竹材主要化学成分及其点击化学和开环共聚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染已经成为当今人们关注的热点,利用可再生木质纤维生物质转化为生物燃料、化学品和生物材料可有效补充或替代石油基产品。本论文以我国资源丰富的竹材为原料,对其主要化学成分(淀粉、纤维素、半纤维素和木质素)的分离纯化、结构鉴定、生物降解和化学改性进行了系统的研究,以期为竹材的高值化利用提供理论依据和技术支撑。本论文的主要研究内容有:
     (1)利用梯度乙醇(0%、15%、30%、45%、60%和75%)对寿竹碱溶性半纤维素进行了分级纯化,并采用糖分析、凝胶色谱(GPC)、红外(FTIR)、气质联用、1D(~1H和~(13)C)和2D异核单量子相关核磁共振(2D HSQC NMR)以及热分析(TGA)对其化学组成、结构特征和热稳定性进行了研究。结果表明寿竹半纤维素是以(1→4)-β-D-木糖为主链、以O-3位α-L-阿拉伯糖(5-12mol%)以及O-2位4-O-甲基-葡萄糖醛酸单元和乙酰基(0.8-11mol%)为侧链的O-乙酰-4-O-甲基-葡萄糖醛酸阿拉伯糖木聚糖,分子量为13400-67500g/mol,并且较高浓度乙醇能够沉淀出侧链较多的半纤维素。通过对所得半纤维素进行酶水解制备出了聚合度为1-6的低聚木糖,得率为21.5-40.6%,同时探讨了半纤维素结构对酶解制备低聚木糖的影响。此外,对提取出的淀粉采用固体核磁~(13)CCP/MAS和X-射线衍射进行了结构研究。
     (2)采用水、0.5%、1%、1%含60%乙醇、3%、5%和8%的NaOH对红壳雷竹进行了连续碱抽提分离出7种碱木质素,利用紫外、FTIR、GPC、2D HSQC NMR、硝基苯氧化以及TGA对该竹材碱木质素和磨木木质素的结构和热稳定性进行了对比研究。结果表明红壳雷竹磨木木素为SGH型木质素(S/G~1.3),且含有较多酯化的对香豆酸和醚化的阿魏酸,分子量为3320g/mol,而碱木质素分子量为970-3430g/mol。2D HSQCNMR结果表明,该竹材磨木木质素的主要连接键为-O-4'(65%),其次为-'(15%),此外,还含有少量的-5'(7%),-1'(4%),5-5'(4%)和末端肉桂酯(5%),并且45%的侧链γ位上发生了乙酰化。相比之下,碱木质素在碱分离过程中部分连接键发生了断裂。
     (3)在NaH的存在下,将五月季竹纤维素和丙炔氯在DMA/LiCl均相体系中反应合成出了丙炔纤维素;另一方面,以DCC为催化剂,使壳聚糖与4-叠氮苯甲酸在离子液体[Amim]Cl均相体系中反应合成出4-叠氮苯甲酰壳聚糖,分别对其合成条件进行了优化,并探讨了丙炔基团在葡萄糖单元上反应的选择性。随后在铜(I)催化下利用点击化学首次合成出了新的纤维素-点击-壳聚糖聚合物。采用FTIR、固体核磁~(13)C CP/MAS、扫描电镜和TGA对其结构、形态和热性能进行了表征研究。结果表明该聚合物的热稳定性比纤维素、壳聚糖和纤维素-壳聚糖复合物都高,并且少量的纤维素-点击-壳聚糖聚合物具有厘米级长度的空心结构。
     (4)在Al(Oi-Pr)3的存在下引发环氧丙烷开环,与五月季竹木聚糖发生接枝共聚反应,首次合成出了木聚糖接枝聚环氧丙烷,并探讨了不同反应条件对木聚糖接枝聚环氧丙烷的接枝度和分子量及其分布的影响。在此基础上,采用微波辅助合成了羧甲基木聚糖接枝聚环氧丙烷产物,利用FTIR及~1H和~(13)C NMR对木聚糖接枝聚环氧丙烷和羧甲基木聚糖接枝聚环氧丙烷结构进行了表征。
Currently, the main focus from people has been on the energy crisis and environmentalpollution. The conversion of lignocellulosic biomass into biofuels, chemicals, andbiomaterials is an alternative way for the supplement and/or replacement of petroleum-basedproducts. As one of the most important biomass, bamboo is rich-resource in China. In thisstudy, a series of research was carried out to focus on the isolation and purification of themain chemical compositions (starch, cellulose, hemicelluloses, and lignin) of bamboo andidentification of their structure as well as the biodegradation and chemical modification,which will provide the theory and technology for the high-valued utilization of bamboo. Theresearch and the results are described as follows:
     (1) Alkalisoluble hemicelluloses were fractionated by graded precipitation at ethanolconcentrations of0,15,30,45,60, and75%(v/v). Chemical composition and structuralfeatures of the six hemicellulosic subfractions were investigated by a combination of sugaranalysis, GPC, FT-IR, GC-MS,1D (~1H and~(13)C) and2D (HSQC) NMR spectra, and thermalanalysis. The results showed that the bamboo (Phyllostachys bambusoides f. shouzhu Yi)hemicelluloses were O-acetylated4-O-methyl-glucuronoarabinoxylans consisting of a linear(1→4)-β-D-xylopyranosyl backbone decorated with branches at O-3of α-L-arabinofuranosyl(5-12mol%) or at O-2of4-O-methylglucuronic acid units and acetyl groups (0.8-11mol%).The molecular weights of these polysaccharides ranged between13400and67500g/mol. Itwas also found that more branched hemicelluloses were precipitated at higher ethanolconcentrations. Moreover, xylo-oligosaccharides (XOS) with DP1-6were produced byenzymatic hydrolysis of hemicelluloses and the total yields of XOS were range of21.5to40.6%. At the same time, the effect of structural features of hemicelluloses on the preparationof XOS by enzymatic hydrolysis was also discussed. In addition, Starch from bamboo wasevaluated by means of solid-state~(13)C CP/MAS NMR and X-ray diffraction.
     (2) Seven lignin fractions from bamboo Phyllostachys incarnata Wen were isolated bythe sequential extractions with distilled water,0.5%and1%NaOH,60%ethanol containing1%NaOH, and3%,5%and8%NaOH. The chemical composition and structuralcharacterization of the milled wood lignin (MWL) and alkali-fractionated lignins werecomparatively investigated using FT-IR, GPC,2D HSQC, alkaline nitrobenzene oxidation,and thermal analysis. It was found that bamboo MWL (S/G~1.3) is of SGH type with aconsiderable amount of esterified p-coumaric acid and etherified ferulic acid. Molecularweights of3,320g/mol for MWL and varying weights between970and3,430g/mol for the alkali-fractionated lignins were obtained. Moreover,2D HSQC of MWL showed apredominance of β-O-4' linkages (65%), followed by β–β' linkages (15%) and lower amountsof β-5'(7%), β-1'(4%),5–5'(4%) linkages, and cinnamyl acetate end groups (5%). Inaddition, a percentage (~45%) of the lignin side chain was found to be acylated at theγ-carbon. However, the alkali-fractionated lignins lost parts of these linkages duringsuccessive alkaline fractionation processes.
