运行条件下输电线路热载荷能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,在如何提高输电能力这个问题上,研究和实践的焦点往往集中在电网的运行调度、控制方式,输电扩展方案以及输电元件的效能(材质、结构等)上,这对电网输送能力的提高固然是基础而重要的。然而,对应输电元件(本文指输电线路,也简称为导体)热载荷能力的一个关键量——最大允许载流量,其表达和求解一直处于相对保守的情形之中。因此,重新审视导体的热载荷能力,进而实时确定这一最大允许载流量,对挖掘现有电网潜在的输电能力有重要的理论意义和现实价值。
     首先,本文在综合国内外文献研究的基础上,分析了影响导体热载荷能力的因素及其作用机理。在对两种有代表性载流量确定标准进行比较的基础上,解析了适应实时条件下,电流引起发热、日照引起发热、对流散热和辐射散热的表达和计算方式,并进行了实际仿真和热平衡方程的解算分析。
     其次,在把握导体温度与载流的异同性质基础上,论述了运行环境下温度监视和预测的必要性,提出了一种扰动下(载流或环境状况变化)导体温度变化轨迹的快速计算方法,并以输电线路电阻变化为纽带、牵连输电线路温升的热平衡方程为核心的电热耦合潮流模型为对象,解析了载流、潮流与温度间的关系,这不仅为运行环境下导体热载荷能力评价提供了基础,同时也为实时下热载荷能力的定义和利用提供了计算和分析手段。
     最后,依照输电线路载流和温度的相互关系,将前人研究的问题进一步进行了归纳和总结,进一步理顺静态热定值、暂态热定值的概念。进而从电力系统运行调度、控制决策的角度,提出将电力系统的物理规律(潮流等)、输电元件的温度及其允许温升时间结合起来的超前热定值概念,并依照热惯性的特点,提出超前热定值在电力系统运行调度和控制决策中的应用场景,在热定值理念上有所进展。
     总体研究表明,保守下最大允许载流量的确定,限制了输电线路输电能力的发挥,实时环境下的超前热定值概念,将有效挖掘电网潜在的输电能力,进一步增强了电力系统抵御意外事故的能力,同时显现更大的社会效益。
On how to increase the transmission capacity, people have commonly focused on the research of the operation and dispatch styles of the power grids, building new transmission lines (also named conductor for short) or improving the ma(?)erial and structure of the conductors. All these actions are basal and important for the increase of the transmission capacity. However, as the key factor of the conductor carrying capacity, the current ratings are always expressed and solved in the conservative way. Therefore, it's significant and meaningful to explore the conductor heat capacity renewedly and ascertain the real-time current capacity for excavating potential transmission capacity.
     Firstly, based on the review of many domestic and abroad papers, this paper discusses the influencing factors of conductor heat capacity and its mechanism of action. Two representative calculation methods of current capacity is compared and the expressions of current heating, solar heating, convection and radiative cooling are analyzed under operating circumstance, then emulation and heat balance calculation is carried out.
     Next, according to the different characteristic between conductor temperature and current, the necessity of conductor temperature monitoring and forecast under operating circumstance is discussed. A fast calculation method is presented to trace the tendency of conductor temperature after a disturbance (alteration of current or circumstance conditions) and relationship among power flow, conductor current and temperature is analyzed through the model of electro-thermal coordination power flow which involves the conductor resistance calculation as connecting link and the heat balance equation for the temperature expression as a core. All that above not only provide a basis for the estimate of the conductor heat capacity of operating circumstance, but also present the analysis and calculation methods for the definition and utilization of real-time carrying capacity.
     Finally, based on the relationship between current and temperature of transmission lines, the problems being studied by predecessors are concluded and summarized, the concept of static thermal rating and transient thermal rating are defined. Then, a concept of advance thermal rating with the consideration of physics rules, conductor temperature and permitting time for temperature rise is proposed from the view of operation dispatch and control and its application occasions are performed according to the thermal inertia. The concept and definition of thermal rating has been developed.
     Above all, transmission capacity is limited by the utilization of current rating, advance thermal rating of real-time circumstances can exert the potential transmission capacity, further enhance the ability to withstand contingency and bring more social benefit.
