汉礼.东海北部的一个气旋型涡旋[J].海洋科学集刊,1986,27:23~31
    [287]胡敦欣,丁宗信,熊庆成.东海北部的一个气旋型涡旋的初步分析[J].科学通报,1980,1:29~310
    [288]申顺喜.南黄海陆架沉积学研究[J].海洋科学,1993,(5):24~28
    [289]申顺喜,李安春,袁巍.南黄海中部的低能沉积环境[J].海洋与湖沼,1996,27(5):518~523
    [290]石学法,申顺喜,Yi Hi-il,等.南黄海现代沉积环境及动力沉积体系[J].科学通报简报,2001,46(增刊):1~6
    [291]王琦,杨作升.黄海南部表层沉积中的自生黄铁矿[J].海洋与湖沼,1981,12(1):25~32
    [292]Hu Dunxin. Upwelling and sedimentation dynamics I. The role of upwelling insedimentation in the Huanghai Sea and East China Sea-A description of generalfeatures[J].Chinese journal of oceanology and limnology,1984,2(1):12~19
    [293]项立辉.长江口滨外泥质区末次冰消期以来沉积特征与沉积环境演化[D].青岛:中国海洋大学,2008
    [294]肖尚斌.东海内陆架泥质沉积的古环境记录[D].青岛:中国科学院海洋研究所,2004
    [295]王艳萍,张为宇,田志光.东海表层水温年变化规律及其海洋学机理[J].海洋技术,2009,28(2):28~32
    [296]蒋小平,钟中,张金善.环台湾岛海域冬季水文要素的数值模拟[J].海洋预报,2006,23(3):51~57
    [297]杨作升,陈晓辉.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨[J].第四纪研究,2007,27(5):690~699
    [298]王可,郑洪波,Maarten Prin.东海内陆架泥质沉积反映的古环境演化[J].海洋地质与第四纪地质,2008,28(4):1~610
    [299]李广雪,杨子庚,刘勇,等.中国东部海域海底沉积环境成因研究[M].北京:科学出版社,2005
    [300]胡邦琦,李国刚,李军,等.黄海、渤海铅-210沉积速率的分布特征及其影响因素[J].海洋学报,2011,33(6):125~133
    [301]李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速[J].海洋与湖沼,2002,33(4):364~369
    [302]石学法,刘升发,乔淑卿,等.东海闽浙沿岸泥质区沉积特征与古环境记录[J].海洋地质与第四纪地质,2010,30(4):19~30
    [303]刘升发,石学法,刘焱光,等.东海内陆架泥质区沉积速率[J].海洋地质与第四纪地质,2009,29(6):1~7
    [304]Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the EastChina Sea[J]. Geomorphology,2007,85:208~224
    [305]冯蕾.垃圾填埋场替代衬垫研究[D].兰州:兰州大学,2009
    [306]张宏,柳艳华,杜东菊.渤海湾西岸沉积物粒度参数特征及其工程性质分析[J].天津城市建设学院学报,2007,13(2):104~110
    [307]Lambe T W, Whitman R V. Soil Mechanics, SI version[M]. New York: John Wiley,1979
    [308]Millogo Younoussa, Traore Karfa, Ouedraogo Raguilnaba, et al. Geotechnical, mechanical,chemical and mineralogical character-ization of a lateritic gravels of Sapouy(Burkina Faso)usedin road construction[J]. Construction and building materials,2008,22:70~76
    [309]高华喜,殷坤龙,周春梅.硅藻土滑坡稳定性分析及其时间预报[J].西北大学学报:自然科学版,2007,37(1):127~130
    [310]吕岩,佴磊,徐燕,等.有机质对草炭土物理力学性质影响的机理分析[J].岩土工程学报,2011,33(4):655~660
    [311]牟春梅,李佰锋.有机质含量对软土力学性质影响效应分析[J].水文地质工程地质,2008,(3):42~46
    [312]国家海洋局第一海洋研究所.黄海南部沉积特征研究报告[R].2001
    [313]刘升发.全新世以来东海内陆架泥质区沉积作用及古环境演变[D].青岛:中国科学院海洋研究所,2009
    [314]冯利军.含强膨胀性粘土砂的特征及其水文地质意义[J].煤田地质与勘探,1995,23(1):40~42
    [315]杨广庆,高民欢,张新宇.高速公路路基填料承载比影响因素研究[J].岩土工程学报,2006,28(1):97~100
    [316]高韬.商界高速公路风化岩填筑路基研究[J].西安:长安大学,2009
    [317]孟祥波,朱建德,杨甲奇.土质与土力学[M].北京:人民交通出版社,2008
    [318]杨森.高速公路路基填料CBR试验研究[J].交通世界(建养.机械),2010,(1):161~163
    [319]蒋涛,王玉花,姚丽.蒙脱土的有机化改性[J].胶体与聚合物,2003,21(3):21~30
    [320]骆大春.膨胀土工程性质及边坡稳定性研究[D].重庆:重庆交通大学,2008
    [321]高国瑞.近代土质学[M].南京:东南大学出版社,1999
    [322]Cornell University. Final report on soil solidification research, New York: Ithaca,1951
    [323]李丽华,陈轮,高盛焱.三江平原沼泽土微观特性试验研究[J].岩土力学,2009,30(8):2295~2299
    [324]钱宝,刘凌,肖潇.土壤有机质测定方法对比分析[J].河海大学学报(自然科学版),2011,39(1):34~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700