     (3) Propargyl cellulose was synthesized by etherification of bamboo Phyllostachysbambusoide cellulose with propargyl chloride in DMA/LiCl in the presence of NaH. On theother hand, the functional azide groups were introduced onto the chitosan chains byDCC-catalyzed reacting chitosan with4-azidobenzoic acid in [Amim]Cl/DMF. The synthesisconditions of reactions were respectively optimized. Meanwhile, the regioselectivity ofpropargylation on anhydrous glucose unit was determined. Subsequently, the novelcellulose-click-chitosan polymer was obtained via click reaction between the terminal alkynegroups of cellulose and the azide groups on the chitosan backbone. The successful binding ofcellulose and chitosan was confirmed and characterized by FTIR and CP/MAS~(13)C NMRspectroscopy. TGA analyses indicated that the cellulose-click-chitosan polymer had a higherthermal stability than that of cellulose and chitosan as well as cellulose-chitosan complex.More interestingly, some hollow tubes with near millimeter length were also observed bySEM.
     (4) Xylan-g-PPO was firstly synthesized by grafting xylan from bamboo (Phyllostachysbambusoides) with poly(propylene oxide)(PPO) chains using the Al(Oi-Pr)3-initiatedring-opening polymerization. The effects of reaction conditions on the GD, molecular weightsand molecular weight distributions of xylan-g-PPO were also discussed. Furthermore, thecarboxymethyl groups were introduced onto xylan-g-PPO by microwave irradiation forsynthesis of carboxymethyl xylan-g-poly(propylene oxide). The resulted xylan-g-PPO andCMX-g-PPO were well characterized by FTIR and~(13)C NMR.
引文
[1]窦营,余学军,岩松文代.中国竹子资源的开发利用现状与发展对策[J].中国农业资源与区划,2011,32(5):65-70
    [2]胡安泰.关于毛竹计量方法与标准根的应用[J].湖南林业科技,1987,1:16-19
    [3]中国竹产业年产值约900亿元[J].世界竹藤通讯,2011,9(1):11
    [4]王慧杰,李自刚,辛婷,等.多菌种混合发酵玉米秸秆生产含酶蛋白饲料的研究[J].湖南农业科学,2011,(7):125-128
    [5] Cassidy D.P.; Ashton S.F. Wood Composition[OL]. http://learn.forestbioenergy.net/learning-modules/module-6/unit-1/illust_basics_cellulose.gif/view,2007
    [6] Alonso D.M.; Wettstein S.G.; Dumesic J.A. Bimetallic catalysts for upgrading of biomassto fuels and chemicals[J]. Chemical Society Reviews,2012,41:8075-8099
    [7]王文久,辉朝茂,刘翠,等.云南14种主要材用竹化学成分研究[J].竹子研究汇刊,1999,18(2):74-78
    [8]陈友地,秦文龙,李秀玲,等.十种竹材化学成分的研究[J].林产化学与工业,1985,5(4):32-39
    [9]熊建华,程昊,王双飞.几中竹子原料的化学组成与纤维形态及其CMP制浆性能的研究[J].造纸科学与技术,2010,29(1):1-5
    [10]史正军,辉朝茂,袁清泉.云南甜竹化学成分分析[J].世界竹藤通讯,2009,7(2):10-12
    [11]杨清,彭镇华,孙启祥,等.金平龙竹的化学成分与制浆性能[J].东北林业大学学报,2007,35(8):33-35
    [12]赵燕,张娟,杨益琴.几种竹子原料的化学组成及纤维形态的研究[J].造纸科学与技术,2011,30(6):108-112
    [13]苏文会,顾小平,马灵飞,等.大木竹化学成分的研究[J].浙江林学院学报,2005,22(2):180-184
    [14] Scurlock J.M.O.; Dayton D.C.; Hames B. Bamboo: an overlooked biomass resource?[J].Biomass&Bioenergy,2000,19:229-244
    [15]陈瑞,朱圣东,杨武,等.竹子化学成分的测定[J].武汉工程大学学报,2013,35(2):57-59
    [16] Wen J.L.; Sun Y.C.; Xu F., et al. Fractional isolation and chemical structure ofhemicellulosic polymers obtained from Bambusa rigida species[J]. Journal ofAgricultural and Food Chemistry,2010,58(21):11372-11383
    [17] Suzuki S.; Saito T.; Uchiyama M., et al. Studies on the anti-tumor activity ofpolysaccharides. I. Isolation of hemicelluloses from Yakushima-bamboo and their growthinhibitory activities against Sarcoma-180solid tumor[J]. Chemical&pharmaceuticalbulletin,1968,16(10):2032-2039
    [18] Sun S.N.; Yuan T.Q.; Li M.F., et al. Structural characterization of hemicelluloses frombamboo culms (Neosinocalamus affinis)[J]. Cellulose Chemistry and Technology,2012,46(3-4):165-176
    [19] Shi Z.J.; Xiao L.P.; Deng J., et al. Isolation and characterization of solublepolysaccharides of Dendrocalamus brandisii: a high-yielding bamboo species[J].Bioresources,2011,6(4):5151-5166
    [20] Kato Y.; Shiozawa R.; Takeda S., et al. Structural investigation of a β-D-glucan and axyloglucan from bamboo-shoot cell-walls[J]. Carbohydrate Research,1982,109:233-248
    [21] Li M.F.; Fan Y.M.; Xu F., et al. Structure and thermal stability of polysaccharide fractionsextracted from the ultrasonic irradiated and cold alkali pretreated bamboo[J]. Journal ofApplied Polymer Science,2011,121(1):176-185
    [22] Edashige Y.; Ishii T. Hemicellulosic polysaccharides from bamboo shoot cell-walls[J].Phytochemistry,1998,49(6):1675-1682
    [23] Yang D.; Zhong L.X.; Yuan T.Q., et al. Studies on the structural characterization of lignin,hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extractionfrom bamboo[J]. Industrial Crops and Products,2013,43:141-149
    [24] Aoyama M. Steaming treatment of bamboo grass. II. Characterization of solubilizedhemicellulose and enzymatic digestibility of water-extracted residue[J]. CelluloseChemistry and Technology,1996,30(5-6):385-393
    [25] Aoyama M.; Seki K. Acid catalysed steaming for solubilization of bamboo grass xylan[J].Bioresource Technology,1999,69(1):91-94
    [26] Shao S.L.; Wen G.F.; Jin Z.F. Changes in chemical characteristics of bamboo(Phyllostachys pubescens) components during steam explosion[J]. Wood Science andTechnology,2008,42(6):439-451
    [27] González D.; Santos V.; Parajó J.C. Manufacture of fibrous reinforcements forbiocomposites and hemicellulosic oligomers from bamboo[J]. Chemical EngineeringJournal,2011,167(1):278-287
    [28] Ando H.; Ohba H.; Sakaki T., et al. Hot-compressed-water decomposed products frombamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells[J].Toxicology in Vitro,2004,18(6):765-771
    [29] Ishii, T.; Hiroi, T. Linkage of phenolic acids to cell-wall polysaccharides of bambooshoot[J]. Carbohydrate Research,1990,206(2):297-310.