引文
[1]张启平,钱之银.提高500千伏输电线路输送容量[C].2004年中国电机工程学会论文集,海南,2004
    [2]C.Mensah Bonsu,Application of the Global Positioning System to the Measurement of Overhead Power Transmission Conductor Sag[J].IEEE Transactions on Power Deivery,2002,Vol.17:272-278
    [3]霍显丰,吴国忠.一种基于GPRS的输电线路温度智能监测系统[J].供配电,2005(6):24-25
    [4]IEEE Standard Board,IEEE Standard for Calculation of Bare Overhead Conductor Temperatures[S].IEEE P738-1993.,Nov.1993
    [5]CIGRE.Thermal Behavior of Overhead Conductors[J].ELECTRA,1992,No.144:107-125
    [6]V.T.Morgan.Rating of bare overhead conductor for continuous currents.Proc.I.E.E.1967,114(10):1473-1482
    [7]叶鸿声.高压输电线路导线载流量计算的探讨[J].电力建设,2000(12):23-26
    [8]钱之银.输电线路实时动态增容的可行性研究[J].华东电力.2005(07):18-21
    [9]刘长青,刘胜春,陈永,郭文坚.提高导线发热允许温度的试验研究[J].电力建设,2003(08):24-29
    [10]刘长青,张学哲等.提高导线运行允许温度若干问题的探讨.电力设备,2004,5(8):44-47
    [11]M.W.Davis.A new thermal rating approach:the real time thermal rating system for strategic overhead conductor transmission lines,Part Ⅰ[J].IEEE Transactions on Power Apparatus and Systems,1977,vol.PAS-96:803-825
    [12]M.W.Davis.A new thermal rating approach:the real time thermal rating system for strategic overhead conductor transmission lines,Part Ⅱ[J].IEEE Transactions on Power Apparatus and Systems,1978,vol.PAS-97:810-824
    [13]M.W.Davis.A new thermal rating approach:the real time thermal rating system for strategic overhead conductor transmission lines,Part Ⅲ[J].IEEE Transactions on Power Apparatus and Systems,1978,vol.PAS-97:444-452
    [14]D.A.Douglass,A.A.Edris.Real-time monitoring and dynamic thermal rating of power transmission circuits[J].IEEE Trans on Power Delivery,1996,11(3):1407-1417
    [15]D.A.Douglass,A.A.Edris.Field studies of dynamic thermal rating methods for overhead lines [C].Transmission and Distribution Conference,New Orleans,USA,1999,2(7):642-651
    [16]J.K.Raniga,R.K.Rayudu.Dynamic rating of transmission lines-a New Zealand experience[C].IEEE Power Engineering Society Winter Meeting,2000,4(23-27):2403-2409
    [17]T.O.Seppa,E.Cromer,et al.Summer thermal capabilities of transmission lines in Northern California based on a comprehensive study of wind conditions[C].IEEE Transactions on Power Delivery,1993,Vol(3):1551-1561
    [18]J.L.Reding.A method for determining probability based allowable current ratings for BPA's transmission lines[J].IEEE Transactions on Power Delivery,1994,V9(1):153-161,Jan.
    [19]J.W.Jerrell,T.J.Parker.Critical span analysis of overhead conductors[J].IEEE Transactions on Power Delivery,1988,3(4):1942-1950
    [20]D.C.Lawry,J.R.Daconti.Overhead line thermal rating calculation based on conductor replica method[C].IEEE PES,Transmission and Distribution Conference and Exposition,2003, 3(7-12):880-885
    [21]J.S.Engelhardt,S.P.Basu.Design,installation,and field experience with an overhead transmission dynamic line rating system[C].IEEE Transmission and Distribution Conference,Proceedings.,1996,15-20:366-370
    [22]R.K.Henke,S.C.Sciacca.Dynamic thermal rating of critical lines-a study of real-time interface requirements[J].IEEE Computer Applications in Power,1989,2(3):46-51
    [23]CAT1.http://www.cat-1.com/
    [24]龚坚刚.架空输电线路动态增容研究[J].华东电力,2005(07):27-29
    [25]鹏,房鑫炎.采用DTCR模型提高输电线输送容量[J].华东电力,2005(03):11-14
    [26]张启平,钱之银.输电线路实时动态增容的可行性研究[J].电网技术,2005(19):18-21
    [27]金珩,王之浩.输电线路动态监测增容技术[J].华东电力,2005,33(7):30-33
    [28]梁俭.输电线路增容在线监测在电力系统中的应用[J].广东电力,2005,18(8):34-36
    [29]房鑫炎,鹏.动态热容等级(DTCR)模型及其实施方式[J].华东电力,2005,33(7):1-14
    [30]J.F.Hall,A.K.Deb.Prediction of overhead line ampacity by stochastic and deterministic models[J].IEEE Trans on Power Delivery,1988,3(2):789-800
    [31]M.Miura,T.Satoh,et al.Application of dynamic rating to evaluation of ATC with thermal constraints considering weather conditions[C].IEEE Power Engineering Society General Meeting,2006(18-22):1-6