    [30] Ebringerová A.; Hromádková Z.; Malovíková A. et al. Structure and properties ofwater-soluble p-carboxybenzyl polysaccharide derivatives[J]. Journal of AppliedPolymer Science,2000,78(6):1191-1199
    [31] Ebringerová A.; Hromádková Z.; Heinze T. Hemicellulose[J]. Advanced PolymerScience,2005,186:1-67
    [32] Sun R.C.; Fang J.M.; Tomkinson J., et al. Esterification of hemicelluloses from poparchips in homogenous solution of N,N-dimethylformamide/lithium chloride[J]. Journal ofWood Chemistry and Technology,1999,19(4):287-306
    [33] Sun R.C.; Fang J.M.; Tomkinson J. Stearoylation of hemicelluloses from wheat straw[J].Polymer Degradation and Stability,2000,67(2):345-353
    [34] Fang J.M.; Sun R.C.; Fowler P., et al. Esterification of wheat straw hemicelluloses in theN,N-dimethylformamide/lithium chloride homogeneous system[J]. Journal of AppliedPolymer Science,1999,47(9):2301-2311
    [35] Sun X.F.; Sun R.C.; Sun J.X. Oleoylation of sugarcane bagasse hemicelluloses usingN-bromosuccinimide as a catalyst[J]. Journal of Science of Food and Agriculture,2004,84(8):800-810
    [36] Sun R.C.; Fang J.M.; Tomkinson J., et al. Acetylation of wheat straw hemicelluloses inN,N-dimethylacetamide/LiCl solvent system[J]. Industrial Crops and Products,1999,10(3):209-218
    [37] Ebringerová A. Structural diversity and application potential of hemicelluloses[J].Macromol Symposia,2006,232:1-12
    [38] Smart C.L.; Whistler R.L. Films from hemicelluloses acetates[J]. Science,1949,110:713-714
    [39] H ije A.; Grondahl M.; Tommeraas K., et al. Isolation and characterization ofphysicochemical and material properties of arabinoxylans from barley husks[J].Carbohydrate Polymers,2005,61:266-275
    [40] Gr ndahl M.; Eriksson L.; Gatenholm P. Material properties of plasticized hardwoodxylans for potential application as oxygen barrier films[J]. Biomacromolecules,2004,5(4):1528-1535
    [41] Hartman J.; Albertsson A.C.; Lindblad M.S., et al. Oxygen barrier materials fromrenewable sources: Material properties of softwood hemicellulose-based films[J]. Journalof Applied Polymer,2006,100(4):2985-2991
    [42] Goksu E.I.; Karamanlioglu M.; Bakir U., et al. Production and characterization of filmsfrom cotton stalk xylan[J]. Journal of Agricultural and Food Chemistry,2007,55(26):10685-10691
    [43] Gr ndahl M.; Gustafsson A.; Gatenholm P. Gas-phase surface fluorination ofarabinoxylan films[J]. Macromolecules,2006,39:2718-2721
    [44] Hartman J.; Albertsson A.C. Sj berg J. Surface-and bulk-modified galactoglucomannanhemicellulose films and film laminates for versatile oxygen barriers[J].Biomacromolecules,2006,7(6):1983-1989
    [45] Peng X.W.; Ren J.L.; Zhong L.X., et al. Xylan-rich hemicelluloses-graft-acrylic acidionic hydrogels with rapid responses to pH, salt, and organic solvents[J]. Journal ofAgricultural and Food Chemistry,2011,59,8208-8215
    [46] S derqvist L.M.; Albertsson A.C.; Ranucci E., et al. Biodegradable polymers fromrenewable sources: rheological characterization of hemicellulose-based hydrogels[J].Biomacromolecules,2005,6(2):684-690
    [47] Sun X F, Jing Z, Wang G. Preparation and swelling behaviors of poroushemicellulose-g-polyacrylamide hydrogels[J]. Journal of Applied Polymer Science,2012,128(3):1861-1870
    [48] Hettrich K.; Fanter C. Novel xylan gels prepared from oat spelts[J]. MacromolecularSymposia,2010,294(2):141-150
    [49] Hettrich K.; Fischer S.; Schr der N., et al. Derivatization and characterization of xylanfrom oat spelts[J]. Macromolecular symposia,2005,232(1):37-48
    [50] Deutschmann R.; Dekker R.F.H. From plant biomass to bio-based chemicals: Latestdevelopments in xylan research[J]. Biotechnology Advances,2012,30(6):1627-1640
    [51]李忠正.植物纤维资源化学[M].北京:中国轻工业出版社,2012:65-390
    [52] Beukes N.; Pletschke B.I. Effect of lime pre-treatment on the synergistic hydrolysis ofsugarcane bagasse by hemicellulases[J]. Bioresource technology,2010,101(12):4472-4478
    [53] Schooneveld-Bergmans M.E.F.; Beldman G.; Voragen A.G.J. Structural features of(glucurono) arabinoxylans extracted from wheat bran by barium hydroxide[J]. Journal ofCereal Science,1999,29(1):63-75
    [54] Montané D.; Nabarlatz D.; Martorell A., et al. Removal of lignin and associatedimpurities from xylo-oligosaccharides by activated carbon adsorption[J]. Industrial&engineering chemistry research,2006,45(7):2294-2302
    [55] H ije A.; Sandstr m C.; Roubroeks J.P., et al. Evidence of the presence of2-O-β-D-xylopyranosyl-α-L-arabinofuranose side chains in barley husk arabinoxylan[J].Carbohydrate Research,2006,341(18):2959-2966
    [56] Jayasinghearachchi H.S.; Singh S.; Sarma P.M., et al. Fermentative hydrogen productionby new marine Clostridium amygdalinum strain C9isolated from offshore crude oilpipeline[J]. International Journal of Hydrogen Energy,2010,35(13):6665-6673
    [57] Li S.; Lai C.; Cai Y., et al. High efficiency hydrogen production from glucose/xylose bythe Δldh-deleted Thermoanaerobacterium strain[J]. Bioresource technology,2010,101(22):8718-8724
    [58] Qureshi N.; Li X.L.; Hughes S., et al. Butanol production from corn fiber xylan usingClostridium acetobutylicum[J]. Biotechnology progress,2006,22(3):673-680
    [59] Li B.Z.; Balan V.; Yuan Y.J., et al. Process optimization to convert forage and sweetsorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment[J].Bioresource technology,2010,101(4):1285-1292
    [60] Li X.; Kim T.H.; Nghiem N.P. Bioethanol production from corn stover using aqueousammonia pretreatment and two-phase simultaneous saccharification and fermentation(TPSSF)[J]. Bioresource technology,2010,101(15):5910-5916
    [61] Kim T.H.; Taylor F.; Hicks K.B. Bioethanol production from barley hull using SAA(soaking in aqueous ammonia) pretreatment[J]. Bioresource Technology,2008,99(13):5694-5702
    [62] Zakzeski J.; Bruijnincx P.C.A.; Jongerius A.L., et al. The catalytic valorization of ligninfor the production of renewable chemicals[J]. Chemical Reviews,2010,110(6):3552-3599
    [63]陈嘉翔.制浆原理与工程[M].北京:中国轻工业出版社,1990:45-106
    [64] Lu F.; Ralph J. DFRC method for lignin analysis.1. New method for β-aryl ethercleavage: lignin model studies[J]. Journal of Agricultural and Food Chemistry,1997,45(12):4655-4660
    [65]杨奇志,刘佳,蒋序林.点击化学在生物医用高分子中的应用[J].化学进展,2010,22(12):2377-2387
    [66] Srinivasachari S.; Liu Y.; Zhang G., et al. Trehalose click polymers inhibit nanoparticleaggregation and promote pDNA delivery in serum[J]. Journal of the American ChemicalSociety,2006,128(25):8176-8184
    [67] Srinivasachari S.; Liu Y.; Prevette L.E., et al. Effects of trehalose click polymer length onpDNA complex stability and delivery efficacy[J]. Biomaterials,2007,28(18):2885-2898
    [68] Srinivasachari S.; Reineke T.M. Versatile supramolecular pDNA vehicles via “clickpolymerization” of β-cyclodextrin with oligoethyleneamines[J]. Biomaterials,2009,30(5):928-938
    [69] Jiang X.; Lok M.C.; Hennink W.E. Degradable-brushed pHEMA–pDMAEMAsynthesized via ATRP and click chemistry for gene delivery[J]. Bioconjugate chemistry,2007,18(6):2077-2084
    [70] Crescenzi V.; Cornelio L.; Di Meo C., et al. Novel hydrogels via click chemistry:synthesis and potential biomedical applications[J]. Biomacromolecules,2007,8(6):1844-1850
    [71] Touris A.; Hadjichristidis N. Cyclic and multiblock polystyrene-block-polyisoprenecopolymers by combining anionic polymerization and azide/alkyne “click” chemistry[J].Macromolecules,2011,44(7):1969-1976
    [72] Cai T.; Neoh K.G.; Kang E.T. Poly (vinylidene fluoride) graft copolymer membraneswith “clickable” surfaces and their functionalization[J]. Macromolecules,2011,44(11):4258-4268
    [73] Mynar J.L.; Yamamoto T.; Kosaka A., et al. Radially diblock nanotube: Site-selectivefunctionalization of a tubularly assembled hexabenzocoronene[J]. Journal of theAmerican Chemical Society,2008,130(5):1530-1531
    [74]邱素艳,高森,林振宇,等.点击化学最新进展[J].化学进展,2011,23(4):637-648
    [75] Malik M.I.; Trathnigg B.; Kappe C.O. Selectivity of PEO-block-PPO diblockcopolymers in the microwave-accelerated, anionic ring-opening polymerization ofpropylene oxide with PEG as Initiator[J]. Macromolecular Chemistry and Physics,2007,208(23):2510-2524
    [76] Degée P.; Dubois P.; Jér me R. Bulk polymerization of lactides initiated by aluminiumisopropoxide,3. Thermal stability and viscoelastic properties[J]. MacromolecularChemistry and Physics,1997,198(6):1985-1995
    [77] Biela T.; Kowalski A.; Libiszowski J., et al. Progress in polymerization of cyclic esters:mechanisms and synthetic applications[J]. Macromolecular symposia,2006,240(1):47-55
    [78] O'Keefe B.J.; Monnier S.M.; Hillmyer M.A., et al. Rapid and controlled polymerizationof lactide by structurally characterized ferric alkoxides[J]. Journal of the AmericanChemical Society,2001,123(2):339
    [79] Raquez J.M.; Degée P.; Narayan R., et al. Some thermodynamic, kinetic, and mechanisticaspects of the ring-opening polymerization of1,4-dioxan-2-one initiated by Al (Oi-Pr)3in bulk[J]. Macromolecules,2001,34(24):8419-8425
    [80] Degée P.; Dubois P.; Jérǒme R., et al. New catalysis for fast bulk ring-openingpolymerization of lactide monomers[J]. Macromolecular Symposia,1999,144(1):289-302
    [81] Chisholm M.H.; Navarro-Llobet D;, Simonsick W.J. A comparative study in thering-opening polymerization of lactides and propylene oxide[J]. Macromolecules,2001,34(26):8851-8857
    [82] Stopper A.; Okuda J.; Kol M. Ring-opening polymerization of lactide with Zr complexesof {ONSO} ligands: From heterotactically inclined to isotactically inclined poly (lacticacid)[J]. Macromolecules,2012,45(2):698-704
    [83]张治国,尹红.环氧乙烷和环氧丙烷开环聚合[J].化学进展,2007,19(1):145-152
    [84] Albertsson A.C.; Varma I.K. Recent developments in ring opening polymerization oflactones for biomedical applications[J]. Biomacromolecules,2003,4(6):1466-1486
    [85] Guo Y.Z.; Wang X.H.; Shu X.C., et al. Self-assembly and paclitaxel loading capacity ofcellulose-graft-poly(lactide) nanomicelles[J]. Journal of Agricultural and FoodChemistry,2012,60(15):3900-3908
    [86]徐琪,刘立建.淀粉在离子液体中与丙交酯的开环接枝研究[J].2007年全国高分子学术论文报告会论文摘要集(下册),2007
    [87]隋圆,赵京波,杨万泰. ε-己内酯在PVA膜上原位开环接枝聚合引发体系的研究[J].北京化工大学学报(自然科学版),2003,5:66-70
    [88]李玮,张文凯,张黎明.纤维素/ε-己内酯接枝共聚物在离子液体中的均相合成及性能研究[J].2011年全国高分子学术论文报告会论文摘要集,2011
    [89] Hallac B.B.; Sannigrahi P.; Pu Y., et al. Biomass characterization of Buddleja davidii: apotential feedstock for biofuel production[J]. Journal of Agricultural and Food Chemistry,2009,57(4):1275-1281
    [90] FitzPatrick M.; Champagne P.; Cunningham M.F., et al. A biorefinery processingperspective: treatment of lignocellulosic materials for the production of value-addedproducts[J]. Bioresource Technology,2010,101(23):8915-8922
    [91] Hansen N.M.L.; Plackett D. Sustainable films and coatings from hemicelluloses: areview[J]. Biomacromolecules,2008,9(6):1493-1505
    [92] Tan T.; Shang F.; Zhang X. Current development of biorefinery in China[J].Biotechnology Advances,2010,28(5):543-555
    [93] Cheetham N.W.H.; Tao L. Variation in crystalline type with amylose content in maizestarch granules: an X-ray powder diffraction study[J]. Carbohydrate polymers,1998,36(4):277-284
    [94] Zobel H.F. Starch crystal transformations and their industrial importance[J].Starch-St rke,1988,40(1):1-7
    [95] Gírio F M, Fonseca C, Carvalheiro F, et al. Hemicelluloses for fuel ethanol: A review[J].Bioresource Technology,2010,101(13):4775-4800
    [96] Izydorczyk M.S.; Biliaderis C.G. Cereal arabinoxylans: advances in structure andphysicochemical properties[J]. Carbohydrate Polymers,1995,28(1):33-48
    [97] van Hazendonk J.M.; Reinerik E.J.M.; de Waard P., et al. Structural analysis of acetylatedhemicellulose polysaccharides from fibre flax (Linum usitatissimum L.)[J]. CarbohydrateResearch,1996,291:141-154
    [98] Gullón P.; Moura P.; Esteves M.P., et al. Assessment on the fermentability ofxylooligosaccharides from rice husks by probiotic bacteria[J]. Journal of Agricultural andFood Chemistry,2008,56(16):7482-7487
    [99] Krishna H.S.; Chowdary G V. Optimization of simultaneous saccharification andfermentation for the production of ethanol from lignocellulosic biomass[J]. Journal ofAgricultural and Food Chemistry,2000,48(5):1971-1976.