    [32]Van de Wiel,G.M.L.M..A new probabilistic approach to thermal rating overhead line conductors evaluation in the Netherlands[C].International Conference on Overhead Line Design and Construction:Theory and Practice,1988(28-30):17-21
    [33]J.F.Hal,A.K.Deb.Economic evaluation of dynamic thermal rating by adaptive forecasting[J].IEEE Transactions on Power Delivery,1988,3(4):2048-2055
    [34]H.Wan,J.D.McCalley,V.Vittal.Increasing thermal rating by risk analysis[J].IEEE Transactions on Power Systems,1999,14(3):815-828
    [35]P.F.Mayer,D.R.Swatek.A proposed method for rationalizing the risks of seasonal transmission line ratings[C].2004 International Conference on Probabilistic Methods Applied to Power Systems,2004,12-16:232-235
    [36]H.Banakar,N.Alguaci,F.D.Galiana.Electrothermal coordination Part Ⅰ:Theory and implementation scheme[J].IEEE Transactions on Power System,2005,20(2):798-805
    [37]N.Alguacil,H.Banakar,F.D.Galiana.Electrothermal coordination Part Ⅱ:case studies[J].IEEE Trans on Power System,2005,20(2);1738-1745
    [38]刘士璋.铝绞线钢芯铝绞线交直流电阻及载流量的计算[J].电线电缆,1988:6-12
    [39]李博之.高压架空输电线路架线施工技术手册(架线工程计算部分,第2版)[M].中国电力出版社,2000
    [40]铝绞线及钢芯铝绞线-中华人民共和国国家标准[S],GB 1179-83
    [41]袁永毅,孙廷玺.影响钢芯铝绞线允许载流量的因素[J].电力安全技术,2001,3(5)
    [42]Neil P Schmidt.Comparison between IEEE and CIGRE ampacity standards[J].IEEE Transactions on Power Delivery,1999,14(4):1555-1562
    [43]B.S.Howington.AC resistance of ACSR-magnetic and temperature effects[J].IEEE Transactions on Power Apparatus and Systems,1985,PAS-104(6):1578-1583
    [44]刘观起,王钢.架空输电线路设计风速的确定和实时监测[J].华北电力学院学报,1996,23(3):18-23
    [45]廖宗高,张华,陈海波.特高压输电线路设计风速取值的探讨.电力建设,2006,27(4): 28-32
    [46]T.Y.Wong,J.A.Findlay,A.N.Mcmurtrie.An On-Line Method for Transmission Ampacity Evaluation[J].IEEE Transactions on Power Apparatus and Systems,1982,PAS-101:309-315
    [47]W.Z.Black,R.L.Rehberg.Simplified model for steady state and real-time ampacity of overhead Conductors[J].IEEE Transactions on Power Apparatus and Systems,1985,104:29-42
    [48]丁希亮,韩学山.电热协调动态过程分析[C].中国高等学校电力系统及其自动化专业第二十二届学术年会(编号:B036)
    [49]C.A.M.Nascimento,J.M.C.Brito et al.The state of the art for increased overhead line ampacity utilizing new technologies and statistical criteria[C].Transmission and Distribution Conference and Exposition:Latin America,2004,IEEE/PES 8-11:464-469
    [50]P.M.Callahan,D.A.Douglass.An experimental evaluation of a thermal line uprating by conductor temperature and weather monitoring[J].IEEE Transactions on Power Delivery,1988,3(4):1960-1967
    [51]D.A.Douglass,D.C.Lawry,et al.Dynamic thermal ratings realize circuit load limits[J].IEEE Computer Applications in Power,2000,13(1):38-44
    [52]D.A.Douglass.Weather-dependent versus static thermal line ratings of power overhead lines[J].IEEE Transactions on Power Delivery,1988,3(2):742-753
    [53]K.E.Holbert,G.T.Heydt.Prospects for dynamic transmission circuit ratings[C].ISCAS The 2001 IEEE International Symposium on Circuits and Systems,2001,3(6-9):205-208
    [54]T.O.Seppa.Accurate ampacity determination:temperature-sag model for operational real time ratings[J].IEEE Transactions on Power Delivery,1995,10(3):1460-1470
    [55]D.F.Stephen,A.M.Robert.Dynamic line rating in the operating environmert[J].IEEE transactions on power delivery,1990,5(2):1095-1105
    [56]W.Z.Black,W.R.Byrd.Real-time ampacity model for overhead lines[J].IEEE Transactions on Power Apparatus and Systems,1983,PAS-102:2289-2293
    [57]T.O.Seppa.A practical approach for increasing the thermal capacities of transmission lines[J].IEEE Transactions on Power Delivery,1993,8(3):1536-1550
    [58]Rambabu Adapa,D.A.Douglass.Dynamic Thermal Ratings:Monitors and Calculation Methods[C].Inaugural IEEE PES 2005 Conference and Exposition in Africa Durban,South Africa,2005,11-15:163-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700