    [100] Izydorczyk M.S.; Macri L.J.; MacGregor A.W. Structure and physicochemicalproperties of barley non-starch polysaccharides-II. Alkaliextractable β-glucans andarabinoxylans[J]. Carbohydrate Plymers,1998,35(3):259-269
    [101] Peng F.; Ren J.L.; Xu F., et al. Fractionation of alkali-solubilized hemicelluloses fromdelignified Populus gansuensis: structure and properties[J]. Journal of Agricultural andFood Chemistry,2010,58(9):5743-5750
    [102] Peng F.; Ren J.L.; Xu F., et al. Comparative studies on the physico-chemical propertiesof hemicelluloses obtained by DEAE-cellulose-52chromatography from sugarcanebagasse[J]. Food Research International,2010,43(3):683-693
    [103] Dervilly G.; Saulnier L.; Roger P., et al. Isolation of homogeneous fractions from wheatwater-soluble arabinoxylans. Influence of the structure on their macromolecularcharacteristics[J]. Journal of Agricultural and Food Chemistry,2000,48(2):270-278
    [104] Maekawa E. Studies on hemicellulose of bamboo[J]. Wood Research,1976,59:153-179
    [105] Fengel D.; Shao X. A chemical and ultrastructural study of the bamboo speciesPhyllostachys makinoi Hay[J]. Wood Science and Technology,1984,18(2):103-112
    [106] Yoshida S.; Kuno A.; Saito N., et al. Structure of xylan from culms of bamboo grass(Sasa senanensis Rehd.)[J]. Journal of Wood Science,1998,44(6):457-462
    [107] Guha S.R.D.; Pant P.C. Hemicellulose from bamboo (Bambusa arundinace)[J]. IndianPulp Paper,1967,21:439-440
    [108] Ingle T.R.; Bose J.L. Nature of hemicelluloses of bamboo (Dendrocalamus strictus)[J].Indian Journal Chemistry,1969,7:783-785
    [109] Leopold B.; McIntosh D.C. Chemical composition and physical properties of woodfibers[J]. Tappi,1961,44(3):230-232
    [110] Sun R.C.; Tompkinson J. Comparative study of organic solvent and water-solublelipophilic extractives from wheat straw I: yield and chemical composition[J]. Journal ofWood Science,2003,49(1):47-52
    [111] Laine C.; Tamminen T.; Vikkula A., et al. Methylation analysis as a tool for structuralanalysis of wood polysaccharides[J]. Holzforschung,2002,56(6):607-614
    [112] Sweet D.P.; Shapiro R.H.; Albersheim P. Quantitative analysis by various GLCresponse-factor theories for partially methylated and partially ethylated alditol acetates[J].Carbohydrate Research,1975,40(2):217-225
    [113] Nara S.; Komiya T. Studies on the relationship between water-satured state andcrystallinity by the diffraction method for moistened potato starch[J]. Starch-St rke,1983,35(12):407-410
    [114] Vi tor R.J.; Angelino S.; Voragen A.G.J. Structural features of arabinoxylans frombarley and malt cell wall material[J]. Journal of Cereal Science,1992,15(3):213-222
    [115] Fazilah A.; Azemi M.N.M.; Karim A.A., et al. Physicochemical properties ofhydrothermally treated hemicellulose from oil palm frond[J]. Journal of Agricultural andFood Chemistry,2009,57(4):1527-1531
    [116] Baik M.Y.; Dickinson L.C.; Chinachoti P. Solid-state13C CP/MAS NMR studies onaging of starch in white bread[J]. Journal of Agricultural and Food Chemistry,2003,51(5):1242-1248
    [117] Veregin R.P.; Fyfe C.A.; Marchessault R.H., et al. Characterization of the crystalline Aand B starch polymorphs and investigation of starch crystallization by high-resolutioncarbon-13CP/MAS NMR[J]. Macromolecules,1986,19(4):1030-1034
    [118] Hoffmann R.A.; Geijtenbeek T.; Kamerling J.P., et al.1H-N.m.r. study of enzymicallygenerated wheat-endosperm arabinoxylan oligosaccharides: structures of hepta-totetradeca-saccharides containing two or three branched xylose residues[J]. CarbohydrateResearch,1992,223:19-44
    [119] Teleman A.; Lundqvist J.; Tjerneld F., et al. Characterization of acetylated4-O-methylglucuronoxylan isolated from aspen employing1H and13C NMRspectroscopy[J]. Carbohydrate Research,2000,329(4):807-815
    [120] Lisboa S.A.; Evtuguin D.V.; Neto C.P., et al. Isolation and structural characterization ofpolysaccharides dissolved in Eucalyptus globulus kraft black liquors[J]. CarbohydratePolymers,2005,60(1):77-85
    [121] Kardo ová A.; Ebringerová A.; Alf ldi J., et al. Structural features and biologicalactivity of an acidic polysaccharide complex from Mahonia aquifolium (Pursh) Nutt[J].Carbohydrate Polymers,2004,57(2):165-176
    [122] Ishii T. Acetylation at O-2of arabinofuranose residues in feruloylated arabinoxylanfrom bamboo shoot cell-walls[J]. Phytochemistry,1991,30(7):2317-2320
    [123] Brillouet J.M.; Joseleau J.P.; Utille J.P., et al. Isolation, purification and characterizationof a complex heteroxylan from industrial wheat bran[J]. Journal of Agricultural and FoodChemistry,1982,30(3):488-495
    [124] Shiiba K.; Yamada H.; Hara H., et al. Purification and characterization of twoarabinoxylans from wheat bran[J]. Cereal Chemistry,1993,70(2):209-214
    [125] Ebringerová A.; Hromádková Z.; Petráková E., et al. Structural features of awater-soluble L-arabino-D-xylan from rye bran[J]. Carbohydrate Research,1990,198(1):57-66
    [126] Saulnier L.; Mestres C.; Doublier J.L., et al. Studies of polysaccharides solubilizedduring alkaline cooking of maize kernels[J]. Journal of Cereal Science,1993,17(3):267-276
    [127] Nowakowski D.J.; Jones J.M. Uncatalysed and potassium-catalysed pyrolysis of thecell-wall constituents of biomass and their model compounds[J]. Journal of Analyticaland Applied Pyrolysis,2008,83(1):12-25
    [128] Fengel D.; Wegener G. Wood: chemistry, ultrastructure, reactions[M]. de Gruyter,1983
    [129] Higuchi T.; Tanahashi M.; Sato A. Acidolysis of bamboo lignin. I. Gas-liquidchromatography and mass spectrometry of acidolysis monomers[J]. Mokuzai Gakkaishi,1972,18(4):183-189
    [130] Fengel D.; Shao X. Studies on the lignin of the bamboo species Phyllostachys makinoiHay[J]. Wood Science and Technology,1985,19(2):131-137
    [131] Akao Y.; Seki N.; Nakagawa Y., et al. A highly bioactive lignophenol derivative frombamboo lignin exhibits a potent activity to suppress apoptosis induced by oxidative stressin human neuroblastoma SH-SY5Y cells[J]. Bioorganic&Medicinal Chemistry,2004,12(18):4790-4801
    [132] Kurokawa T.; Itagaki S.; Yamaji T., et al. Antioxidant activity of a novel extract frombamboo grass (AHSS) against ischemia-reperfusion injury in rat small intestine[J].Biological and Pharmaceutical Bulletin,2006,29(11):2301-2303
    [133] Bj rkman A. Studies on finely divided wood. Part1. Extraction of lignin with neutralsolvents[J]. Svensk Papperstidning,1956,59(13):477-485
    [134] Xu F.; Sun R.C.; Sun J.X., et al. Determination of cell wall ferulic and p-coumaric acidsin sugarcane bagasse[J]. Analytica Chimica Acta,2005,552(1):207-217
    [135] Peng F.; Ren J.L.; Xu F., et al. Fractional study of alkali-soluble hemicellulosesobtained by graded ethanol precipitation from sugar cane bagasse[J]. Journal ofAgricultural and Food Chemistry,2009,58(3):1768-1776
    [136] Billa E.; Tollier M.T.; Monties B. Characterisation of the monomeric composition of insitu wheat straw lignins by alkaline nitrobenzene oxidation: Effect of temperature andreaction time[J]. Journal of the Science of Food and Agriculture,1996,72(2):250-256
    [137] Rencoret J.; Marques G.; Gutiérrez A., et al. HSQC-NMR analysis of lignin in woody(Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plantmaterials at the gel state[J]. Holzforschung,2009,63(6):691-698
    [138] Higuchi T. Chemistry and biochemistry of bamboo[J]. Bamboo Journal,1987,4:132-145
    [139] Shimada M.; Fukuzuka T.; Higuchi T. Ester linkages of p-coumaric acid in bamboo andgrass lignins[J]. Tappi,1971,54(1):72-78
    [140] Lu F.; Ralph J. Detection and determination of p-coumaroylated units in lignins[J].Journal of Agricultural and Food Chemistry,1999,47(5):1988-1992
    [141]李志清,陈中豪,林曙明.不同年生慈竹木素特性及分布的研究[J].纤维素科学与技术,1993,1(2):39-45
    [142] Shao S.; Jin Z.; Weng Y.H. Lignin characteristics of Abies beshanzuensis, a criticallyendangered tree species[J]. Journal of Wood Science,2008,54(1):81-86
    [143] del Río J.C.; Gutiérrez A.; Hernando M., et al. Determining the influence of eucalyptlignin composition in paper pulp yield using Py-GC/MS[J]. Journal of Analytical andApplied Pyrolysis,2005,74(1):110-115
    [144] Fergus B.J.; Goring D.A.I. The location of guaiacyl and syringyl lignins in birch xylemtissue[J]. Holzforschung,1970,24(4):113-117
    [145] Martínez á.T.; Rencoret J.; Marques G., et al. Monolignol acylation and lignin structurein some nonwoody plants: a2D NMR study[J]. Phytochemistry,2008,69(16):2831-2843
    [146] Villaverde J.J.; Li J.; Ek M., et al. Native lignin structure of Miscanthus x giganteus andits changes during acetic and formic acid fractionation[J]. Journal of Agricultural andFood Chemistry,2009,57(14):6262-6270
    [147] Del Rio J.C.; Rencoret J.; Marques G., et al. Structural characterization of the ligninfrom jute (Corchorus capsularis) fibers[J]. Journal of Agricultural and Food Chemistry,2009,57(21):10271-10281
    [148] Del Rio J.C.; Gutierrez A.; Martinez A.T. Identifying acetylated lignin units innon-wood fibers using pyrolysis-gas chromatography/mass spectrometry[J]. RapidCommunications in Mass Spectrometry,2004,18(11):1181-1185
    [149] Lu F.; Ralph J. Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf[J].Chemical Communications,2002(1):90-91
    [150] Nakamura Y.; Higuchi T. Ester linkage of p-coumaric acid in bamboo lignin[J].Holzforschung,1976,30(6):187-191
    [151] Terry B.J.; Jack W.E.; Rubin R.A., et al. Thermodynamic parameters governinginteraction of EcoRI endonuclease with specific and nonspecific DNA sequences[J].Journal of Biological Chemistry,1983,258(16):9820-9825
    [152] Faix O.; Jakab E.; Till F., et al. Study on low mass thermal degradation products ofmilled wood lignins by thermogravimetry-mass-spectrometry[J]. Wood Science andTechnology,1988,22(4):323-334
    [153] Shen D.K.; Gu S.; Luo K.H., et al. The pyrolytic degradation of wood-derived ligninfrom pulping process[J]. Bioresource Technology,2010,101(15):6136-6146
    [154] Liu Q.; Wang S.; Zheng Y., et al. Mechanism study of wood lignin pyrolysis by usingTG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis,2008,82(1):170-177
    [155] Zeng J.B.; He Y.S.; Li S.L., et al. Chitin Whiskers: An Overview[J].Biomacromolecules,2011,13(1):1-11
    [156] Fernandes S.C.M.; Oliveira L.; Freire C.S.R., et al. Novel transparent nanocompositefilms based on chitosan and bacterial cellulose[J]. Green Chemistry,2009,11(12):2023-2029
    [157] Peterson J.J.; Willgert M.; Hansson S., et al. Surface-Grafted conjugated polymers forhybrid cellulose materials[J]. Journal of Polymer Science Part A: Polymer Chemistry,2011,49(14):3004-3013
    [158] Du P.; Liu P.; Mu B., et al. Monodisperse superparamagnetic pH-sensitive single-layerchitosan hollow microspheres with controllable structure[J]. Journal of Polymer SciencePart A: Polymer Chemistry,2010,48(22):4981-4988
    [159] Ding C.; Zhao L.; Liu F., et al. Dually responsive injectable hydrogel prepared by in situcross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO[J].Biomacromolecules,2010,11(4):1043-1051
    [160] Paul W.; Sharma C.P. Chitosan, a drug carrier for the21st century: a review[J]. STPPharma Sciences,2000,10(1):5-22
    [161] Siró I.; Plackett D. Microfibrillated cellulose and new nanocomposite materials: areview[J]. Cellulose,2010,17(3):459-494
    [162] Qi H.; Chang C.; Zhang L. Properties and applications of biodegradable transparent andphotoluminescent cellulose films prepared via a green process[J]. Green Chemistry,2009,11(2):177-184
    [163] Dutta P.K.; Tripathi S.; Mehrotra G.K., et al. Perspectives for chitosan basedantimicrobial films in food applications[J]. Food Chemistry,2009,114(4):1173-1182
    [164] Ifuku S.; Tsujii Y.; Kamitakahara H., et al. Preparation and characterization of redoxcellulose Langmuir-Blodgett films containing a ferrocene derivative[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2005,43(21):5023-5031
    [165] Semsarilar M.; Ladmiral V.; Perrier S. Synthesis of a cellulose supported chain transferagent and its application to RAFT polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48(19):4361-4365
    [166] Roy D.; Semsarilar M.; Guthrie J.T., et al. Cellulose modification by polymer grafting:a review[J]. Chemical Society Reviews,2009,38(7):2046-2064
    [167] O’Connell D.W.; Birkinshaw C.; O’Dwyer T.F. Heavy metal adsorbents prepared fromthe modification of cellulose: A review[J]. Bioresource Technology,2008,99(15):6709-6724
    [168] Ravi K.M.N.V. A review of chitin and chitosan applications[J]. Reactive and functionalpolymers,2000,46(1):1-27
    [169] Jenkins D.W.; Hudson S.M. Review of vinyl graft copolymerization featuring recentadvances toward controlled radical-based reactions and illustrated with chitin/chitosantrunk polymers[J]. Chemical Reviews,2001,101(11):3245-3274
    [170] Guibal E. Heterogeneous catalysis on chitosan-based materials: a review[J]. Progress inPolymer Science,2005,30(1):71-109
    [171] Mitsumata T.; Suemitsu Y.; Fujii K., et al. pH-response of chitosan, κ-carrageenan,carboxymethyl cellulose sodium salt complex hydrogels[J]. Polymer,2003,44(23):7103-7111
    [172] Zhao Q.; Qian J.W.; An Q.F., et al. A facile route for fabricating novel polyelectrolytecomplex membrane with high pervaporation performance in isopropanol dehydration[J].Journal of Membrane Science,2008,320(1):8-12
    [173] Trellenkamp T.; Ritter H. Poly (N-vinylpyrrolidone) bearing covalently attachedcyclodextrin via click-chemistry: synthesis, characterization, and complexation behaviorwith phenolphthalein[J]. Macromolecules,2010,43(13):5538-5543
    [174] Tang Y.; Sun J.; Fan H., et al. An improved complex gel of modified gellan gum andcarboxymethyl chitosan for chondrocytes encapsulation[J]. Carbohydrate polymers,2012,88(1):46-53
    [175] Kolb H.C.; Finn M.G.; Sharpless K.B. Click chemistry: diverse chemical function froma few good reactions[J]. Angewandte Chemie International Edition,2001,40(11):2004-2021
    [176] Torn e C.W.; Christensen C.; Meldal M. Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed1,3-dipolar cycloadditions of terminalalkynes to azides[J]. The Journal of Organic Chemistry,2002,67(9):3057-3064.
    [177] Polaske N.W.; McGrath D.V.; McElhanon J.R. Thermally reversible dendronized linearAB step-polymers via “Click” Chemistry[J]. Macromolecules,2011,44(9):3203-3210
    [178] González-Vera J.A.; Lukovi E.; Imperiali B. Synthesis of red-shifted8-hydroxyquinoline derivatives using click chemistry and their incorporation intophosphorylation chemosensors[J]. The Journal of organic chemistry,2009,74(19):7309-7314
    [179] Alissandratos A.; Baudendistel N.; Hauer B., et al. Biocompatible functionalisation ofstarch[J]. Chemical. Communications.,2010,47(2):683-685
    [180] Ouadahi K.; Allard E.; Oberleitner B., et al. Synthesis of azide-functionalizednanoparticles by microemulsion polymerization and surface modification by clickchemistry in aqueous medium[J]. Journal of Polymer Science Part A: Polymer Chemistry,2012,50(2):314-328
    [181] Gorur M.; Yilmaz F.; Kilic A., et al. Synthesis of pyrene end‐capped A6dendrimerand star polymer with phosphazene core via “click chemistry”[J]. Journal of PolymerScience Part A: Polymer Chemistry,2011,49(14):3193-3206
    [182] Lin Y.C.; Kuo S.W. Self-assembly and secondary structures of linear polypeptidestethered to polyhedral oligomeric silsesquioxane nanoparticles through clickchemistry[J]. Journal of Polymer Science Part A: Polymer Chemistry,2011,49(10):2127-2137
    [183] Pressly E.D.; Amir R.J.; Hawker C.J. Rapid synthesis of block and cyclic copolymersvia click chemistry in the presence of copper nanoparticles[J]. Journal of PolymerScience Part A: Polymer Chemistry,2011,49(3):814-819
    [184] Jing R.; Lin W.; Wang G., et al. Copper (0)-catalyzed one-pot synthesis of ABC triblockcopolymers via the combination of single electron transfer nitroxide radical couplingreaction and “click” chemistry[J]. Journal of Polymer Science Part A: PolymerChemistry,2011,49(12):2594-2600
    [185] Nagao Y.; Takasu A.“Click polyester”: Synthesis of polyesters containing triazole unitsin the main chain via safe and rapid “click” chemistry and their properties[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2010,48(19):4207-4218
    [186] Narumi A.; Zeidler S.; Barqawi H., et al. Cyclic alkoxyamine-initiator tethered byazide/alkyne-“click”-chemistry enabling ring-expansion vinyl polymerization providingmacrocyclic polymers[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,48(15):3402-3416
    [187] Pohl M.; Heinze T. Novel Biopolymer Structures Synthesized by Dendronization of6‐Deoxy-6-aminopropargyl cellulose[J]. Macromolecular Rapid Communications,2008,29(21):1739-1745
    [188] Xu W.Z.; Zhang X.; Kadla J.F. Design of Functionalized Cellulosic Honeycomb Films:Site-Specific Biomolecule Modification via “Click Chemistry”[J]. Biomacromolecules,2012,13(2):350-357
    [189] Liebert T.; H nsch C.; Heinze T. Click chemistry with polysaccharides[J].Macromolecular rapid communications,2006,27(3):208-213
    [190] Filpponen I.; Kontturi E.; Nummelin S., et al. Generic method for modular surfacemodification of cellulosic materials in aqueous medium by sequential “click” reactionand adsorption[J]. Biomacromolecules,2012,13(3):736-742
    [191] Ifuku S.; Wada M.; Morimoto M., et al. Preparation of highly regioselective chitosanderivatives via “click chemistry”[J]. Carbohydrate Polymers,2011,85(3):653-657
    [192] Zampano G.; Bertoldo M.; Ciardelli F. Defined chitosan-based networks byC-6-Azide–alkyne “click” reaction[J]. Reactive and Functional Polymers,2010,70(5):272-281
    [193] Bertoldo M.; Nazzi S.; Zampano G., et al. Synthesis and photochromic response of anew precisely functionalized chitosan with “clicked” spiropyran[J]. CarbohydratePolymers,2011,85(2):401-407
    [194] Fox S.C.; Edgar K.J. Staudinger reduction chemistry of cellulose: Synthesis ofcelectively O-acylated6-amino-6-deoxy-cellulose[J]. Biomacromolecules,2012,13(4):992-1001
    [195] Liu C.F.; Sun R.C.; Zhang A.P, et al. Preparation and characterization of phthalatedcellulose derivatives in room-temperature ionic liquid without catalysts[J]. Journal ofAgricultural and Food Chemistry,2007,55(6):2399-2406
    [196] Peng P.; Peng F.; Bian J., et al. Studies on the starch and hemicelluloses fractionated bygraded ethanol precipitation from bamboo Phyllostachys bambusoides f. shouzhu Yi[J].Journal of Agricultural and Food Chemistry,2011,59(6):2680-2688
    [197] Liu C.F.; Xu F.; Sun J.X., et al. Physicochemical characterization of cellulose fromperennial ryegrass leaves (Lolium perenne)[J]. Carbohydrate Research,2006,341(16):2677-2687
    [198] Segal L.; Creely J.J.; Martin A.E., et al. An empirical method for estimating the degreeof crystallinity of native cellulose using the X-ray diffractometer[J]. Textile ResearchJournal,1959,29(10):786-794
    [199] Fenn D.; Pohl M.; Heinze T. Novel3-O-propargyl cellulose as a precursor forregioselective functionalization of cellulose[J]. Reactive and Functional Polymers,2009,69(6):347-352
    [200] Tankam P.F.; Müller R.; Mischnick P., et al. Alkynyl polysaccharides: synthesis ofpropargyl potato starch followed by subsequent derivatizations[J]. CarbohydrateResearch,2007,342(14):2049-2060
    [201] Tahir M.N.; Bork C.; Risberg A., et al. Alkynyl ethers of glucans: Substituentdistribution in propargyl-, pentynyl-and hexynyldextrans and-amyloses and support forsilver nanoparticle formation[J]. Macromolecular Chemistry and Physics,2010,211(15):1648-1662
    [202] Pereira J.F.B.; Lima á.S.; Freire M.G., et al. Ionic liquids as adjuvants for the tailoredextraction of biomolecules in aqueous biphasic systems[J]. Green Chemistry,2010,12(9):1661-1669
    [203] Souza N.L.G.D.; Brand o H.M.; De Oliveira L.F.C. Spectroscopic andthermogravimetric study of chitosan after incubation in bovine rumen[J]. Journal ofMolecular Structure,2011,1005(1):186-191
    [204] Liu C.F.; Sun R.C.; Zhang A.P., et al. Preparation of sugarcane bagasse cellulosicphthalate using an ionic liquid as reaction medium[J]. Carbohydrate Polymers,2007,68(1):17-25
    [205] Guo J.; Wei Y.; Zhou D., et al. Chemosynthesis of Poly (ε-lysine)-Analogous Polymersby Microwave-Assisted Click Polymerization[J]. Biomacromolecules,2011,12(3):737-746
    [206] Henniges U.; Kostic M.; Borgards A., et al. Dissolution behavior of differentcelluloses[J]. Biomacromolecules,2011,12(4):871-879
    [207] Stefanescu C.; Daly W,H.; Negulescu I.I. Biocomposite films prepared from ionic liquidsolutions of chitosan and cellulose[J]. Carbohydrate Polymers,2012,87(1):435-443
    [208] Bian J.; Peng F.; Peng X., et al. Structural features and antioxidant activity ofxylooligosaccharides enzymatically produced from sugarcane bagasse[J]. BioresourceTechnology,2012,127:236-241
    [209] Li C.; Zheng M.; Wang A., et al. One-pot catalytic hydrocracking of raw woodybiomass into chemicals over supported carbide catalysts: simultaneous conversion ofcellulose, hemicellulose and lignin[J]. Energy&Environmental Science,2012,5(4):6383-6390
    [210] Falco C.; Sieben J.M.; Brun N., et al. Hydrothermal Carbons fromHemicellulose‐Derived Aqueous Hydrolysis Products as Electrode Materials forSupercapacitors[J]. ChemSusChem,2013,6(2):374-382
    [211] Hansen N.M.L.; Plackett D. Sustainable films and coatings from hemicelluloses: areview[J]. Biomacromolecules,2008,9(6):1493-1505
    [212] Peroval C.; Debeaufort F.; Seuvre A.M., et al. Modified arabinoxylan-based films:Grafting of functional acrylates by oxygen plasma and electron beam irradiation[J].Journal of membrane science,2004,233(1):129-139
    [213] Xu Q.; Wang Q.; Liu L. Ring-opening graft polymerization of L-lactide onto starchgranules in an ionic liquid[J]. Journal of Applied Polymer Science,2008,107(4):2704-2713
    [214] Dechy-Cabaret O.; Martin-Vaca B.; Bourissou D. Controlled ring-openingpolymerization of lactide and glycolide[J]. Chemical Reviews,2004,104(12):6147-6176
    [215] Peng X.W.; Ren J.L.; Zhong L.X., et al. Microwave-induced synthesis ofcarboxymethyl hemicelluloses and their rheological properties[J]. Journal of Agriculturaland Food Chemistry,2010,59(2):570-576
    [216] Braune W.; Okuda J. An efficient method for controlled propylene oxide polymerization:The significance of bimetallic activation in aluminum lewis acids[J]. AngewandteChemie International Edition,2003,42(1):64-68
    [217] Schilling F.C.; Tonelli A.E. Carbon-13NMR determination of poly (propylene oxide)microstructure[J]. Macromolecules,1986,19(5):1337-1343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700